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This dissertation makes the case that programs can be updated while they run,
with modest programmer effort, while providing certain update safety guarantees,
and without imposing a significant performance overhead.

Few systems are designed with on-the-fly updating in mind. Those systems
that permit it support only a very limited class of updates, and generally provide no
guarantees that following the update, the system will behave as intended. We tackle
the on-the-fly updating problem using a compiler-based approach called dynamic
software updating (DSU), in which a program is patched with new code and data
while it runs. The challenge is in making DSU practical : it should support changes
to programs as they occur in practice, yet be safe, easy to use, and not impose a
large overhead.

This dissertation makes both theoretical contributions—formalisms for rea-
soning about, and ensuring update safety—and practical contributions—Ginseng,
a DSU implementation for C. Ginseng supports a broad range of changes to C
programs, and performs a suite of safety analyses to ensure certain update safety
properties. We performed a substantial study of using Ginseng to dynamically up-
date six sizable C server programs, three single-threaded and three multi-threaded.
The updates were derived from changes over long periods of time, ranging from 10
months to 4 years-worth of releases. Though the programs changed substantially,
the updates were straightforward to generate, and performance measurements show
that the overhead of Ginseng is detectable, but modest.

In summary, this dissertation shows that DSU can be practical for updating
realistic applications as they are written now, and as they evolve in practice.
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Chapter 1
Overview
1.1 Motivation

Continuous operation is a requirement of many of today’s computer systems.
Examples range from pacemakers to cell phone base stations to nuclear power plant
monitors. For ISPs, credit card providers, brokerages, and on-line stores, being
available 24/7 is synonymous with staying in business: an hour of downtime can
cost hundreds of thousands, or even millions of dollars [84, 90, 34], and longer
downtimes put companies at increasingly higher risk. Despite the requirement that
these systems “run forever,” they must be updated to fix bugs and add new features.

The most common update method today, from data centers to desktops to
sensor networks, is to stop the system, install the update and restart at the new
version. For example, one study [65] found that 75% of nearly 6,000 outages of
high-availability applications were planned-for hardware and software maintenance.
Another example is critical updates to Windows Vista, where the update is con-
sidered so important that the operating system decides to apply the updates and
reboot without giving the user the option to postpone installing the updates [13].

Internet access is quickly becoming ubiquitous, so more software vendors re-
lease their operating system or application patches online. Unfortunately, this leads
to more frequent application restarts, or, when updating the OS, to more frequent
reboots. To make a bad situation worse, experts suggest even higher patch release
frequencies are needed, to reduce application and OS vulnerability [45].

As expected, this increase in patch release frequency, and hence restarts, is
problematic. In a large enterprise, reboots can have a large administrative cost [116].
For embedded systems involved in mission-critical or medical applications, reboots
are intolerable. For system administrators and end users, patches and reboots are
burdensome: both categories are slow in applying patches because patches are dis-
ruptive and might introduce new bugs [97].

To fix these problems, we need to support on-line updates, i.e., applying soft-
ware updates without having to restart or reboot. In prior work, many researchers
have proposed variations of an approach to supporting on-line updates called Dy-
namic Software Updating (DSU). In this approach, a running program is patched
with new code and data on-the-fly, while it runs.

This dissertation tackles the on-line updating problem using a fine-grained,
compiler-based DSU approach. We compile programs specially so that they can be
dynamically patched, generate most of a dynamic patch automatically, and finally,
load the dynamic patch into the running program.

DSU is appealing because of its generality: in principle any program can be
updated in a fine-grained way, without the need for redundant hardware or special-
purpose software architectures. The challenge is in making DSU practical : it should
be flexible and yet safe, efficient, and easy to use. We now describe each of these
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properties in detail.

1. Flexibility. DSU should be applicable to a broad range of applications (irre-
spective of abstraction level, software architecture, level of concurrency), and
permit arbitrary updates to applications (since the form of future updates
cannot be predicted).

2. Efficiency. Applications should require few modifications to support DSU,
patches should be easy to write, and updateability should not degrade appli-
cation performance.

3. Safety. DSU should provide safety guarantees that give application developers
(and patch developers) assurances that following the update, the program will
behave as intended.

Unfortunately, DSU systems presented in prior work fail to address one or more
of these requirements. Many systems do not support all of the software changes as
they appear in practice, i.e., are not flexible. Other systems are flexible, but provide
no update safety guarantees.

To address these problems, we have built Ginseng, a new DSU system for C
programs that aims to support most changes that appear in practice, and to satisfy
the three practicality criteria laid out above. We have chosen C because it is a very
popular language in the construction of long-running software. The kernels of Linux
and the BSD OS family are written in C. A survey on safety-critical software [98]
used in aerospace, transportation, medical and energy systems finds Ada, followed
by assembler, C and C++ to be the predominant programming languages used
to construct such systems. Popular long-running Internet servers such as BIND,
Apache, Sendmail, and OpenSSH are also written in C, motivating our decision to
pursue C as the target language for our DSU system.

A DSU system must support the kinds of software changes that typically occur
between releases. To find out how programs typically change, we studied the source
code evolution of some long-running C programs. We built a tool named ASTdiff
that parses two versions of a program, compares their abstract syntax trees, and
reports the differences. We used ASTdiff to compare versions of several large C
programs (BIND, OpenSSH, Apache, Vsftpd, GNU Zebra and the Linux kernel)
spanning several months to several years. We describe ASTdiff and our findings
in Chapter 2. The results of the study show that, to enable long-term evolution, a
DSU system must support addition of new definitions (functions, data, or types), the
replacement of existing definitions (data or functions), and changes to types (data
representations, function signatures, and types of global variables). Similar studies
on the Linux kernel [89] and several substantial Java applications [28] show that
changes to function signatures and class interfaces are part of software evolution for
all programs analyzed.

A large number of compiler- or library-based DSU systems have been developed
for C [42, 47, 20, 6], C++ [52, 60], Java [17, 86, 31, 70], and functional languages
like ML [32, 43] and Erlang [8]. Many do not support all of the changes needed
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Stage 1: initial compilation Stage 2: generating dynamic patches

vn.c

p1.c

Patch Generator Patch Generator

Compiler Compiler CompilerVersion Data d0

v0

v1.cv0.c

Version Data dn-1

pn.c

dynamic patch v0->v1 dynamic patch vn-1->vn

...

Start execution Update v0 to v1 Update vn-1 to vn

Runtime System

Figure 1.1: Building and dynamically updating software with Ginseng. In Stage 1,
Ginseng compiles a C program into an updateable application. In Stage 2 and later,
dynamic patches are generated and loaded into the application.

to make dynamic updates in practice. For example, updates cannot change type
definitions or function prototypes [86, 31, 52, 60, 6], or else only permit such changes
for abstract types or encapsulated objects [60, 43]. In many cases, updates to active
code (e.g., long-running loops) are disallowed [43, 70, 42, 47, 60], and data stored
in local variables may not be transformed [50, 47, 42, 52]. Recent systems are more
flexible, and support such changes [23, 24, 68], but provide no safety guarantees.

1.2 Ginseng

Ginseng is a compiler and tool suite for constructing updateable applications
from C programs. Using Ginseng, we compile programs specially so that they can be
dynamically patched, and generate most of a dynamic patch automatically. Ginseng
performs a series of analyses that when combined with runtime support ensure that
an update will not violate certain safety properties, while guaranteeing that data
is kept up-to-date. We now proceed to presenting a high-level overview of our
approach.

Ginseng consists of a compiler, a patch generator and a runtime system for
building updateable software. The compiler and patch generator are written in
Objective Caml using the CIL framework [80]. The runtime system is a library
written in C.

Basic usage is illustrated in Figure 1.1, with Ginseng components in white
boxes. There are two stages. First, for the initial version of a program, v0.c, the
compiler generates an updateable executable v0, along with some type and analysis
information (Version Data d0). The executable is then deployed. Second, when the
program has changed to a new version (v1.c), the developer provides the new and
old code to the patch generator to generate a patch p1.c representing the differences.
This is passed to the compiler along with the current version information, and turned
into a dynamic patch v0 → v1. The runtime system links the dynamic patch into
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the running program, completing the on-line update. This process continues for
each subsequent program version.

1.2.1 Ginseng Compiler

The Ginseng compiler has two responsibilities: 1) it compiles programs to be
dynamically updateable, and 2) it applies static analyses to ensure updates are safe
even when type definitions change. We describe each of these in turn.

Compilation Techniques. The Ginseng compiler transforms an input C program
so that existing functions will call replacement functions present in a dynamic patch,
and data is converted to the latest representation whenever data types change.

The technique for updating functions is called function indirection; it permits
old code to call new function versions by introducing a level of indirection (via a
global variable) between a caller and the called function. To update a function to
its new version, the runtime system dynamically loads the new function version and
sets the indirection variable to the new function, so new calls go to the new function
version.

Ginseng also must permit transformations to the state of the program, so the
state is compatible with the new code. For this, Ginseng uses a technique called
type wrappers : each definition of a named type T is converted into a “wrapped”
version wT whose size is larger and allows room for future growth. When an update
changes the definition of T in the original program, existing values of type wT in the
compiled program must be transformed to have the new type’s representation, to be
compatible with the new code. This is done via a function called type transformer.
For example, if the old definition of T is struct { int x;} and the new definition is
struct { int x; int y;}, the type transformer’s job is to copy the old value of x and
initialize y to a default value. Code is compiled to notice when a typed value is out
of date, and if so, to apply the necessary type transformer.

Safety Analyses. Ginseng combines static analysis with runtime support to en-
sure that updates are always type-safe, even when changes are made to function
prototypes or type definitions. While supporting the addition of new definitions, or
the replacement of data and functions at the same type, is relatively straightforward,
supporting changes to types is challenging: if the old and new programs assume dif-
ferent representations for a certain type, then old code accessing new data, or new
code accessing old data, leads to a representation inconsistency, i.e., a violation of
type safety. To illustrate this, consider the following simple program; the old version
is on the left and the new program version is on the right. The update changes the
signature of foo to accept two arguments instead of one.
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1 void foo ( int i ) { ... }
2 void bar () {
3 int i ;
4 ...
5 foo( i );
6 ...
7 }

1 void foo ( int i , int j ) { ... }
2 void bar () {
3 int i , j ;
4 ...
5 foo( i , j );
6 ...
7 }

Suppose the update is applied when the old program’s execution reaches line 4.
The new version of foo is loaded, and the call on line 5 will invoke the new ver-
sion, passing it one argument, i . But this is incorrect, since the new version of foo

expects two arguments. The correct thing to do is to postpone the update until
after the call to foo. Ginseng performs two safety analyses (updateability analysis
and abstraction-violating alias analysis) to ensure an update will not lead to such
type safety violations, while guaranteeing that data is kept up-to-date. The basic
idea is to examine the program to discover assumptions made about the types of
updateable entities (i.e., functions or data) in the continuation of each program
point. These assumptions become constraints on the timing of updates (Section 3.3
discusses the implementation of theses analyses).

This is in contrast to previous approaches that focus on the updating mech-
anism, rather than update safety, and as a consequence, support only limited-scale
updates, or provide no safety guarantees.

1.2.2 Patch Generator

Another key factor in enabling dynamic updates to realistic programs is the
ability to construct a dynamic patch automatically. The Ginseng patch generator
(Section 3.4) has two responsibilities. First, it identifies those definitions (global
variables, functions, or types) that have changed between versions. Second, for each
type definition that has changed, it generates a type transformer function used to
convert values from a type’s old representation to the new one. The compiler inserts
code so that the program will make use of these functions following a dynamic patch.
If the new code assumes an invariant about global state (e.g., certain files are open,
certain threads are started, or a list is doubly-linked), this invariant has to hold
after the update takes place. Users can write state transformer functions that are
run at update time to convert state and run initialization code for new features, as
necessary. Users also may adjust the generated type transformers as necessary.

1.2.3 Runtime System and Update Points

The dynamic update itself is carried out by the Ginseng runtime system (Sec-
tion 3.4), which is linked into the updateable program. Once notified, the runtime
system will cause a dynamic patch to be dynamically loaded and linked at the next
safe update point. An update point is essentially a call to a run-time system func-
tion DSU update(). Update points can be inserted manually, by the programmer, or
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automatically, by the compiler. Our safety analyses will annotate these points with
constraints as to how definitions are allowed to change at each particular point. The
runtime system will check that these constraints are satisfied by the current update,
and if so, it “glues” the dynamic patch into the running program. In our experience,
finding suitable update points in long-lived server programs is quite straightforward,
and the analysis provides useful feedback as to whether the chosen spots are free
from restrictions. Sections 3.2, 3.3, and 3.4 describe these features of Ginseng in
detail.

A practical DSU system must strive to provide strong update safety guaran-
tees without affecting update availability (the time from when an update becomes
available to when it is applied).

Long-running programs amenable to dynamic updating are usually structured
around event processing loops, where one loop iteration handles one event. For
the single-threaded programs we have updated, we placed update points (calls to
DSU update) manually, at the completion of a top-level event-handling loop. While the
manual enumeration of a few update points works well for single-threaded programs,
in a multi-threaded program, an update can only be applied when all threads have
reached a safe update point. Since this situation is unlikely to happen naturally,
we could imagine interpreting each occurrence of DSU update() as part of a barrier—
when a thread reaches a safe update point, it blocks until all other threads have done
likewise, and the last thread to reach the barrier applies the update and releases the
blocked threads.

Unfortunately, because all threads must reach safe points, this approach may
fail to apply an update in a timely fashion. Therefore, we must allow updates in
the middle of the loop while still ensuring update safety.

1.2.4 Version Consistency

Performing an update in the middle of a loop can potentially lead to problems,
even if the update is type-safe, because the update violates what we call version
consistency : when programmers write the event processing code they assume the
loop body will execute code belonging to the same version. An update could violate
that assumption.

We solved this problem by allowing programmers to designate blocks of code
as transactions whose execution must always be attributable to a single program
version. An example of a transaction would be a loop iteration, which corresponds
to processing an event. In Chapter 5 we present a formalism called contextual
effects that can be used to reason about the past and future computation at each
program point. Using a static analysis based on contextual effects we can enforce
version consistency even when an update is performed inside a transaction. Version
consistency is a desirable property, but many systems designed to support long-term
evolution [103, 12, 11, 6, 1, 23, 24] do not implement it.

Ginseng provides multi-threaded DSU support that is as flexible and safe as
the single-threaded approach, while ensuring updates can be applied in a timely
fashion. A key concept introduced in this dissertation, explained in Chapter 4, is
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that of induced update points. Induced update points helps us accomplish our goal
of balancing safety and availability. We allow programmers to designate update
points in multi-threaded programs where global state is consistent, and writing an
update is straightforward, as the global invariants hold at those points. The code
between two update points constitutes a transaction. The update, however, can
take place in between programmer-specified update points, at an induced update
point. Our system enforces that an update appears to execute at an update point:
if a code update takes place in between two update points, the execution trace can
be attributed to exactly one program version. In other words, an update can be
applied in the middle of a transaction, but the execution of a transaction is still
attributable to a single program version. This flexibility is crucial in being able to
update multi-threaded programs in a timely manner, without requiring all threads
to reach a programmer-inserted update point simultaneously.

1.3 Evaluation

Ginseng’s support for a broad range of changes to programs, along with safety
and automation, has enabled us to implement long-term updates to single- and
multi-threaded programs. We updated three open-source, single-threaded server
programs with three to four years’ worth of releases: Vsftpd (the Very Secure FTP
daemon), the Sshd daemon from the OpenSSH suite, and the Zebra server from the
GNU Zebra routing software package, for a total of 27 updates (Chapter 3). We were
also able to perform type-safe, version-consistent updates to three multi-threaded
programs: the Icecast streaming server, Memcached (a distributed memory object
caching system) and the Space Tyrant game server. We considered one year worth
of releases for Icecast and Space Tyrant, and ten months for Memcached, for a total
of 13 updates (Chapter 4).

Though these programs were not designed with updating in mind, we had to
make only a handful of changes to their source code to make them safely updateable.
Each dynamic update we performed was based on an actual release, and for each
application, we applied updates corresponding to up to four years’ worth of releases,
totaling as many as twelve different patches in one case. To achieve these results,
we developed several new implementation techniques, including new ways to handle
the transformation of data whose type changes, to allow dynamic updates to infinite
loops and active code, and to allow updates to take effect in programs with function
pointers. Details are in Sections 3.2 and 4.3.1. Overhead due to updating is modest:
application performance usually degrades by 0–10%, though for one of the programs,
the overhead was 32%. Memory footprint for updateable applications is 0–10%
larger, compared to unmodified applications, except for one application, where it is
46%.

The updates we performed to the six servers present a substantial demonstra-
tion that DSU can be practical: it can support on-line updates over a long period
based on actual releases of real-world programs. These servers are similar in that
they keep long-lived, in-memory state, and rebooting the server is disruptive for
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the clients. However, they only constitute one category of long-running programs.
Other long-running systems keep short-lived in-memory state (e.g., web servers), or
store their state on disk (e.g., database systems). In Sections 7.1 and 7.2 we talk
about how DSU would apply to these other categories of systems, and what are the
trade-offs between using DSU and using traditional high-availability techniques.

1.4 Contributions

Based on our experience, we believe Ginseng makes significant headway toward
meeting the DSU practicality criteria we have set forth above:

• Flexibility. Ginseng permits updates to single- and multi-threaded C pro-
grams. The six test programs are realistic, substantial and most of them
are widely used in constructing real-world Internet services. Ginseng sup-
ports changes to functions, types, and global variables, and as a result we
could perform all the updates in the 10 months–4 years time frame we consid-
ered. Patches were based on actual releases, even though the developers made
changes without having dynamic updating in mind.

• Efficiency. We had to make very few changes to the application source code.
Despite the fact that differences between releases were non-trivial, generating
and testing patches was relatively straightforward. We developed tools to
generate most of a dynamic patch automatically by comparing two program
versions, reducing programmer work. We found that DSU overhead is modest
for I/O bound applications, but more pronounced for CPU-bound applications.
Our novel version consistency property improves update availability, resulting
in a smaller delay between the moment an update is available and the moment
the update is applied.

• Safety. Updates cannot be applied at arbitrary points during a program’s
execution, because that could lead to safety violations. Ginseng performs a
suite of static safety analyses to determine times during the running program’s
execution at which an update can be performed safely.

In summary, this dissertation makes the following contributions:

1. A practical framework to support dynamic updates to single- and multi-
threaded C programs. Ours is the most flexible, and arguably the most safe,
implementation of a DSU system to date.

2. A substantial study of the application of our system to six sizable C server
programs, three single-threaded, and three multi-threaded, over long periods
of time ranging from 10 months to 4 years worth of releases.

3. A novel type-theoretical system that generalizes standard effect systems, called
contextual effects ; contextual effects are useful when the past or future com-
putation of the program is relevant at various program points, and have ap-
plications beyond DSU. We also present a formalism and soundness proof
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for our novel update correctness property, version consistency, which permits
us to provide certain update safety guarantees for single- and multi-threaded
programs

4. An approach for comparing the source code of different versions of a C pro-
gram, as well as a software evolution study of various versions of popular open
source programs, including BIND, OpenSSH, Apache, Vsftpd and the Linux
kernel.
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Chapter 2
Software Evolution

To effectively support dynamic updating, we first need to understand how
software evolves. This chapter presents an approach to characterizing the evolution
of C programs, along with a study that analyzes how several substantial open-source
programs have changed over years-worth of releases.

2.1 Introduction

We have developed a tool called ASTdiff that can quickly compute and sum-
marize simple changes to successive versions of C programs by partially matching
their abstract syntax trees. ASTdiff identifies the changes, additions, and deletions
of global variables, types, and functions, and uses this information to report a vari-
ety of statistics. The Ginseng patch generator uses the ASTdiff output to determine
the contents of a dynamic patch.

Our approach is based on the observation that for C programs, function names
are relatively stable over time. We analyze the bodies of functions of the same name
and match their abstract syntax trees structurally. During this process, we compute
a bijection between type and variable names in the two program versions, which will
help us determine changes to types and variables. If the old and new ASTs fail to
match (modulo name changes), we consider this a change to that function’s body,
and will replace the entire function at the next update.

We have used ASTdiff to study the evolution history of a variety of popular
open source programs, including Apache, Sshd, Vsftpd, Bind, and the Linux kernel.
This study has revealed trends that we have used to inform our design for DSU. In
particular, we observed that function, type and global variable additions are far more
frequent than deletions. We also found that function bodies change frequently over
time; function prototypes change as well, but not as frequently as function bodies
do. Finally, type definitions (such as struct and union declarations) do change, but
infrequently, and often in simple ways.

2.2 Approach

Figure 2.1 provides an overview of ASTdiff. We begin by parsing the two
program versions to produce abstract syntax trees (ASTs), which we traverse in
parallel to collect type and name mappings; these mappings will help us avoid
reporting spurious changes due to renamings. With the mappings at hand, we
detect and collect changes to report to the user, either directly or in summary
form. In this section, we describe the matching algorithm, illustrate how changes
are detected and reported, and describe our implementation and its performance.
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Figure 2.1: High level view of ASTdiff.

1 typedef int sz t ;
2

3 int count;
4

5 struct foo {
6 int i ;
7 float f ;
8 char c;
9 };

10

11 int baz(int a, int b) {
12 struct foo sf ;
13 sz t c = 2;
14 sf . i = a + b + c;
15 count++;
16 }
17

1 typedef int size t ;
2

3 int counter;
4

5 struct bar {
6 int i ;
7 float f ;
8 char c;
9 };

10

11 int baz(int d, int e) {
12 struct bar sb;
13 size t g = 2;
14 sb. i = d + e + g;
15 counter++;
16 }
17 void biff (void) { }

Version 1 Version 2

Figure 2.2: Two successive program versions.

2.2.1 AST Matching

Figure 2.2 presents an example of two successive versions of a program. As-
suming the example on the left is the initial version, ASTdiff discovers that the
body of baz is unchanged—which is what we would like, because even though every
line has been syntactically modified, the function in fact is structurally the same,
and produces the same output. ASTdiff also determines that the type sz t has been
renamed size t , the global variable count has been renamed counter, the structure foo

has been renamed bar, and the function biff has been added.
To report these results, ASTdiff must find a mapping between the old and

new names in the program, even though functions and type declarations have been
reordered and modified. To do this, ASTdiff begins by finding function names that
are common between program versions; our assumption is that function names do
not change very often. ASTdiff then tries to match function bodies corresponding
to the same function name in the old and new versions. The function body match
helps us construct a bijection (i.e., a one-to-one, onto mapping) between names in
the old and new versions.
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procedure GenerateMaps(V ersion1, V ersion2)
F1 ← set of all functions in Version 1
F2 ← set of all functions in Version 2
global TypeMap← ∅
global GlobalNameMap← ∅
for each function f ∈ F1 ∩ F2

do


AST1 ← AST of f in Version 1
AST2 ← AST of f in Version 2
Match Ast(AST1, AST2)

procedure Match Ast(AST1, AST2)
local LocalNameMap← ∅
for each (node1, node2) ∈ (AST1, AST2)

do



if (node1, node2) = (t1 x1, t2 x2) // declaration

then

{
TypeMap← TypeMap ∪ {t1 ↔ t2}
LocalNameMap← LocalNameMap ∪ {x1 ↔ x2}

else if (node1, node2) = (y1 := e1 op e′1, y2 := e2 op e′2) // assignment

then



Match Ast(e1, e2)
Match Ast(e′1, e

′
2)

if isLocal(y1) and isLocal(y2) then
LocalNameMap← LocalNameMap ∪ {y1 ↔ y2}
else if isGlobal(y1) and isGlobal(y2) then
GlobalNameMap← GlobalNameMap ∪ {y1 ↔ y2}

else if . . . // other syntactic forms
else break

Figure 2.3: Map generation algorithm.

We traverse the ASTs of the function bodies of the old and new versions
simultaneously, adding entries to a LocalNameMap and a GlobalNameMap that map
local variable names and global variable names, respectively. Two variables are
considered equal if we encounter them in the same syntactic position in the two
function bodies. For example, in Figure 2.2, parallel traversal of the two versions of
baz results in the LocalNameMap:

a↔ d, b↔ e, sf↔ sb, c↔ g

and a GlobalNameMap with count ↔ counter. Similarly, we form a TypeMap
between named types (typedefs and aggregates) that are used in the same syntactic
positions in the two function bodies. For example, in Figure 2.2, the name map pair
sb↔ sf will introduce a type map pair struct foo↔ struct bar.

We define a renaming to be a name or type pair j1 → j2 where j1 ↔ j2 exists
in the bijection, j1 does not exist in the new version, and j2 does not exist in the
old version. Based on this definition, ASTdiff will report count → counter and
structfoo → structbar as renamings, rather than additions and deletions. This
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------- Global Variables ----------
Version1 : 1
Version2 : 1
renamed : 1

------- Functions -----------------
Version1 : 1
Version2 : 2
added : 1
locals/formals name changes : 4

------- Structs/Unions ------------
Version1 : 1
Version2 : 1
renamed : 1

------- Typedefs -----------------
Version1 : 1
Version2 : 1
renamed : 1

Figure 2.4: Summary output produced for the code in Figure 2.2.

approach ensures that consistent renamings are not presented as changes, and that
type changes are decoupled from value changes, which helps us better understand
how types and values evolve.

Figure 2.3 presents the pseudocode for our algorithm. We accumulate global
maps TypeMap and GlobalNameMap, as well as a LocalNameMap per function body.
We invoke the routine Match Ast on each function common to the two versions.
When we encounter a node with a declaration t1 x1 (a declaration of variable x1 with
type t1) in one AST and t2 x2 in the other AST, we require x1 ↔ x2 and t1 ↔ t2.
Similarly, when matching statements, for variables y1 and y2 occurring in the same
syntactic position we add type pairs in the TypeMap, as well as name pairs into
LocalNameMap or GlobalNameMap, depending on the storage class of y1 and y2.
LocalNameMap will help us detect functions which are identical up to a renaming
of local and formal variables, and GlobalNameMap is used to detect renamings for
global variables and functions. As long as the ASTs have the same shape, we keep
adding pairs to maps. If we encounter an AST mismatch (the break statement on
the last line of the algorithm), we stop the matching process for that function and
use the maps generated from the portion of the tree that did match.

2.2.2 Change Detection and Reporting

With the name and type bijections in hand, ASTdiff visits the functions, global
variables, and types in the two programs to detect changes and collect statistics. We
categorize each difference that we report either as an addition, deletion, or change.
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/ : 111
include/ : 109

linux/ : 104
fs.h : 4
ide.h : 88
reiserfs_fs_sb.h : 1
reiserfs_fs_i.h : 2
sched.h : 1
wireless.h : 1
hdreg.h : 7

net/ : 2
tcp.h : 1
sock.h : 1

asm-i386/ : 3
io_apic.h : 3

drivers/ : 1
char/ : 1

agp/ : 1
agp.h : 1

net/ : 1
ipv4/ : 1

ip_fragment.c : 1

Figure 2.5: Density tree for struct/union field additions (Linux 2.4.20 → 2.4.21).

We report any function names present in one file and not the other as an
addition, deletion, or renaming as appropriate. For functions in both files, we report
that there is a change in the function body if there is a difference beyond the
renamings that are represented in our name and type bijections. This can be used
as an indication that the semantics of the function has changed, although this is
a conservative assumption (i.e., semantics-preserving transformations such as code
motion are flagged as changes). In our experience, whenever ASTdiff detects an
AST mismatch, manual inspection has confirmed that the function semantics has
indeed changed.

We similarly report additions, deletions and renamings of global variables, and
changes in global variable types and static initializers.

For types we perform a deep structural isomorphism check, using the type
bijection to identify which types should be equal. We report additions, deletions, or
changes in fields for aggregate types; additions, deletions, or changes to base types
for typedefs; and additions, deletions, or changes in item values for enums.

ASTdiff can be configured to either report this detailed information or to
produce a summary. For the example in Figure 2.2, the summary output is presented
in Figure 2.4. In each category, Version1 represents the total number of items in
the old program, and Version2 in the new program. For brevity we have omitted
all statistics whose value was 0.
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ASTdiff can also present summary information in the form of a density tree,
which shows how changes are distributed in a project. Figure 2.5 shows the density
tree for the number of struct and union fields that were added between Linux versions
2.4.20 and 2.4.21. In this diagram, changes reported at the leaf nodes (source files)
are propagated up the branches, making clusters of changes easy to visualize. In
this example, the include/linux/ directory and the include/linux/ide.h header
file have a high density of changes.

A potential over-conservatism of our matching algorithm is that having insuf-
ficient name or type pairs could lead to renamings being reported as additions/dele-
tions. The two reasons why we might miss pairs are partial matching of functions
and function renamings. As mentioned previously, we stop adding pairs to maps
when we detect an AST mismatch, so when lots of functions change their bodies, we
miss name and type pairs. This could be mitigated by refining our AST comparison
to recover from a mismatch and continue matching after detecting an AST change.
Because renamings are detected in the last phase of the process, functions that are
renamed don’t have their ASTs matched, another reason for missing pairs. In order
to avoid this problem, the bijection computation and function body matching would
have to be iterated until a fixpoint is reached. Note that reporting spurious changes
due to renamings do not affect the correctness of our DSU implementation. For
example, reporting a function is as added and deleted instead of renamed would
only cause more code to be loaded.

In practice, however, we found the approach to be reliable. For the case studies
in Section 2.3, we have manually inspected the ASTdiff output and the source code
for renamings that are improperly reported as additions and deletions due to lack
of constraints. We found that a small percentage (less than 3% in all cases) of
the reported deletions were actually renamings. The only exception was an early
version of Apache (versions 1.2.6-1.3.0) which had significantly more renamings,
with as many as 30% of the reported deletions as spurious.

2.2.3 Implementation

ASTdiff is constructed using CIL, an OCaml framework for C code analysis [80]
that provides ASTs as well as some other high-level information about the source
code. We have used it to analyze all releases of Vsftpd1 from inception (Nov. 2001)
to March 2005; all releases of the OpenSSH Sshd daemon2 from inception (Oct 1999)
to March 2005; 8 snapshots in the lifetime of Apache 1.x3 (Feb. 1998 to Oct. 2003);
and portions of the lifetimes4 of the Linux kernel5 (versions 2.4.17, Dec. 2001 to
2.4.21, Jun. 2003) and BIND6 (versions 9.2.1, May 2002 to 9.2.3, Oct. 2003).

The running time of ASTdiff is linear in the size of the input programs’ ASTs.

1http://vsftpd.beasts.org/
2http://www.openssh.com/
3http://httpd.apache.org/
4Analyzing earlier versions would have required older versions of gcc.
5http://kernel.org/
6www.isc.org/products/BIND/
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Figure 2.6: ASTdiff running time for various program sizes.

Figure 2.6 shows the running time of ASTdiff on our test applications, plotting
source code size versus running time. Times are the average of 5 runs; the system
used for experiments was a dual Xeon@2GHz with 1GB of RAM running Fedora
Core 3. The top line is the total running time while the bottom line is the portion
of the running time that is due to parsing, provided by CIL. The difference between
the two lines is our analysis time. Computing changes for two versions of the largest
test program takes slightly over one minute. The total time for running the analysis
on the full repository (i.e., all the versions) for Vsftpd was 21 seconds (14 versions),
for Sshd was 168 seconds (25 versions), and for Apache was 42 seconds (8 versions).

2.3 Implications for Dynamic Software Updating

This section explains how we used ASTdiff to characterize software changes
and to guide the way we designed Ginseng. We are mainly interested in three aspects
of software evolution: how often do definitions get deleted, how often do function
signatures change, and how do type definitions change. The reason we consider
these aspects important is that implementing deletion and supporting type changes
safely is problematic for DSU systems. We present our findings as structured around
asking and answering three research questions:

Are function and variable deletions frequent, relative to the size of the
program? When a programmer deletes a function or variable, we would expect a
DSU implementation to delete that function from the running program when it is
dynamically updated. However, implementing on-line deletion is difficult, because
it is not safe to delete functions or variables that are currently in use (or will be
in the future). Therefore, if definitions are rarely deleted over a long period, the
benefit of cleaning up dead code may not be worth the cost of implementing a safe
mechanism to do so. For simplicity, Ginseng does not unload unused functions and
variables after they have been replaced and are no longer in use (Section 3.4).

Figure 2.7 illustrates how Sshd, Vsftpd, and Apache have evolved over their
lifetime. The x-axis plots time, and the y-axis plots the number of function and
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global variable definitions for various versions of these programs. Each graph shows
the total number of functions and global variables for each release, the cumulative
number of functions/variables added, and the cumulative number of functions/vari-
ables deleted (deletions are expressed as a negative number, so that the sum of
deletions, additions, and the original program size will equal its current size).7 The
rightmost points show the current size of each program, and the total number of
additions and deletions to variables and functions over the program’s lifetime.

According to ASTdiff, Vsftpd and Apache delete almost no functions, but Sshd
deletes them steadily. For the purposes of our DSU question, Vsftpd and Apache
could therefore reasonably avoid removing dead code, while doing so for Sshd would
have a more significant impact (assuming functions are similar in size).

Are changes to function prototypes frequent? Many DSU methodologies do
not update a function whose type has changed. While it is easy, technically, to load
or replace a function, a change to a function’s prototype can lead to type safety
violations (Section 3.3). Figure 2.8 presents graphs similar to those in Figure 2.7.
For each program, we graph the total number of functions, the cumulative number of
functions whose body has changed, and the cumulative number of functions whose
prototype has changed.8 As we can see from the figure, changes in prototypes are
relatively infrequent for Apache and Vsftpd, especially compared to changes more
generally. In contrast, functions and their prototypes have changed in Sshd far
more rapidly, with the total number of changes over five years roughly four times
the current number of functions, with a fair number of these resulting in changes
in prototypes. In all cases we can see some changes to prototypes, meaning that
supporting prototype changes in DSU is a good idea.

Are changes to type definitions relatively simple? In most DSU systems,
changes to type definitions (which include struct, union, enum, and typedef declara-
tions in C programs) require an accompanying type transformer function to be sup-
plied with the dynamic update. Each existing value of a changed type is converted
to the new representation using this transformer function. Of course, this approach
presumes that such a transformer function can be easily written. If changes to type
definitions are fairly complex, it may be difficult to write a transformer function.

Figure 2.9 plots the relative frequency of changes to struct, union, and enum

definitions (the y-axis) against the number of fields (or enumeration elements for
enums) that were added or deleted in a given change (the x-axis). The y-axis is
presented as a percentage of the total number of type changes across the lifetime of
the program. We can see that most type changes affect predominantly one or two
fields; an exception is Sshd, where changing more than two fields is common. We
also used ASTdiff to learn that fields do not change type frequently (not shown in
the figure).

7We use cumulative figures to show that additions are much more frequent than deletions.
8We use cumulative figures to show that body changes are much more frequent than prototype

changes.
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Figure 2.9: Classifying changes to types.

2.4 Conclusion

We have presented an approach to finding differences between program ver-
sions based on partial abstract syntax tree matching. Our algorithm uses AST
matching to determine how types and variable names in different versions of a pro-
gram correspond. We have constructed ASTdiff, a tool based on our approach and
used it to analyze several popular open source projects over a few years in their life-
time. The software evolution insights we have gained from using ASTdiff, e.g., the
way types and functions change have helped us in the design and implementation
of Ginseng, our DSU system for C programs.

20



Chapter 3
Single-threaded Implementation and Evaluation

This chapter presents the implementation of Ginseng, an approach and tool
suite for dynamically updating C programs, along with its evaluation on single-
threaded programs.1 Chapter 4 will discuss Ginseng’s support for multi-threaded
programs and its evaluation on multi-threaded programs.

3.1 Introduction

Our primary considerations for designing Ginseng follow the three practicality
criteria described in Chapter 1 (efficiency, flexibility, and safety). We believe these
features are necessary for any DSU system aiming to support long-term evolution
for realistic programs:

Efficiency. DSU should permit writing applications in a natural style: while an
application writer should anticipate that software will be upgraded, she should not
have to know what form that update will take. Similarly, writing dynamic updates
should be as easy as possible. The performance of updateable applications should be
in line with that of normally-compiled applications; if support for update imposes
a high overhead, DSU is not likely to be adopted.

Flexibility. The power and appeal of DSU is to permit applications to change
on the fly at a fine granularity. Thus, programmers should be able to change data
representations, change function prototypes, reorganize subroutines, etc. as they
normally would.

Safety. Dynamic updates should not be hard to establish as correct. The harder
it is to develop applications that use DSU and prove their correctness, the more its
benefits of finer granularity and control is diminished.

To evaluate single-threaded Ginseng, we have used it to dynamically upgrade three
single-threaded servers: Vsftpd (the Very Secure FTP daemon), the Sshd daemon
from the OpenSSH suite, and the Zebra server from the GNU Zebra routing software
package.

Based on our experience, we believe Ginseng squarely meets the first two
criteria for the class of single-threaded server applications we considered, and makes
significant headway toward the third. These programs are realistic, substantial,
and in common use. Though they were not designed with updating in mind, we

1The design, implementation and evaluation of Ginseng on single-threaded programs are the
result of joint efforts with Gareth Stoyle, Michael Hicks, Manuel Oriol, Gavin Bierman, and Peter
Sewell; we present details on their contributions in Section 3.7.
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had to make only a handful of changes to their source code to make them safely
updateable. Each dynamic update we performed was based on an actual release, and
for each application, we applied updates corresponding to at least three years’ worth
of releases, totaling as many as twelve different patches in one case. To achieve these
results, we developed several new implementation techniques, including new ways to
handle the transformation of data whose type changes, to allow dynamic updates to
active code, and to allow updates to take effect in programs with function pointers.
Though we have not optimized our implementation, overhead due to updating is
modest: between 0 and 32% on the programs we tested.

Despite the fact that changes were non-trivial, generating and testing patches
was relatively straightforward. We developed tools to generate most of a dynamic
patch automatically by comparing two program versions, reducing programmer
work. More importantly, Ginseng performs two safety analyses to determine times
during the running program’s execution at which an update can be performed safely.
The theoretical development of our first analysis, called the updateability analy-
sis [106], is not a contribution of this dissertation. We present an implementation of
that analysis for the full C programming language, along with some practical exten-
sions for handling some of the low-level features of C. These safety analyses assist
assurance of correctness, though the programmer needs a clear “big picture” of the
application, e.g., the interactions between application components, and establishing
and maintaining global invariants.

A high-level overview of Ginseng’s components was presented in Section 1.2.
The next three sections describe these components in detail, while Sections 3.5
and 3.6 describe our experience using Ginseng and evaluate its performance.

3.2 Enabling On-line Updates

To make programs dynamically updateable we address two main problems.
First, existing code must be able to call new versions of functions, whether via a
direct call or via a function pointer. Second, the state of the program must be
transformed to be compatible with the new code. For a type whose definition has
changed, existing values of that type must be transformed to conform to the new
definition.

Ginseng employs two mechanisms to address these two problems, respectively:
function indirection and type-wrapping. We discuss them in turn below, and show
how they can be combined to update active code.

3.2.1 Function Indirection

Function indirection is a standard technique [50] that permits old code to call
new function versions by introducing a level of indirection between a caller and
the called function, so that its implementation can change. For each function f in
the program, Ginseng introduces a global variable f ptr that initially points to the
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first version of f.2 Ginseng encodes version information through name mangling,
renaming the initial version of f to f v0, the subsequent version f v1 and so on. Each
direct call to f within the program is replaced with a call through ∗ f ptr . Ginseng
also handles function pointers in an interesting way: if the program passes f as data
(i.e., as a function pointer), Ginseng generates a wrapper function that calls ∗ f ptr

and passes this wrapper instead. To dynamically update f to version 1, the runtime
system dynamically loads the new version f v1 and then stores the address of f v1 in
f ptr . While function indirection is not new, the idea of generating function wrappers
to permit updates to a function whose address is taken is, to our knowledge, first
introduced in this dissertation.

3.2.2 Type Wrapping

The Ginseng updating model enforces what we call representation consis-
tency [106], in which all values of type T in the program at a given time must
logically be members of T’s most recent version. The alternative would be to al-
low multiple versions of a type to coexist, where code and values of old and new
type could interact freely within the program. (Hjálmtýsson and Gray [52] and
Duggan [32] refer to these approaches as global update and passive partitioning, re-
spectively.) Representation consistency is a useful property because it more closely
models the “forward march” of a program’s on-line evolution, making it easier to
reason about.

To enforce representation consistency, Ginseng must ensure that when a par-
ticular type T’s definition is updated, values of that type in the running program
are updated as well. To do this, a dynamic patch defines a type transformer func-
tion used to transform a value vT from T’s old definition to its new one. Just like
functions, types are associated with a version, and the type transformer cTn→n+1

converts values of type Tn (i.e., the representation of T in version n) to be those
of type Tn+1. As we explain later, much of a type transformer function can be
generated automatically via a simple comparison of the old and new definitions.

Given this basic mechanism, we must address two questions. First, when are
type transformers to be used? Second, how is updateable data represented?

Applying Type Transformers. To transform existing vTn values the runtime
system must find them all and apply cTn→n+1 to each. One approach would be to
do this eagerly, at update-time; this would require either implementing a garbage-
collector-style tracing algorithm [43], or maintaining a registry of pointers to every
(live) value of type Tn during execution [12]. More simply, we could restrict type
transformation to only those data reachable from global variables, and require the
programmer to implement the tracer manually [50]. Finally, we could do it lazily,
as the program executes following the update [32, 17, 7].

Ginseng uses the lazy approach. The compiler renames version n of the user’s

2Ginseng is more careful than we are in these examples about generating non-clashing variable
names.
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definition of T to be Tn, where the definition of T simply wraps that of Tn, adding a
version field. Given a value vT (of wrapped type T), Ginseng inserts a coercion func-
tion called conT (for concretization of T) that returns the underlying representation.
This coercion is inserted wherever vT is used concretely, i.e., in a way that depends
on its definition. For example, this would happen when accessing a field in a struct.
Whenever conT is called on vT , the coercion function compares vT ’s version n with
the latest version m of T. If n < m, then the necessary type transformer functions
are composed and applied to vT changing it in-place. That is, Ginseng automatically
invokes the entire type transformer chain cTn→n+1, cTn+1→n+2, . . . , cTm−1→m to yield
the up-to-date vTm (of type Tm).

The lazy approach has a number of benefits. First, it is not limited to pro-
cessing only values that are reachable by global variables; stack-allocated values, or
those reachable from stack-allocated values, are handled easily. Second, it amortizes
transformation costs, reducing the potential pause at update-time that would be re-
quired to transform all data in the program. The drawback is that per-type access
during normal program execution is more expensive (due to the calls to conT), and
the programmer has little control over when type transformers are invoked, since
this is determined by the program’s execution. Therefore, transformers must be
written to be timing-independent. In our experience, type transformers are used
rarely, and so it may be sensible to use a combination of eager and lazy application
to reduce total overhead.

Without care, it could be possible for a transformed value to end up being
processed by old code, violating representation consistency. This could lead a conT

coercion to discover that the version n on vT is actually greater than the version m
of the type T expected by the code. A similar situation arises when function types
change: old code might end up calling the new version of a function assuming it
has the old signature. We solve these problems with some novel safety analyses,
described in more detail in Section 3.3.

Type Representations. While lazy type updating is not new [7], there has been
little or no exploration of its implementation, particularly for a low-level language
such as C. Based on our experience, a given type is likely to grow in size over time, so
the representation of the wrapped type T must accommodate this. One approach is
to define the wrapper type to use a fixed space, larger than the size of T0 (padding).
This strategy allows future updates to T that do not expand beyond the preallocated
padding. The main advantage of the padding approach is that the allocation strategy
for wrapped data is straightforward: stack-allocated data in the source program is
still stack-allocated in the compiled program, and similarly for malloced data. This
is because type transformation happens in place: the transformed data overwrites
the old data in the same storage.

On the other hand, a data type cannot grow beyond the initial padding, ham-
pering on-line evolution. Padding also changes the cache locality of data. For
example, if a two-word structure in the original program is expanded to four words,
then half as many elements can fit in a cache line.
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An alternative approach would be to use indirection, and represent the wrapped
type as a pointer to a value of the underlying type. This mechanism is used in the
K42 operating system [60], which supports updating objects. The indirection ap-
proach solves the growth problem by allowing the size of the wrapped type to grow
arbitrarily, but introduces an extra dereference per access. More importantly, the
indirection approach makes memory management more challenging: how should
storage for the transformed data be allocated, and what is to happen to the now-
unneeded old data? Also, when data is copied, the indirected data must be copied
as well, to preserve the sharing semantics of the application. The simplest solution
would be to have the compiler malloc new representations and free (or garbage col-
lect) the old ones; this is less performance-friendly than stack allocation. Another
alternative would be to use regions [109], which have lexically-scoped lifetimes (as
with stack frames), but support dynamic allocation. Of course, a hybrid approach
is also possible: data could start out with some padding, and an indirection is only
added if the padding is ever exceeded. Nevertheless, for simplicity, Ginseng employs
the padding approach.

3.2.3 Example

Figure 3.1 presents a simple C program and how we compile it to be update-
able. The main program is in function call : it creates a value t of type struct T and
calls function foo (via apply) to set its .x field to 1. The original program is on the
left, and the resulting updateable program is in the middle and right columns. The
comments can be ignored; these are the results of the safety analysis, explained in
the next section.

First, we can see that all function definitions have been renamed to include a
version, and that Ginseng has introduced a ptr variable for each function, to keep a
pointer to the most current version. Calls to functions are indirected through these
pointers. Second, we can see that the definition of struct T is now a wrapper for
struct T0, the original definition. The con T function unwraps a struct T, poten-
tially converting it to the latest representation via a call to DSU transform (which
invokes the type transformer if the value must be updated). The con T function is
called twice in call v0 to extract the underlying value of t. Finally, we can see that
Ginseng has generated foo wrap to wrap an indirected call to foo; this is passed as
a function pointer to apply.

3.2.4 Loops

When a function f is updated, in-flight calls are unaffected, but all subsequent
calls, including recursive ones, invoke the new f. In general, this makes reasoning
about the timeline of an update simpler. On the other hand, it presents a problem
for functions that implement long-running or infinite loops: if an update occurs to
such a function while the old version is active, then the new version may not take
effect for some time, or may never take effect. This is a disadvantage of any updating
system that prevents updates to active functions (Section 3.3.4).
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We solve this problem by a transformation we call code extraction. To illustrate
how this work, we present an example of updating a long-running loop by extracting
the loop body into a separate function.If the function containing the block is later
changed, then this extracted function will notice the changes to the loop on the
next iteration. As the code and state preceding the loop might have changed as
well, the loop function must be parametrized by some extracted code state. This
state will be transformed using our standard type transformer mechanism on the
next iteration of the loop. Code extraction using a separate function parametrized
by state is a technique similar to prior work on functional and parallel compilers
(lambda lifting [59], procedure splitting [91], function outlining [115]) and on-stack
replacement in optimizing VMs [22, 2].

For illustration, consider the code in the left column of Figure 3.2. The pro-
grammer directs Ginseng that the code block labeled L1 should be extracted. The
result is shown in the middle and right columns. In the middle is the extracted
function, L1 extract , and on the right side is the rewritten original function foo. The
function L1 extract takes two arguments: struct L1 xs ∗xs, and int ∗ret. The first argu-
ment, xs, is the “extracted state”, which contains pointers to all of the local variables
and parameters referenced in foo that might be needed by the code in L1; we can see
in foo where this value is created. Within L1 extract , references to local variables (x)
or parameters (g) have been changed to refer to them through ∗(xs).

Within the function foo, L1 extract is called on each loop iteration. Within
L1 extract , expressions that would have exited the loop—notably break, continue, and
return statements—are changed to return x, where x is 0 for break, 1 for continue and
2 for return. In foo, this return code is checked and the correct action is taken.

If in a subsequent program version the loop in foo were to change, the extracted
versions of the two loop bodies would be different, with the new one updating the
old one. The new version will be invoked on the loop’s next iteration, and if the new
loop requires additional state (e.g., new local variables or parameters were added to
foo), then this is handled by the type transformer function for struct L1 xs. This type
transformer might perform side-effecting initialization as well, for code that would
have preceded the execution of the current loop. Note that foo’s callers are neither
aware nor affected by the loop extraction inside the body of foo.

When extracting infinite loops, nothing else needs to be done. However, if the
loop might terminate, we must extract the code that follows the loop as well, so
that an updated loop does not execute a stale post-amble when it completes; we
accomplish this by simply marking the post-amble for code extraction as we did
with L1 above. The annotations the programmer needs to add for code extraction
are described in detail in Section A.1.2.

A similar technique to code extraction, called stack reconstruction, is used
in UpStare, another dynamic updating system [68]. Stack reconstruction allows
the update developer to define a correspondence between program points in the
old and new versions, and, at update time, the stacks of all active functions are
converted into new-version stacks via user-specified functions. The advantage of
stack reconstruction is that programmers do not need to identify in advance the
code blocks, or loops, that need to be extracted.
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Replacing arbitrary code on the stack was critical for supporting two of our
three benchmark applications, Vsftpd and Sshd (Section 3.5). Both applications
are structured around event loops: a parent process accepts incoming connection
requests, and forks. The forked child breaks out of the loop and executes the loop
postamble. If the loop body and loop postamble change in later versions, this will
translate into updates to both extracted functions, hence both the parent and the
children will get to execute the most up to date version.

3.3 Safety Analysis

When developing software with Ginseng, programmers designate points in
the program where an update should take place; to indicate an update point, the
programmer adds a call to function DSU update. Update points are usually placed at
program points where global state is consistent, e.g., at the end of an iteration of
a long-running loop (Section 3.2.4). Placing update points where global invariants
hold simplifies reasoning about update safety and writing the update. However,
correct update point placement raises an issue for the programmer, since the form
of future updates cannot be predicted. Therefore, the programmer needs to know
whether an update that occurs in the future could create problems if they take effect
at a certain update point.

To illustrate this, let us look again at the example in Figure 3.1. Suppose
the program has just entered the call function—is it safe to update the type T?
Generally speaking the answer is no, because code t .x assumes that t is a structure
with field x, and a change to the representation of t could violate this assumption,
leading to unexpected behavior. In this section we look at how Ginseng helps the
programmer avoid choosing bad update points like this one using static analysis.

3.3.1 Tracking Changes to Types

The example given above illustrates what could happen when old code ac-
cesses new data, essentially violating representation consistency. To prevent this
situation from happening, Ginseng applies a constraint-based, flow-sensitive update-
ability analysis [106] that annotates each update point with the set of types that
may not be updated if representation consistency is to be preserved. This set is
called the capability because it defines those types that can be used by old code
that might be on the call stack during execution. Of course, the capability is a
conservative approximation, as it approximates all possible “stack shapes.” It is
computed by propagating concrete uses of data backwards along the control flow of
the program to possible update points.

Statically-approximated capabilities are illustrated in Figure 3.1, where the
sets labeled D in the comments define the current capability; on functions, D defines
the input capability (capability at the start of the function) and D′ defines the output
capability (capability at the end of the function). When T appears in D, it means
that the program has the capability to use data of type T concretely. An update
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must not revoke this capability when it is needed.
We will now explain the capabilities for each function in the program (third

column of Figure 3.1). For function foo (line 22), the input capability, D, contains
T for two reasons: 1) because T has a live pointer into it for the duration of the
function (live pointers are captured by the set L and are explained in Section 3.3.2),
and because T appears in the output capability D′ (i.e., is used concretely in foo’s
continuation, in call ). For function apply (line 25), the input and output capabilities
contain T due to its concrete use in apply’s continuation; foo appears in the input
capability D because we call foo in apply via the function pointer fp; the live pointer
set L is empty because there is no live pointer into a type for the entire duration of
apply—the last live pointer to T is dereferenced on line 28. For function call (line 31),
the output capability D′ is empty because there is nothing left on the stack after
call exits; the live pointer set L is empty because there is no live pointer into a type
for the entire duration of call ; finally, the input capability D contains T and apply

because they are used concretely (accessed and called, respectively) in the body of
call .

At each program point, the capability D imposes a restriction on the functions
and type that can be updated. For example, if we update apply at line 34, its type
must either remain unchanged or the new type be a subtype of the old type [106],
because apply appears in the capability D at that point. At line 37 we can perform
an update that changes the type of apply or foo because there is no call to them on
left on the stack; however, we cannot perform an update that changes the definition
of T , because T is used concretely on the next line.

Programmers indicate where updates may occur in the program text by insert-
ing a call to a special runtime system function DSU update. When our analysis sees
this function, it “annotates” it with the current capability. At run-time this anno-
tation is used to prevent updates that would violate the static determination of the
analysis. Moreover, the runtime system ensures that if a type is updated, then any
functions in the current program that use the type concretely are updated with it;
that is, even though ASTdiff finds no difference in the ASTs of a function in the old
and new program versions, we will still load the new function version. This allows
the static analysis to be less conservative. In particular, although the constraints
on the form of capabilities induced by concrete usage are propagated backwards in
the control flow, propagation does not continue into the callers of a function [106].
This propagation is not necessary because the update-time check ensures that all
function calls are always compatible with any changed type representations.

The formalization and soundness proof of the updateability analysis are not
part of this dissertation, and are presented elsewhere [106]. However, the imple-
mentation of this analysis for the full C language is one of the contributions of this
dissertation.

Our implementation extends the basic analysis to also track concrete uses of
functions and global variables, which permits more flexible updates to them. In
the former case, by considering a call as a concrete use of a function, and function
names as types, we can use the analysis to safely support a change to the type
of the function. Similarly, in the latter case, by taking reads and writes of global
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variables as concrete uses, and the name of a global variable as a type, we can
support representation changes to global variables. As shown in Section 2.3, the
types of functions and global variables do change over time, so this extension has
been critical to making DSU work for real programs.

The implementation also properly accounts for both signals and non-local con-
trol transfers via setjmp/longjmp, albeit quite conservatively. Since signal handlers can
fire at any point in the program, we disallow occurrences of DSU update inside a signal
handler (or any function that handler might call), to avoid violating assumptions
of the analysis (we could allow updates to occur, but prevent updates that would
change type representations, function signatures, etc.). We model setjmp/longjmp as
non-local goto; that is, the updateability analysis assumes that any longjmp in the
program could go to any setjmp. The six server programs presented in Sections 3.5
and 4.4 do not employ setjmp/longjmp, but all of them use signals.

3.3.2 Abstraction-Violating Aliases

C’s weak type system and low level of abstraction sometimes make it difficult
for us to maintain the illusion that a wrapped type is the same as its underlying
type. In particular, the use of unsafe casts and the address-of (&) operator can
reveal a type’s representation through an alias. An example of this can be seen in
Figure 3.1 where apply is called passing the address of field x of t. Within foo, called
by apply with this pointer, the statement ∗x = 1 is effectively a concrete use of T,
but this fact is not clear from x’s type, which is simply int ∗. An update to the
representation of struct T while within foo could lead to a runtime error. We have
a similar situation when using a pointer to a typedef as a pointer to its concrete
representation. We say that these aliases are abstraction violating.

One extreme solution would be to mark structs whose fields have their address
taken as non-updateable. However, this solution can be relaxed by observing that
only as long as an alias into a value of type T exists is it dangerous to update T. Thus
if we know, at each possible update point, those types whose values might have live
abstraction-violating aliases (AVAs), we can prevent those types from being changed.
We discover this set of types using a abstraction violating alias analysis, an analysis
that follows the general approach of effect reconstruction [67, 21, 5]. This analysis
is described in Stoyle’s dissertation [105].

The comments in Figure 3.1 illustrate the AVA analysis results for the example,
where L is the set of types having live abstraction-violating aliases. L’s contents are
shown for each function, and the effect associated with variable x in functions foo and
apply is shown to be T via the notation x:T. Looking at the example, we can see the
call function violates T’s abstraction by taking the address of t .x, and then passes
this pointer to apply. This pointer is not used concretely in call , so does not effect
subsequent computation in this function: call ’s environment has no abstraction
violating pointers. As call is the only caller of apply, its associated L is empty.
However, the environment of the body of apply does contain an abstraction-violating
pointer, namely the parameter x. Thus when apply calls foo via the pointer fp, T’s
abstraction is violated and the L annotation for foo must contain T. In the example,
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we consider all statements as possible update points, and so extend D according to
the results of the AVA analysis. This is why, for example, T appears in the capability
of both foo and apply. In both cases T is in L or in the effect of a free variable in
the environment (i.e., x). We do not show an annotation for foo wrap because it is
an auto-generated function (though Ginseng’s safety analysis handles it properly).

3.3.3 Unsafe Casts and Polymorphism

To ensure that the program operates correctly, many representation-revealing
casts are disallowed. For example, if we had a declaration struct S { int x; int y; int z; },
a C programmer might use this as a subtype of struct T from Figure 3.1, by cast-
ing a struct S ∗ to a struct T ∗. Given the way that we represent updateable types,
permitting this cast would be unsafe, since struct S and struct T might have distinct
type transformers and version numbers and treating one as the other may result in
incorrect transformation. As a result, when our analysis discovers such a cast, it
rules both types as non-updateable.

However, it would be too restrictive to handle all casts by rendering the types
non-updateable. For example, C programmers often use void ∗ to program generic
types. One might write a “generic” container library in which a function to insert an
element takes a void ∗ as its argument, while one that extracts an element returns a
void ∗. The programmer would cast the inserted element to void ∗ and the returned
void ∗ value back to its assumed type. This idiom corresponds to parametric poly-
morphism in languages like ML and Haskell. Programmers also encode existential
types using void ∗ to build constructs like callback functions, and use upcasts and
downcasts when creating and using callbacks, respectively. For example:

struct callback {
void ∗env;
void (∗fp)(void ∗env, int arg );
};
void invoke(struct callback ∗cb, int arg) {

cb→ fp(cb→ env,arg);
}

In this case, the env field of callback is existentially quantified: users can construct
callbacks where there exists some consistent type τ that can be given to the env field
and the first argument of fp field, but the invoke function is indifferent to this type’s
actual identity. Because τ can be different for different callbacks, C programmers
must use the type void ∗, using upcasts and downcasts when creating and using
callbacks, respectively.

If these idioms are used correctly, then they pose no problem to Ginseng’s com-
pilation approach since they do not reveal anything about a type’s representation.
However, we cannot treat casts to and from void ∗ as legal in general, because void ∗
could be used to “launder” an unsafe cast. For example, we might cast struct S ∗
to void ∗, and then the void ∗ to struct T ∗. Each cast may seem benign on its own,
but becomes unsafe in combination. To handle this situation, our analysis anno-
tates each void ∗ type in the program with the set of concrete types that might
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have been cast to it, e.g., casting a struct T ∗ to a void ∗ would add struct T to the
set. When casting a void ∗ to struct S ∗, the analysis ensures the annotation on the
void ∗ contains a single element, which matches struct S. If it does not, then this is
a potentially unsafe cast and both struct T and struct S are made non-updateable.
Since our analysis is not context-sensitive, some legal downcasts will be forbidden,
for example when a container library is used twice in the program to hold different
object types. Fortunately, such context-sensitivity is rarely used by the programs
we have considered. In the worst case, we inspect the program manually to decide
whether a cast is safe or not, and override the analysis results in this case with a
pragma. The annotations the programmer needs to add for overriding the analysis,
along with some examples of their use are presented in Section A.1.4.

3.3.4 Ginseng’s Type Safety vs Activeness Check

One popular way for ensuring proper timing is to restrict an update from
taking place if it affects code that is actively executing, i.e., is referenced by the
stack of a running thread [23, 24, 1]. We call this restriction the “activeness check.”3

Unfortunately, while the activeness check precludes many problematic update times,
not all problematic update times are ruled out.

Ginseng’s safety check is comparable to the activeness check, though there
are some differences. Our check permits updates to the body or signature of the
current function, whereas the activeness check doesn’t. However, since we take into
account abstraction-violating aliases, we are more restrictive as to what types may
be updated. For example, an alias p into a field of struct T can lead to a type safety
violation if p is dereferenced after the definition of struct T changes. Ginseng’s safety
analysis only permits updates to struct T after the alias p is no longer live.

3.3.5 Choosing Update Points

In Section 3.3 we mentioned that programmers choose where to place update
points. Placing update points where global invariants hold simplifies reasoning about
update safety and writing the update. We define such points quiescent points, i.e.,
points in the program is one at which there are no partially-completed operations,
and all global state is consistent (i.e., global invariants are satisfied). Dynamic
updates are best applied at such quiescent points, so that writing an update is
straightforward.

Ginseng adds constraints on types that can change at a programmer-inserted
update point, so an update does not violate type safety. However, Ginseng does not
provide guidance on where an update point should be placed—it only ratifies the
programmer’s decision in terms of type safety. A problem that can arise from bad
update placement is best illustrated by the following example. The code on the left

3A common criticism of the activeness check is that it is too strong: it precludes updates to code
that never becomes inactive, e.g., the body of an infinite loop. In our experience, such updates
are relatively rare, and in any case can be supported using techniques such as loop extraction
(Section 3.2.4).
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is the old program version, while the code on the right is the new version. The only
change is moving the call to g from the body of h into the body of f.

1 void g() { ... }
2 void f () { ... }
3

4 void h () {
5

6 f ();
7 g();
8 }

1 void g() { ... }
2 void f () { g(); }
3

4 void h () {
5

6 f ();
7

8 }

While the old and new program essentially “do the same thing”, a badly timed up-
date can lead to unexpected behavior, even though the update is type safe. Suppose
the update occurs on line 5 in the old program. The call to f will be to the new ver-
sion that calls g, but then returns to its caller, the old h, which then calls g (line 7)
again. Note that despite the update being type safe, we ended up calling g twice,
which is problematic. If g is a memory deallocation function such as free , we end
up freeing a location twice. If g is a logging function, we end up with a duplicated
log entry. We can construct a symmetrical scenario where g is moved from f into h,
and as a result of the update, we fail to call it.

This example illustrates the importance of update timing, and its impact on
update correctness. In Chapter 5 we will show how programmers can designate
code blocks that “go together” (e.g., the body of function h in our example, or
one iteration of an event processing loop). Based on this programmer indication,
Ginseng enforces a property named version consistency : all the functions and global
variables in such a block are accessed at the same program version. In our example,
Ginseng would prevent an update that changes both f and h from being applied at
line 5, because this leads to a version-inconsistent execution for the code in the body
of h.

Note that a quiescent point is related to, but not identical with, a point with
empty capability (Section 3.3); its capability may not necessarily be empty, although
it is usually small. On the other hand, an empty capability does not imply quies-
cence, but rather indicates there are no concrete uses of types beyond the current
point.

3.4 Dynamic Patches

Patch Generation. For each new release we need to generate a dynamic patch,
which consists of new and updated functions and global variables, type transformers
and state transformers. The Ginseng patch generator generates most of a dynamic
patch automatically in three steps. First, it compares the old and new versions
of a program using ASTdiff (Section 2.2) to discover the new and modified defi-
nitions. Second, it adds the new and changed definitions to the patch file, where
unchanged definitions are made extern. Third, it generates type transformers for all
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changed types by attempting to construct a conversion from the old type into the
new type [50]. For example, if a struct type had been extended by an extra field, the
generator would produce code to copy the common fields and add a default initial-
izer for the added one. This simplistic approach to patch generation is surprisingly
effective, requiring few manual adjustments; in Section A.2 we present some con-
crete examples of how the programmer writes state transformers and adjusts the
auto-generated type transformer.

After the patch is generated and the state and/or type transformers are writ-
ten, we pass the resulting C file to Ginseng, and the final result is compiled to a
shared library so that it can be linked into the running program. Ginseng compiles
the patch just as it does the initial version of a program, but also introduces initial-
ization code to be run at update-time. The initialization code will effectively “glue”
the dynamic patch into the running program, as explained next.

1 void DSU tt vty v0( struct vty old ∗xin ,
2 struct vty new ∗xout,
3 struct DSU wrapper struct vty ∗xnew )
4 { ... }
5

6 void DSU state xform(void)
7 { ... }
8

9

10 /∗ New functions ∗/
11 int access list standard v0 (...)
12 { ... }
13

14 /∗ Changed functions ∗/
15 extern void vty serv sock v0 (unsigned short port, char ∗path ) ;
16 void vty serv sock v1 (char const ∗hostname, unsigned short port, char ∗path ) ;
17 { ... }
18

19 extern int config write access ipv4 v0 (DSU wrapper struct vty ∗vty )
20 int config write access ipv4 v1 ( wrapper struct vty ∗vty )
21 { ... }
22

23 void DSU install patch(void)
24 {
25 DSU latest tt struct vty = & tt vty v0;
26

27 vty serv sock ptr = & vty serv sock v1;
28 config write access ipv4 ptr = & config write access ipv4 v1 ;
29 access list standard host ptr = & access list standard host v0 ;
30

31 DSU state xform();
32 }
33

34 char ∗DSU update contents = ” struct vty vty serv sock config write access ipv4 ... ”;

Figure 3.3: Ginseng dynamic patch for the update Zebra 0.92a → 0.93a.
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Dynamic Patch Example. Figure 3.3 presents the source code for an actual
dynamic patch, corresponding to the update from Zebra 0.92a to 0.93a. All the
code, except the state transformer (DSU state xform on lines 6–7) and programmer-
adjusted part of type transformers (DSU tt x on lines 1–4) is auto-generated.

The first part (lines 1–7) contains type and state transformers. The second
part (lines 10–22) contains new and changed functions and global variables. Note
how Ginseng performs name mangling by renaming each function definition accord-
ing to function version: access list standard is a new function, hence its name ends in
v0, whereas vty serv sock and config write access are now at the second version. The
function DSU install patch is the auto-generated “glue code” that installs the latest
version of the type transformer for types that have changed (line 25), sets the func-
tion pointers for new and changed functions (lines 27–29) and finally invokes the
state transformer (line 31). Ginseng also includes the update contents (line 34)—a
string containing the set of functions, types and global variables changed by the
update.

Runtime System. To perform an update, the user sends a signal to the running
program, which alerts the runtime system. When the program reaches a possible
update point (i.e., the first call to DSU update for single-threaded programs, or the
first thread to reach an induced update point for multi-threaded programs), the
runtime system will try to perform the update. First, Ginseng loads the shared
library containing the dynamic patch into memory, using dlopen [64]. Then, the
runtime system retrieves the update contents DSU update contents.

Now the runtime system is ready to perform the update safety check. For
single-threaded programs, DSU update contents is checked against the capability of the
update point (Section 3.3.1). For multi-threaded programs, DSU update contents is
checked against each thread’s capability and contextual effects (Section 4.2.1). The
check prevents Ginseng from applying an update at an unsafe point. If the check
fails, the runtime system gives the control back to the program, and will try to apply
the update at a later update point. If the check succeeds, the runtime system will
install the patch.

Patch installation is very simple: Ginseng calls DSU install patch which installs
the type transformers for the updated types, redirects changed functions to the new
versions, and finally invokes the state transformer if the user has provided one. Type
transformers are not called at update time; they are invoked lazily, when the values
to be updated are accessed.

Our current runtime system has two main limitations. We do not support
patch unloading, so old code and data will persist following an update. This memory
leak has been minimal in practice—between 21% and 40% after three years’ worth
of patches for our benchmark applications because, as explained in Section 2.3,
deletions are infrequent. Second, dynamic updates cannot be rolled back trans-
actional. If, during an update, an error is encountered in Ginseng-generated glue
code, the runtime system or the user-supplied state transformer, we do not yet
have a safe mechanism to abort the update and restore the state to the pre-update
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one. Possible approaches to solving this problem are saving the values of global
variables prior to the update and restoring them upon failure [50], or using specu-
lations [108]/transactional memory [15] to roll back the effects of a failed update.
We leave these problems to future work.

3.5 Experience

We now present our experience with dynamically updating three single-threaded
open-source programs: Vsftpd, the Very Secure FTP daemon, the OpenSSH Sshd
daemon, and the Zebra routing daemon from the GNU Zebra routing package;4 in
Chapter 4 we will present our experience with updating multi-threaded programs.

We chose these programs because they are long-running, maintain soft state
that could be usefully preserved across updates, and are in wide use. For each pro-
gram we downloaded releases spanning several years and then applied the method-
ology shown in Figure 1.1. In particular, we compiled the earliest release to be
updateable and started running it. Then we generated dynamic patches for subse-
quent releases and applied them on-the-fly in release order, while the program was
actively performing work (serving files, establishing connections, etc.).

With this process, we identified key application features that make updating
the applications easy or hard. We also identified strong points of our approach (that
enabled most of the updates to be generated automatically), along with issues that
need to be addressed in order to make the updating process easier, more flexible
and applicable to a broad category of applications. In the rest of this section, we
describe the applications and their evolution history, and the manual effort required
to dynamically update them; identify application characteristics and Ginseng fea-
tures that make updating feasible; and conclude by reviewing factors that enabled
us to meet the challenges set forth in Section 3.1.

3.5.1 Applications

Table 3.1 shows release and update information for each program. Columns 2–4
show the version number, release date and program size for each release. Column 5
contains the nature of individual releases.5 To give a sense of programmer effort
for each update, column 6 shows the number of type transformers for that specific
update, while column 7 presents the size of the state transformer in lines of code;
‘-’ means no type or state transformers were needed for a particular release.

We now briefly discuss each application, then describe how the applications
changed over a three year period, and finally discuss the manual effort required to
dynamically update them.

Vsftpd stands for “Very Secure FTP Daemon” and is now the de facto FTP
server in major Unix distributions. For our study, we considered the 13 versions
from 1.1.0 through 2.0.3. As can be seen in Table 3.1, in the time frame we consid-

4http://www.zebra.org
5As described at http://freshmeat.net/
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Program Release Date Size Description Type State
xform xform

(LOC) (count) (LOC)
1.1.0 07/02 10,141
1.1.1 10/02 10,245 Minor bug/security fixes 2 -
1.1.2 10/02 10,540 Major feature enhanc. 5 -
1.1.3 11/02 10,723 Minor feature enhanc. 3 -
1.2.0 05/03 12,027 Major feature enhanc. 7 1
1.2.1 11/03 12,662 Minor feature enhanc. 6 -

Vstfpd 1.2.2 04/04 12,691 Major bug/security fixes 3 -
2.0.0 07/04 13,465 Major feature enhanc. 4 -
2.0.1 07/04 13,478 Major bug/security fixes - -
2.0.2pre2 07/04 13,531 Other - -
2.0.2pre3 03/05 14,712 Other - -
2.0.2 03/05 17,386 Major bug/security fixes - -
2.0.3 03/05 17,424 Major bug/security fixes 1 -
3.5p1 10/02 47,424
3.6.1p1 04/03 49,120 Minor bug/security fixes 3 -
3.6.1p2 04/03 49,134 Major bug/security fixes - -
3.7.1p1 09/03 51,133 Major bug/security fixes 8 -
3.7.1p2 04/03 51,145 Major bug/security fixes - -

Sshd 3.8p1 02/04 52,547 Other 8 -
3.8.1p1 04/04 52,549 Minor bug/security fixes 1 -
3.9p1 08/04 53,979 Major feature enhanc. 8 -
4.0 03/05 56,803 Minor feature enhanc. 9 -
4.1 05/05 56,840 Minor bug/security fixes 3 -
4.2p1 09/05 58,104 Minor bug/security fixes 7 -
0.92a 08/01 41,630
0.93a 07/02 40,649 Major bugfixes 11 30

Zebra 0.93b 09/02 40,679 Minor fixes 1 1
0.94 11/03 45,447 Minor security fixes 3 17
0.95 03/05 45,546 Major bugfixes 7 -
0.95a 09/05 45,586 Other 1 -

Table 3.1: Application releases.
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Program Functions Types Global variables
Add Del. Proto Body Add Del. Chg. Add Del. Chg.

changes changes
Vstfpd 97 21 33 308 12 2 6 72 9 15
Sshd 131 19 85 752 27 2 19 70 19 29
Zebra 134 44 13 321 24 6 4 56 11 52

Table 3.2: Changes to applications.

ered there were 3 major feature enhancements, 4 major bugfixes, 2 minor feature
enhancements and 1 minor bugfix.

Sshd is the SSH daemon from the OpenSSH suite, which is the standard open-
source release of the widely-used secure shell protocols. We upgraded Sshd 10 times,
corresponding to 11 OpenSSH releases (version 3.5p1 to 4.2p1) over three years.

GNU Zebra is a TCP/IP routing software package for building dedicated
routers that support the RIP, OSPF, and BGP protocols on top of IPv4 or IPv6.
It consists of protocol daemons (RIPd, OSPFd, BGPd) and a Zebra daemon which
acts as a mediator between the protocol daemons and the kernel (Figure 3.4), storing
and managing acquired routes. Storing routes in Zebra allows protocol daemons to
be stopped and restarted without discarding and re-learning routes (which can be a
time consuming process). We upgraded Zebra 5 times, corresponding to 6 releases
(version 0.92a to 0.95a) over 4 years.

Evolution History. Table 3.2 contains the cumulative number of changes that
occurred to the software over that span, computed using ASTdiff. “Types” refers to
structs, unions and typedefs together. Global variable changes consists of changes to
either global variable types or to global variable static initializers. As an example
reading of the table, notice that for Vsftpd, 97 functions were added, 21 were deleted,
33 functions had their prototype changed, and 308 functions had the bodies changed.
For Sshd, 19 types changed; for Zebra, there were 52 global variable changes. We
mentioned in Chapter 2 that a dynamic software updating system must support
changes, additions, and deletions for functions, types and global variables if it is to
handle realistic software evolution. Ginseng supports all these changes, therefore
we have been able to dynamically update the three applications from the earliest to
the latest versions we considered.

3.5.2 Changes To Original Source Code

To safely update these applications with Ginseng required making a few small
changes and additions to their source code. These changes amount to around 50
lines of code for Vsftpd and Sshd and 40 lines for Zebra, for each program version.
The changes consisted of introducing named types for some global variables (we
need to introduce such types for global variables whose addresses are taken, to
support changes to these variables’ types and static initializers), directives to the
compiler (for adding update points, analysis, code extraction—described in detail
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Figure 3.4: Zebra architecture.

in Section A.1) and in one case (Vsftpd), instantiating an existential use of void ∗
(see Section 3.3.3). Another change to Vsftpd is discussed in the next subsection.

For each new release, we would use the Ginseng patch generator to generate
the initial patch, and then verify or complete the auto-generated type transformers
and write state transformers (where needed, which was rare, as can be seen in
columns 6–7 of Table 3.1). This effort was typically minimal. Table 3.3 presents the
breakdown of patches, across all releases, into manual and auto-generated source
code: the first column shows the number of source code lines we had to write for
type and state transformers, the second column shows code lines we had to write
to cope with changes in global variables’ types or static initializers, and the third
column shows the amount of code coming out of the patch generator. The code
dealing with changes in static initializers for global variables is frequently a mere
copy-paste of the variable’s static initializer.

3.5.3 Dynamic Updating Catalysts

In the process of updating the three applications, we discovered four factors
that make programs amenable to dynamic updating.

Quiescence. As mentioned in Section 3.3.5, dynamic updates are best applied at
quiescent points, so that writing an update is straightforward. However, it is the
programmer’s responsibility to find such points and indicate them to the compiler
via DSU update(). Fortunately, each application was structured around an event pro-
cessing loop, where the end of the loop defines a stable quiescent point: there are
no pending function calls, little or no data on the stack, and the global state is
consistent. At update time, new versions of the functions are installed and global
state is transformed so the next iteration of the loop will be effectively executing
the new program.

For instance, Vsftpd is structured around two infinite loops: one for accepting
new client connections, and one for handling commands in existing connections
(Figure 3.5). Each time a connection is accepted, the parent forks a new process
and returns from the accept loop within the child process. The main function then
initializes the connection and calls handle con to process user commands. To be able
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int main() {
init ();
conn = accept loop();
L1: {

init conn (conn);
handle conn(conn);
}
}

int accept loop() {
L2: while (1) {

fd = accept();
if (! fork ())

return fd ;
}
}

void handle conn(fd) {
L3: while (1) {

read(cmd,fd);
}
}

Figure 3.5: Vsftpd: simplified structure.

Program Source code
(LOC)

Type + state xform Gvar changes Patch generator
(manual) (manual) auto

Vsftpd 162 930 83,965
Sshd 125 659 248,587
Zebra 49 244 43,173

Table 3.3: Patch source code breakdown.

to update the long running loops, and to handle updates following the accept loop
in main, we used loop extraction (Section 3.2.4) at each of the three labeled locations
so that they could be properly updated. Note that although L1 is not a loop, by
using loop extraction we were able to update code on main’s stack (the continuation
of accept loop()) without replacing main itself. For each of the three applications we
used one programmer-inserted update point, in the main process, at the end of one
iteration of the accept loop (hence both the parent process, and each new child
process spawned as result of accepting a connection will always execute the latest
version).

Functional State Transformation. Our mechanisms for transforming global
state (state transformers) and local state (type transformers) assume that we can
write a function that transforms old program state into new program state. Unfor-
tunately, sometimes it is not possible to impose the semantics of the new application
on the existing state. We encountered two such cases in our test applications. In
the upgrade from Sshd 3.7.1p2 to Sshd 3.8p1, a new security feature was intro-
duced: the user’s Unix password is checked during the authentication phase and
if the password has expired, port forwarding will be not be allowed on the SSH
connection. However, when dynamically updating a live connection from version
3.7.1p2 to 3.8p1, the authentication phase has passed already, so the new policy is
not enforced for existing connections (though they could be shut down forcibly). For
new connections requests coming in after the update, the new check is, of course,
performed.
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A similar situation arose in going from Vsftpd 1.1.1 to 1.1.2. The new release
introduced per-IP address connection limits by mapping the ID of each connection
process with a count related to remote IP address. These counts are increased
when a process is forked and decremented in a signal handler when a process dies.
Unfortunately, following an update, any current processes will not have been added
to the newly introduced map, and so the signal handler will not execute properly. In
effect, the new state is not a function of the old state. In this case, the easy remedy
is to modify the 1.1.2 signal handler to not decrement the count if the process ID is
not known.

When transforming some value, a type transformer can only refer to the old
version of the value and the latest version of global variables, which means that
in principle some transformations may be difficult or impossible to carry out. In
practice we did not find this to be a problem: for all the 29 type transformers we
had to write, the programmer effort was limited to initializing newly added struct

fields.

Type-safe Programs. As mentioned in Section 3.3, low-level programming id-
ioms might result in types being marked non-updateable by the analysis. Since
having a non-updateable type restricts the range of possible updates, we would like
to maximize the number of updateable types, so the solution is to either have a more
precise analysis, or inspect specific type uses by hand and override the analysis for
that particular type. For the programs we have considered, the techniques presented
in Sections 3.3.2 and 3.3.3 increased the precision of the analysis and thereby greatly
reduced the need to inspect the program manually.

For instance, in vsftpd, strings are represented by a struct mystr that carries the
proper string along with length and the allocated size. The address of the string field
is passed to functions, hence revealing struct mystr’s representation, but our abstrac-
tion violation analysis was able to detect that the aliases were temporary and did not
escape the scope of the callee, hence the type was updateable at the conclusion of
the call. Polymorphism is employed in all three programs; using the void ∗ analysis
(Section 3.3.3) we were able to detect type-safe uses of void ∗ and reduce the number
of casts that have to be manually inspected. Inline assembly can compromise type
safety as well: we do not know how global variables, types and functions are used
when passed to assembly code. Our analysis treats inline assembly conservatively
by preventing changes to type definitions and types of functions or global variables
used in inline assembly. However, when a manual inspection confirms that such uses
are safe, we can decide to override the analysis; we only had one such situation in
Sshd. In the end, we manually overrode the analysis only for a handful of types: 0
for Vsftpd, 1 for Zebra, and 4 for Sshd.

Our type wrapping scheme relies on the fact that programs rarely rely on how
types are physically laid out in memory, i.e., that they are treated abstractly in this
respect. Fortunately, this was a good assumption for these programs. We could not
type wrap some “low level” types, e.g., Vsftpd’s representation of an IP address,
since its layout is ultimately fixed by the OS syscall API. On the other hand, this
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and low-level structures like this one rarely change, since they are tied to external
specifications.

Robust Design. We wanted our DSU approach to be general enough to be applied
to off-the-shelf software, written without dynamic updates in mind (as was the
case with our test applications). However, there are measures developers can take
to make applications more update-friendly. Apart from features mentioned above
(quiescent points, type safety, and abstract types), we have also found defensive
programming and extensive test cases to be helpful in developing and validating
the updates. All three programs we looked at were written defensively using assert

liberally, which facilitated error detection and helped us spot Ginseng bugs relatively
easily. By looking at the assertions in the code, we were able to detect the invariants
the programs relied on, and preserve them across updates. Sshd comes with a
rigorous test suite that provides extensive code coverage, and for Zebra and Vsftpd
we created our own suites to test a broad range of features.

3.5.4 Summary

We believe we have addressed the DSU challenges set forth in Section 3.1.
We did not have to change the applications extensively to render them updateable.
Patch generation was mostly automatic, and writing the manual parts was easy.

We were able to support a large variety of changes to applications; as can be
seen in Tables 3.1 and 3.2, the applications have changed significantly during the
three-four years time-frame we considered. Once we became familiar with the appli-
cation structure (e.g., interaction between components, global invariants), writing
patches was easy, with all the infrastructure generated automatically; the only man-
ual task was to initialize newly added fields, write state transformers, or make some
small code changes.

A combination of factors have helped us address these challenges: (1) pro-
grams were amenable to dynamic updating (easily identifiable quiescence points the
application, application changes that allowed updates to be written as functions
from the old state to the new state, robust application design and moderate use of
type-unsafe, low-level code), and (2) Ginseng, especially analysis refinements and
support for automation, has made the task of constructing and validating updates
easy, even for applications in the range of 50-60 KLOC.

3.6 Performance

In this section, we evaluate the impact of our approach on updateable soft-
ware. We analyzed the overhead introduced by DSU by subjecting the instrumented
applications to a variety of ’real world’ tests. We considered the following aspects:

1. Application performance. We measured the overhead that updateability im-
poses on an application’s performance by running stress tests. We found that
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DSU overhead is modest for I/O bound applications, but significant for CPU-
bound ones.

2. Memory footprint. Type wrapping, extra version checks and dynamic patches
result in an increased memory footprint for DSU applications. We found the
increase to be negligible for updateable and updated applications, but after
stacking multiple patches, the memory footprint increase is detectable.

3. Service disruption. We measure the cost of performing an actual update while
the application is in use. The update will cause a delay in the application’s
processing, while the patch is loaded and applied, and will result in an amor-
tized overhead as data is transformed. In all the updates we performed, even
for large patches, we found the update time to be less than 5 ms.

4. Type wrapping overhead. In order to measure the impact of type wrapping
on CPU-bound applications, we instrumented an application that performs
computations on named types exclusively—KissFFT. We found type wrapping
to introduce a significant overhead, in terms of both performance and memory
footprint.

We also measured the running time of Ginseng to compile our benchmark
programs, to measure the overhead of compilation and our analyses.

We conducted our experiments on dual Xeon@2GHz servers with 1GB of RAM,
connected by a 100Mbps Fast Ethernet network. The systems ran Fedora Core 3,
kernel version 2.6.10. All C code, generated by Ginseng or otherwise, was compiled
with gcc 3.4.2 at optimization level -O2. We have compiled and run the experiments
with optimization level -O3, but apart form a slight increase in memory footprint
(less than 1%), there was no detectable difference in performance. Unless otherwise
noted, we report the median of 11 runs.

3.6.1 Application Performance

To assess the impact of updateability on application performance, we tried
different stress tests on the updateable applications. For each application, we mea-
sure the performance of its most recent version under four configurations. The stock
configuration is the application compiled normally, without updating. The update-
able configuration is the application compiled with updating support. The updated
once configuration is the application after performing one update, whereas the up-
dated streak configuration is the application compiled from its oldest version and
then dynamically updated multiple times to bring it to the most recent version; this
configuration is useful for considering any longer-term effects on performance due
to updating.

Vstfpd. We tested Vsftpd performance using two metrics: connection time and
transfer rate. For connection time, we measured the time it took wget to sequentially
request 500 files of size 0, and divided by 500. Since wget opens a new connection
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Program Connection time (ms)
stock updateable updated once streak

Vsftpd 6.71 6.9 (2.83%) 7.04 (4.91%) 8.4 (25.18%)
Sshd 47.62 49.26 (3.44%) 49.5 (3.94%) 62.89 (32.06%)
Zebra 0.63 0.65 (3.17%) 0.65 (3.17%) 0.67 ( 6.34%)

Program Transfer rate (MB/s)
stock updateable updated once streak

Vsftpd 7.95 7.95 (0%) 7.97 (0.25%) 7.98 (0.37%)
Sshd 7.85 7.84 (−0.12%) 7.83 (−0.25%) 7.84 (−0.12%)

Table 3.4: Server performance, in absolute numbers and relative to the stock version.

for each file, and disk transfers are not involved, we get a picture of the overhead
DSU imposes on FTP clients. As seen in Table 3.4, the updateable, updated and
streak-updated versions were 3%, 5% and 25% slower than the stock server. With a
difference of at most 1.7 ms, we do not believe this to be a problem for FTP users.

These measurements seem to suggest a progressive slowdown due to updating.
The primary reason for this appears to be poorer spatial locality. Using OProfile,6

we measured the total cycles, instructions retired, and cache and TLB misses during
benchmark runs of the one-update and streak-updated versions. We found that the
effective CPI of the streak-updated version was consistently higher, and that this
was attributable to cache and TLB misses. Such misses are understandable: code
and data that were close together in the original program are now spread across
multiple shared libraries.

We also measured the median transfer rate of a single 600 MB file to a single
client. The results are shown in Table 3.4; since file transfer is a network-bound
operation, the transfer rates of the different configurations are virtually identical.

Sshd. For Sshd we measured the same indicators as for Vsftpd, connection time
and transfer rate. For the former, we loaded the server with 1000 concurrent requests
and measured the total elapsed time, divided by 1000. (Client-server authentica-
tion was based on public key hence no manual intervention was needed.) Each
client connection immediately exited after it was established (by running the exit

command). The measured connection time is shown in Table 3.4. The update-
able, updated and streak-updated versions were 3%, 4% and 32% slower than the
stock server. Again, we do not think the 15ms difference is going to be noticed in
practice. The CPU-intensive nature of authentication and session key computation
accounts for SSH connection time being almost 10 times larger than for FTP. To
measure the sustained transfer rate over SSH we used scp to copy a 600MB file. As
shown in Table 3.4, the results are similar to the Vsftpd benchmark—the transfer
is network-bound and the DSU overhead is undetectable

6http://oprofile.sourceforge.net
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Figure 3.6: Zebra performance.

Zebra. Since Zebra is primarily used for route proxying and redistribution, the
focus of Zebra experiments was different than for Vsftpd and Sshd. First, we mea-
sured the overhead DSU imposes on route addition and deletion. We started each
protocol daemon alone with Zebra, and programmed the protocol daemon to add
and delete 100,000 routes. When passing routes through the updateable, updated
and streak-updated versions of the Zebra daemon, the DSU overhead was 4%, 6%
and 12%, compared to the stock case (first three clusters in Figure 3.6). Second, we
measured route redistribution performance. We started the RIP daemon, turned on
redistribution to OSPF and BGP daemons, programmed the RIP daemon to add
and delete 100,000 routes, and measured the time it took until the route updates
were reflected back into the OSPF and BGP routing tables. Similarly, we timed
redistribution of OSPF routes to RIP and BGP daemons. BGP redistribution is
not supported by Zebra. The DSU overhead in the route redistribution case (last
two clusters in Figure 3.6) is the same as for the “no redistribution” case above:
4%, 6% and 12% respectively.

Zebra offers a command line interface for remote administration, so as a sanity
check only, we measured the connection time for Zebra as well. We wrote a simple
client that connects to the Zebra daemon, authenticates, executes a simple command
(“show version”) and then exits. We measured (Table 3.4) a 3%, 3%, and 6%
increase in connection times for the updateable, updated once and streak-updated
Zebra versions, respectively.

KissFFT. The overhead of DSU is dwarfed by I/O costs in our experiments. On
the one hand, this is good because illustrates that for a relevant class of applications,
DSU is not cost-prohibitive. On the other hand, it does not give a sense of the
costs of DSU for more compute-bound applications. To get a sense of this cost, we
instrumented KissFFT7, a Fast Fourier Transform library. Figure 3.7 shows the total

7http://sourceforge.net/projects/kissfft
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Figure 3.7: KissFFT: DSU impact on performance.
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time to perform 100,000 Fast Fourier Transforms on 10,000 points. The updateable,
updated once and updated streak versions were on average more than twice as slow
(a factor of 2.29x) than the stock version.

We analyzed KissFFT to understand the source of the overhead. The program
operates on a large array of complex numbers, and each complex number is repre-
sented as a struct complex. Therefore, before accessing fields a con complex has to be
performed. Moreover, each complex number will have some slop to accommodate
future growth.

Together, these two overheads can make a significant difference, as shown in
Figure 3.8. First, the compiler does not attempt to optimize away redundant cons;
that is, KissFFT will perform consecutive cons for data that could not have been
updated in between. As shown in the figure, hand-optimizing away redundant cons
in the main loop yielded some improvement. Second, the added slop results in poor
cache behavior, as far fewer complex numbers in the array would be hot in the
cache. The figure shows the effect of setting the slop to 0, effectively just adding
the version field to the struct. Avoiding redundant cons reduces the DSU penalty
to 100%, eliminating the slop reduces the DSU penalty to 78%, and combining the
two techniques yields a final DSU overhead of only 42%.

We believe that in the future we could leverage static analysis in order to
avoid introducing redundant cons, and could explore different updateable type
representations (such as the hybrid solution described in Section 3.2.2) for reducing
the overhead of the slop.

Note however, that KissFFT belongs to a category of performance-critical
applications where the cost of DSU might outweigh the benefits; we discuss other
such applications in Section 7.1. The point of our KissFFT experiments is to explore
the cost of DSU in CPU-intensive applications in which uses of named types abound.

3.6.2 Memory Footprint

Type wrapping, function indirection, version checking and loop extraction all
consume extra space, so updateable applications have larger memory footprints.
Figure 3.9 reports memory footprints for the four scenarios, with quartiles as error
bars.8 Measurements were made using pmap at the conclusion of each throughput
benchmark.

For the updateable and updated cases, the only significant increase is displayed
by KissFFT. The explanation is quite simple: KissFFT uses a large number of structs
whose size grows by a factor > 2 due to type wrapping. The footprint increases for
Vsftpd, Sshd and Zebra are overshadowed by OS variability.

However, for the streak updates, the median footprint increase (relative to
the stock version) is 21%, 40% and 27% for Vsftpd, Sshd and Zebra, respectively.
The larger footprint increase for streak updates is expected, since dynamic patches
for three years worth of updates are added into the memory space of the running

8We present memory footprint data using error bars (as opposed to just numbers as we did for
performance experiments) because there is a lot of variability in the data.
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Figure 3.10: Patch application times.

program and never unloaded (Section 3.4).

3.6.3 Service Disruption

One of the goals of DSU is to avoid service interruption due to the need to apply
software patches. By applying these patches on-line, we preserve useful application
state, leave connections open, and sustain service. However, the service will still be
paused while new patch files are loaded, and service could be degraded somewhat
due to the application of type transformers at patch time and thereafter.

Figure 3.10 illustrates the delay introduced by applying a patch; the delay
includes loading the shared object, performing the dynamic linking and running the
state transformer (type transformation time was hard to measure, and likely very
small, and so is not included). The figure presents measurements for every patch
to all of our program versions, and graphs the elapsed time against the size of the
patch object files. We can see that patch application time increases linearly with
the size of the patch. In terms of service interruption, DSU is minimally intrusive:
in all cases, the time to perform an update was under 5 milliseconds.

49



0 10 20 30 40 50 60

Program size (kLOC) 

0

10

20

30

40

50

60

70

80

90

100

T
o
ta

l 
ti

m
e 

(s
)

misc

gcc/CIL

analysis

vs
ft

pd
 1

.1
.0

 

vs
ft

pd
 2

.0
.3

 

ze
br

a 
0.

93
a

ze
br

a 
0.

95

ss
hd

 3
.6

.1

ss
hd

 4
.2

Figure 3.11: DSU compilation time breakdown for updateable programs.

3.6.4 Compilation

The time to compile the first and last versions of our benchmarks is shown
in Figure 3.11. The times are divided according to the analysis time, parsing and
compilation time, and remaining tasks. In general, the majority of the overhead is
due to the safety analyses (whole program, constraint-based analyses). The overhead
consists of time spent in the updateability analysis, the AVA analysis and solving
constraints introduced in these analyses using Banshee [61].

Given that Ginseng is only needed in the final stages of development, i.e., when
the application is about to be deployed or when a patch needs to be generated and
compiled, this seems reasonable.
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3.8 Conclusion

This chapter has presented the implementation of single-threaded Ginseng, a
system for updating C programs while they run. We have shown that Ginseng can be
used to easily update realistic C programs over long stretches of their lifetimes, with
only a modest performance decrease. Our system is arguably the most flexible of its
kind, and our novel static analyses make it one of the most safe. Our results suggest
that dynamic software updating can be practical for upgrading running systems.
In Chapter 4 we show how we have extended Ginseng to handle multi-threaded
programs, along with our experience updating several multi-threaded servers.
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Chapter 4
Multi-threaded Implementation and Evaluation

Chapter 3 presented Ginseng’s implementation for single-threaded programs
and its evaluation on several server programs. In this chapter we show how Ginseng
supports multi-threaded programs. Our goal is to provide DSU support that is as
flexible and safe as Ginseng’s single-threaded approach.

4.1 Introduction

While some prior work on DSU has considered multi-threaded programs, no
prior system considers the question of safety in any depth—either no automatic sup-
port is provided, leaving the problem entirely to the programmer, or the automatic
support is insufficient to establish safety (see Section 6.1.3).

The main technical challenge we address is to ensure updates can be applied
in a timely fashion, while providing certain safety guarantees. The key concept that
helps us accomplish our goal of balancing safety and availability is that of induced
update points. Similar to our approach for updating single-threaded programs (Sec-
tion 3.3.5), we allow programmers to designate update points via DSU update(). We
call these semantic update points, because they are points chosen by the programmer
so that writing an update is straightforward, e.g., where the global state is consis-
tent. The update, however, can take place in between semantic update points, at
an induced update point. Our system enforces that an update appears to execute
at an semantic update point, and that execution is version-consistent. This means
that even if a code update takes place in between two semantic update points, the
execution trace can be attributed to exactly one program version.

We find that semantic update points serve as a useful mechanism for reasoning
about update safety, while induced update points permit far greater flexibility in
choosing when an update takes place. In particular, programmers can think of
updates as possibly occurring at semantic update points only, while the run-time
system can actually apply the update at any time so long as it maintains this illusion.
This flexibility is crucial in being able to update multi-threaded programs, since it
allows us to apply updates without imposing many synchronization constraints on
threads.

Section 4.2 introduces our idea of semantic update points and explains how we
implement them using the contextual effects analysis described in Chapter 5. Sec-
tion 4.3 provides further details about our implementation in Ginseng and strategies
for reaching a safe update point, and in particular demonstrates that it our system is
able to apply an update quickly without compromising safety. Section 4.4 describes
our experience using our implementation to update three multi-threaded servers.
Section 4.5 measures the performance of our approach, and shows that overhead
introduced by update support is detectable using micro-benchmarks but negligible
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in more realistic scenarios.

4.2 Induced Update Points

The manual enumeration of a few update points works well for single-threaded
programs. However, in a multi-threaded program, an update can only be applied
when all threads have reached a safe update point. Since this situation is unlikely
to happen naturally, we could imagine interpreting each occurrence of DSU update()

as part of a barrier—when a thread reaches a safe update point, it blocks until all
other threads have done likewise, and the last thread to reach the barrier applies
the update and releases the blocked threads.

Unfortunately, because all threads must reach safe points, this approach may
fail to apply an update in a timely fashion. With only one or two update points
per thread, each thread may take a while to reach its safe point, and with many
threads and few processors, it will take even longer for all threads to do so. More
problematic are threads that are blocked, on I/O or on a condition variable, say,
since they may take a while to get unblocked. In the worst case, a thread could be
delayed indefinitely by the update protocol itself. For example, a thread t might
reach the barrier while holding a lock that another thread t′, yet to reach the barrier,
is blocked on. To avoid deadlock we could imagine causing threads to sleep, rather
than block, at update points. But then there is no guarantee the protocol will
converge (essentially resulting in a kind of livelock). In all these cases, the update
protocol degrades the normal application’s performance as its threads are blocked
or delayed.

Note that several systems that support dynamic updates to multi-threaded
programs employ the activeness check we explained in Section 3.3.4: an update
cannot take place if it affects code that is actively executing, i.e., is referenced by
the stack of a running thread [23, 24, 1]. The problem is that programmer-specified
update points are usually in active code, e.g., a long-running loop. Our approach
combines programmer annotations with static analysis and a runtime protocol that
permits updates at programmer-specified update points, but increases the chances
that a safe point can be reached in the presence of multiple threads.

Given a program in which the programmer has designated safe update points
using DSU update() calls, we will insert some more update points in between,1 which
we call induced update points (these can be viewed as calls to a function
DSU induced update()). The additional update points will provide more opportunities
for threads to reach safe points, and thus the update should be able to take effect
more quickly. The key feature of induced update points, as enforced by the run-time
system and a compile-time static analysis, is that if an update takes place while a
thread is stopped at an induced update point, the program’s execution will still appear
as if the update took place at a semantic update point instead. More precisely, it will
appear the update took place at the previously-reached semantic update point, or

1At the moment, induced update points are manually inserted, but with some more engineering
the compiler could insert them automatically.

53



one of the semantic update points that could occur subsequently.
The key benefit of induced update points is that the programmer is able to

write the update code as if it will be applied at semantic update points, even though
it could happen at potentially many more program points. This allows us to better
balance safety with availability (in Section 5.3.6 we present experimental results
that show how induced update points increase availability).

We implement induced update points by ensuring they preserve version con-
sistency between semantic update points. That is, we can view each semantic up-
date point as beginning (or ending) a transaction such that the execution of the
transaction is version-consistent: even if an update takes place while the transac-
tion executes, the execution nevertheless can be attributed to either the old or new
version. In Chapter 5 we explain transactions and version consistency in detail.

Given these high-level ideas, we explore compiler and run-time system support
for implementing induced update points. We consider two possible approaches,
which we dub the “barrier approach” and the “relaxed approach”. In the former,
we still require all threads to be at update points (semantic or induced) when the
update takes effect, which we can force by performing barrier synchronization, for
example.

The relaxed approach is similar to barrier approach, but we no longer re-
quire threads to actually be stopped at an update point when an update takes
effect. Instead, a thread can “check in” its effects (restriction on the form of the
update at a particular program point) and then proceed—thus, DSU update() and
DSU induced update() no longer block. An available update may proceed, as long as it
does not conflict with the combined effects of all the checked-in threads.

We now proceed to describing the barrier and relaxed approaches in detail,
along with the static analysis and runtime support required to implement them.

4.2.1 Barrier Approach

In the barrier approach, after an update has been requested, a thread blocks
at an update point (induced or semantic) if it does not conflict with the update.
When all threads are blocked, we can perform the update. The question is how to
determine, once a thread reaches an induced (or semantic) whether the update is
safe; our definition of safe is that the update looks like it was applied at a semantic
update point for each thread. We make this determination using information from
a static analysis that takes into account programmer-designated semantic update
points.

The static analysis first performs a standard effect inference on the program.
In a traditional effect system, the effect ε of some program expression e characterizes
an aspect of e’s non-functional behavior, for example the names of locks e acquires,
or the abstract names of memory locations e dereferences. For enforcing version
consistency, an effect consists of the names of functions that are called and the
names of global variables that are read or written. For example, the effect of the
block { f (); g = 1 ; h(); } where g is a global variable would contain {f ,g,h} because
functions f and h are called, and g is written to. Functions f, and h may contain
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additional effects, in which case these effects would be included in the effect of the
entire block.

Next, we compute a generalization of traditional effects which we call con-
textual effects (explained in more detail in Section 5.2).The contextual effect of an
expression e consists of a three-tuple [α; ε; ω], where ε is the effect of e, as above;
α is the prior effect, which characterizes the computation since the last semantic
update point up to (but not including) e; and ω is the future effect, which charac-
terizes the computation following e, up until the next semantic update point. Thus,
the contextual effect of statement g = 1; within block { f (); g = 1; h(); } would be
[{f}; {g}; {h}]. Here, α = {f} because f is called prior to the write to g, and ω = {h}
because h is called following the write to g.

In Figure 4.1 (a) we present a sample program with two semantic update points
and several uses of functions and global variables in between. Contextual effects for
the sample code are listed in comments, on the right hand side of Figure 4.1 (a).
If the listed code appears in a function foo, then foo will be included in prior and
future effects for the scope of the function but for clarity, we omit the name of the
enclosing function from our presentation.

We can use contextual effects to enforce version consistency as follows. First,
the compiler computes the contextual effect of each induced update point, and
passes the resulting prior and future effects to DSU induced update at run-time (i.e.,
the DSU induced update() call is changed to be DSU induced update(α, ω, D), where D is
the capability required for enforcing type-safety as described in Section 3.3.1). This
is illustrated in Figure 4.1 (b). Second, when an update that changes definitions u
becomes available, the system barrier-synchronizes all threads on safe update points.
An update point is safe in one of two situations:

1. For all threads ti, u ∩ ωi = ∅ where ωi is the future effect of thread ti. In this
case, the update will appear as if it took place at the next semantic update
point.

2. For all threads ti, u ∩ αi = ∅ where αi is the prior effect of thread ti. In
this case, the update has not changed any definitions the thread has already
accessed, and thus, even if it changes definitions that the thread will access
subsequently, the entire execution will appear as if the update took place at
the prior semantic update point.

In database parlance, the first condition results in a roll forward semantics,
since the execution is as if due to the old version, while the second condition results
in a rollback semantics, since the execution is as if due to the new version. We will
heretofore refer to the prior and future effects together as VC effects and to the
safety conditions 1. and 2. above as the VC check.

To illustrate how these conditions enforce version consistency, in Figure 4.2
we show two possible updates to the program in Figure 4.1, along with a program
trace that shows the version at which a function is executed or a global variable
is accessed; this helps us determine whether the execution is version consistent.
Figure 4.2 (a) shows the execution trace if an update to function f and variable g is
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Program Trace Program Trace

DSU update();

f ();
g = 42;
h();

; update f,g

i ();
k ();

DSU update();

f , {1}
g, {1}
h, {1}

i , {1,2}
k, {1,2}

DSU update();

f ();
g = 42;
h();

; update i,k

i ();
k ();

DSU update();

f , {1,2}
g, {1,2}
h, {1,2}

i , {2}
k, {2}

(a) Roll forward update (b) Rollback update

Figure 4.2: Examples of version consistent updates.

applied after the call to h. We see that f, g and h appear in the trace with version
set {1}, because they are accessed prior to the update. Functions i and k appear
in the trace with version set {1,2} because they are not changed by the update, so
their definition is the same in both versions. We can now illustrate the VC check.
Figure 4.1(a) shows the contextual effects at each program point, and we can see
that at line 6 we have ω ={ i ,k}. So the VC check u ∩ ω = ∅ is satisfied, because
u ={f ,g} and ω ={ i ,k}. Therefore, the update is version consistent because the
execution of the block between the two semantic update points can be attributed
to a single version—version 1. We call this update a roll forward update, because
the update appears to have been applied at the end of the block (second semantic
update point).

Similarly, Figure 4.2 (b) shows the execution trace if an update to functions i

and k is applied after the call to h. We see that the trace is consistent again, since the
execution can be attributed to version 2. At the point where the update is applied,
the VC check u∩α = ∅ is satisfied, because u ={ i ,k} and α ={f ,g,h}. Therefore, the
update is version consistent because the execution of the block in between semantic
update points can be attribute to a single version—version 2. We call this update a
roll back update, because the update appears to have been applied at the beginning
of the block (first semantic update point).

In Figure 4.3 we present an example where version consistency is violated. At
the point where the update is applied, we have α ={f ,g,h}, ω ={ i ,k} and u ={h, i}.
Therefore, the VC check fails (we have u ∩ ω 6= ∅ and u ∩ α 6= ∅) and the update is
deemed unsafe. Indeed, we can see that if we apply the update, the trace cannot be
attributed to a single program version.

To understand how this approach performs in practice, we have implemented a
thread synchronization protocol that builds on it. In this protocol, semantic update
points and induced update points are no-ops if an update has not been requested.
If an update is requested and the current thread’s restriction is compatible with the
update, the thread blocks until all other threads have reached a semantic update
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Program Trace

DSU update();

f ();
g = 42;
h();

; update h,i

i ();
k ();

DSU update();

f , {1}
g, {1}
h, {1}

i , {2}
k, {1,2}

Figure 4.3: Example of a version inconsistent update.

point or an induced update point. After all threads are blocked, we apply the
update. The results of running the experiments on our three test applications are
discussed in detail in Section 4.5.1.

4.2.2 Relaxed Approach

The main problem with the barrier approach is that blocking all threads until
they reach safe update points may create an undue delay, and even deadlock. For
example, if thread T blocks at an induced update point while holding lock L, then
any other thread that wants to acquire L cannot make progress and reach one of its
semantic update points to allow the update to proceed.

To avoid blocking, we can adapt the barrier approach as follows. Instead
of calling DSU induced update() with its prior and future effect, we call a different
function, DSU checkin(), that registers the union of the contextual effects computed
at all program points between this and the next call to DSU checkin(). In effect,
DSU checkin() stands in for a series of induced update points from its call site until
the next DSU checkin() or semantic update point. After performing the registration,
the thread may continue running—even if an update becomes available prior to
reaching the next update point, the update may take effect so long as it satisfies
the safety condition described above: for all threads ti, u ∩ ωi = ∅ or u ∩ αi = ∅. If
a thread reaches a check-in point or a semantic update point while an update is in
progress, it pauses at that point until the update is finished, and then continues (at
the new version).

To see how check-ins work, consider the example in Figure 4.1 (c), which shows
the check-in points explicitly. The prior effect of the first DSU checkin call on line 2
is α = {}, but notice that we check in α = {f ,g,h} instead—this is because we
now allow the possibility that an update could occur on line 3, 4, 5, or prior to
the call to DSU checkin on line 6, and thus the checked-in α must approximate the
prior effect at these program points. Generally speaking, at each check-in point we
register prior effect α∪ ε, where α is the prior effect at that check-in point, and ε is
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the effect of the code between that point and the next check-in point, or the next
semantic update point, whichever comes first. The second argument to DSU checkin,
the future effect, contains the future effect ω only, because it over-approximates the
future effects of subsequent statements (up to the next semantic update point). For
example, the future effect ω = {h,k} at line 6 is a sound approximation of future
execution, should an update be applied at lines 7, 8, or prior to the check-in on line
9.

4.2.3 Discussion

An important aspect of both barrier and relaxed approaches is where, and
how often, should induced update points (DSU induced update, and DSU checkin, respec-
tively) be placed. Having fewer induced update points reduces runtime overhead, but
might impact liveness. Also, in the relaxed approach, because of over-provisioning
on future effects, fewer check-in points means stronger restrictions on what can be
updated, which is detrimental to liveness as well. Currently, we manually place
induced update points at the beginning and end of each stage in a thread loop body
(Section 4.3.1). This strategy results in 3-4 induced update points per thread.

Note that we could also use an automated, adaptive scheme for choosing in-
duced update points. If the runtime system observes that the current induced
update point granularity is not sufficient, we can easily construct a “gratuitous”
update whose only purpose is to replace the current function with one having more
induced update points (Section 4.4).

We now present the protocol that implements the check-in based relaxed ap-
proach described above. The pseudo-code for this protocol is shown in Figure 4.4.
We keep a global restriction array protected by a reader-writer lock (lines 2–7). If an
update is signaled, the flag update requested (defined on line 8) is set, and the names
of the patch elements are written into update contents (defined on line 12). This set
is used by the safety check in function conflicts (lines 14–24). A thread reaching a
check-in point (line 25) checks-in its restriction first(lines 29–31), and, if an update
has become available, calls leader selection to initiate or joins the update protocol.
We use the update mutex to ensure only one thread is leader. If an update has been
requested and no other thread has taken the lead (by acquiring update mutex), the
thread is declared a leader ; it will possibly perform the update. If update mutex is
taken, the current thread will be a follower. The leader code (lines 50–64) checks
whether the update is safe for all threads by comparing the update contents with
each thread’s restrictions (effects and capability). The follower (lines 66–70) simply
waits until the leader is done, so as to avoid changing a thread’s restriction while
the leader is busy performing the update safety check. Note that this protocol does
not guarantee progress, i.e., it is possible that the leader’s conflict check fails. To
alleviate this, Ginseng performs a static conflict check at patch compilation time.
Check-in points in each thread are verified against update contents and if, for a cer-
tain thread, the safety check would always fail at runtime (i.e., all check-in points
in that thread conflict with the update), Ginseng notifies the user. In practice,
however, we were always able to reach a safe update point within 2 seconds, and
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typically we could do so in under 8 ms. The results of running the experiments on
our three test applications are presented in Section 4.5.1.

A potential shortcoming of our approach is the difficulty of writing state trans-
formers in the presence of I/O. We use contextual effects to implement induced
update points and provide the “illusion” that an update is applied at a semantic
update point. This illusion, however, is only maintained if the program does not
store state outside the process (e.g., via I/O), because contextual effects might fail
to capture such state. Since the update could be applied at induced update points
in the middle of several I/O operations, the programmer might need to adjust the
state transformer based on whether certain I/O operations have completed or not.
We have not encountered this situation in practice.

4.3 Implementation

The compiler and runtime system are built on top of single-threaded Ginseng,
presented in Chapter 3. We will now talk about how we extended Ginseng to
handle multi-threaded programs, and what the programmer has to do to prepare
multi-threaded programs for compilation with Ginseng.

4.3.1 Replacing Active Code

Updating long-running programs raises the issue of having to update active
code. Performing an activeness check (Section 3.3.4) to determine which functions
can be updated is problematic because it prohibits updates to functions which con-
tain active code. To cope with this, in Section 3.2.4 we introduced a technique
called code extraction that permits updates to code on the stack (e.g., long-running
loops). Ginseng extracts a programmer-indicated block (loop body), into a separate
function, so to apply an update, we only need to wait for the current iteration to
finish, rather than having to wait for the loop to terminate.

However, multi-threading complicates things further: since multi-threaded
server programs employ threads each running its own loop, to apply an update
we would have to wait until each thread has reached the end of its current loop
iteration. This condition is difficult to meet, if not impossible. An example would
be producer/consumer threads where one thread is blocked while the other is doing
work. To solve this problem, we have to permit updates to a loop body before the
thread has completed the iteration. We accomplish this by partitioning long-running
loops into “stages” that are designated for code extraction and hence can be updated
independently.

In Section 4.4.1 we show an example of using code extraction to permit updates
to the Icecast server, and in Section 4.4.4 we list the number of instances of code
and loop body extraction in our test programs.
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Program Release Date Size Description Type State
xform xform

(LOC) (count) (LOC)
2.2.0 12/04 25,349
2.3.0rc1 08/05 28,593 Major feature enhanc. 23 5

Icecast 2.3.0rc2 09/05 28,788 Other 4 1
2.3.0rc3 09/05 28,796 Other - -
2.3.1 11/05 29,079 Other 7 1
1.2.2 05/07 5,743

Memcached 1.2.3 07/07 5,732 Other 1 -
1.2.4 02/08 6,144 Major bugfixes 3 2
1.2.5 03/08 6,345 Major bugfixes 2 -
0.307 10/06 18,738
0.316 10/06 19,077 Minor feature enhanc. 11 -

Space 0.319 10/06 19,399 Minor feature enhanc. 2 -
Tyrant 0.331 04/07 19,526 Minor bugfixes - -

0.335 05/07 19,753 Minor feature enhanc. - 6
0.347 08/07 19,979 Minor bugfixes/enhanc. 1 2
0.351 10/07 20,223 Minor feature enhanc. 2 1

Table 4.1: Application releases.

4.3.2 Concurrency Issues

Since type wrapping changes the representation of updateable (named) types,
we have to be careful not to introduce races. A read–read access in a multi-threaded
program is race-free without wrapping, but could be problematic once wrappers are
introduced. Since con functions can potentially call the type transformer to update
a value to the current version, suddenly a read–read access can become a write–
write access. To prevent this from happening, con functions use per-type locks and
double-checked locking to make the version check fast while guaranteeing that type
transformers are invoked atomically. Another way to avoid this problem is to convert
data eagerly, at update time, an approach we might consider in future work.

4.4 Experience

We used Ginseng to dynamically update three open-source multi-threaded pro-
grams: the Icecast streaming media server,2 Memcached, a high-performance, dis-
tributed memory object caching system,3 and the Space Tyrant multiplayer gaming
server.4 We chose these programs because they are long-running, maintain soft state
that could be usefully preserved across updates, and exhibit a variety of threading
models. In the remainder of this section, we describe the evolution of these programs
during the period we considered, as well as changes we had to make to prepare the
programs for compilation with Ginseng.

2http://www.icecast.org
3http://www.danga.com/memcached/
4http://spacetyrant.com/
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Program Changes
Functions Types Global variables

Proto Body
Icecast 10 292 25 1
Memcached 14 118 6 6
SpaceTyrant 0 107 11 5

Table 4.2: Changes to applications.

Table 4.1 shows release and update information for each program. Columns 2–
4 show the version number, release date and program size for each release. Column
5 contains the nature of individual releases.5 Column 6 shows the number of type
transformers for that specific update, while column 7 presents the size of the state
transformer (in lines of code); ‘-’ means no type or state transformers were needed
for a particular release.

Table 4.2 shows the cumulative number of changes that occurred to the soft-
ware over that span. “Types” refers to structs, unions and typedefs. These statistics
reinforce the findings of Chapters 2 and 3: a dynamic software updating system must
support changes, additions, and deletions for functions, types and global variables
if it is to handle realistic software evolution.

For each program, we downloaded several releases, converted the programs to
updateable applications, wrote dynamic patches, applied all patches in release order
and performed testing/benchmarks. In Section 3.5 we have laid out guidelines for
preparing C programs for conversion into updateable C programs; we inform the Gin-
seng compiler about long-running loops and, if necessary, override Ginseng’s safety
analysis via user-inserted annotations. In this chapter we will focus on programmer
effort and annotations that are specific to multi-threaded programs: identifying se-
mantic update points and picking check-in points. We will discuss how we chose
semantic update points and check-in points for each program later (Sections 4.4.1,
4.4.2, and 4.4.3).

Our experience with the multi-threaded servers we have considered is that,
just like the single-threaded servers we have presented in Chapter 3, they perform
a few high-level operations whose boundaries are easily identified as semantic up-
date points. Examples of such operations are processing one event, accepting and
dispatching a client connection, etc. In Section 4.4.1 we will present a concrete
illustration of how we picked semantic update points and check-in points in the Ice-
cast server. We have also found that semantic update points tend to remain stable
within a program’s overall structure, even as the overall implementation changes.
Nevertheless, the programmer does not have to pick the right induced update point
at the outset. If, for example, it turns out that in a function, more check-in points
are needed, or code extraction boundaries are too coarse, it is easy to construct a

5As described at http://freshmeat.net/ in the case of Icecast and Memcached; for Space
Tyrant we provide our own characterization.
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“gratuitous” dynamic update of the function with more check-in points and finer-
grained code extraction boundaries.

4.4.1 Icecast

Icecast is a streaming media server—a popular solution for building Internet
radio stations. Updating Icecast on the fly enables media content providers to
keep their streams alive 24/7, yet be protected with the latest security fixes. We
considered five consecutive Icecast releases spanning 49 weeks (Table 4.1).

Icecast uses a fixed number of threads, each performing separate duties: accept
connection, handling incoming connections, reading from a media source, keeping
statistics, etc. The principal threads are presented in Figure 4.5. Lines marked with
‘*’ are annotations we had to insert; these are used by the Ginseng compiler, and
denote long-running loops, semantic update points, check-in points, etc.

For each thread, we placed a semantic update point at the beginning of that
thread’s long-running loop (lines 3, 20, and 49, respectively). In the loop bodies,
we use check-ins (DSU checkin) to snapshot the thread’s current effect, and code
extraction (DSU extract) to permit updates to code on the stack. We placed check-in
points and extraction boundaries around each separate stage in loop bodies.

The connection accept thread’s operation is split into two stages: checking for
termination requests (lines 6–7) and waiting for incoming connections (lines 11–14).
When a new connection is opened, it packs the information in a con structure, and
passes it to the pool of connection handler threads. A connection handler thread
takes an accepted connection, uses an HTTP parser to parse the client’s request,
and dispatches the request according to the request type, con type. If, for instance,
the client requests some statistics, handle stats request () will fire a new thread that
sends statistics information to the client (line 35). If the client requests a file,
handle get request () (inlined here for clarity, lines 38–41) will create a new fclient

structure and add it to the file serving thread’s working queue. The file serving
thread’s operation is also split into two stages: 1) tending to active clients (lines 52–
57), i.e., sending listeners chunks of file contents via HTTP connections, and 2)
moving new clients which were generated by the connection handler and added to
pending list (lines 63–64) into the active client list, active list (lines 65-66).

4.4.2 Memcached

Memcached is a high-performance, distributed memory object caching system
that is used on popular sites such as Slashdot or Wikipedia to store pre-rendered
HTML pages without having to access the database and render pages individually
for each client (since the database is a bottleneck in these situations).

Updating Memcached on-the-fly is essential to maintaining a high web server
throughput; taking Memcached down to install the next version will flush the in-
memory cache and cause degraded operation while the cache fills up again in the new
version. We considered four consecutive Memcached releases spanning 10 months
(Table 4.1). Multi-threading was introduced in version 1.2.2, so we did not consider
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releases prior to that.
Memcached uses a homogeneous threading model, where all application threads

(a user-configurable number) perform the same fixed task. Memcached uses the
libevent library [95] to process client requests; each thread is associated with a
separate libevent instance called base; events belonging to the same base will be
processed by the same thread. To ensure that the execution associated with pro-
cessing an event is version-consistent, we placed a semantic update point just prior
to the start of processing an event, and another semantic update point after finishing
processing the event.

4.4.3 Space Tyrant

Space Tyrant is a multi-threaded gaming server. According to a report by
In-Stat, a market research firm, on-line gaming is a multi-billion dollar industry,
and expected to grow rapidly [56]. Therefore, continuous game server operation is
essential for companies providing on-line gaming services. Since Space Tyrant has
a release model based on very frequent, incremental releases (a release every couple
of days/weeks), we considered a year in its lifetime, corresponding to versions 0.307
to 0.351. Given the small magnitude of per-release changes in this model, instead of
mapping one update per release, we decided to consolidate several adjacent releases,
so we could have type and/or global variable changes for each update, resulting in
7 releases (Table 4.1).

Space Tyrant uses a mixed threading model: three fixed threads (for managing
the game state, accepting new connections and performing backups) and two threads
per each client, one dealing with user input, one dealing with output from the server
to the client.

Similar to Icecast (Section 4.4.1), we associated one iteration of a thread’s
processing loop with two semantic update points, and used 3–4 check-in points per
loop, where check-in points delimit stages within the loop.

4.4.4 Source Code Changes

When building updateable applications with Ginseng, the programmer might
need to intervene at two stages: when preparing the source code for compilation with
Ginseng, and when creating dynamic patches. We present details on programmer
effort (annotations or lines of code) for each of these stages, in turn, for our three
test programs.

Changes to applications. Constructing updateable versions of each application
required inserting some annotations and making a few changes to its source code,
mainly indications to the Ginseng compiler. These changes have to be applied to
each program version, but once we figured out the changes we had to make to the
first version, we were able to automate the process and use patch to change the
following versions.
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Program Annotations Source code
Extract Semantic Check-in changes

loop code upd. points (LOC)
Icecast 11 18 11 34 42
Memcached 0 0 2 2 23
SpaceT 7 16 5 32 19

Table 4.3: Annotations and changes to source code.

The changes and annotations are presented in detail in Table 4.3. The second
column shows the number of long-running loops designated for extraction. Iden-
tifying long-running loops is easy, as each long-running thread essentially executes
a loop. We identified 11 such loops in Icecast and 7 in Space Tyrant; loop body
extraction was not necessary for Memcached because iteration is done externally in
libevent. The reason why the number of extracted loops is higher than the number
of runtime threads is that in Icecast, some threads are short-lived, and only used un-
der certain configurations (we omitted these short-running threads from Figure 4.5
for brevity). In Space Tyrant, which has five distinct kinds of threads, we used loop
extraction to extract two nested loops, so the total number of extracted loops was
7.

The third column shows the number of code blocks designated for extraction;
the procedure we used to identify such blocks was to find long-running stages within
the bodies of thread loops, and mark each stage for extraction.

The fourth column shows the number of semantic update points. We placed
a semantic update point at the beginning of each thread loop body for Icecast and
Space Tyrant, and in the case of Memcached, the two semantic update points delimit
the processing of one event. The fifth column shows the number of check-in points.
The rest of the changes (the number of lines of code changed is presented in column
6) consisted of:

• Directives to the compiler to override the conservativity of the safety analy-
sis. Ginseng’s analysis does not model existentially quantified types, so even
though they are safely used, Ginseng reports a possible safety violation. We
had to add two such directives in Icecast, three in Memcached and two in
Space Tyrant.

• Changing four low-level, type unsafe, field access macros in Memcached into
function calls, so Ginseng’s compiler and safety analysis can reason about
them.

Adjusting auto-generated patches. Manual intervention was also required to
inspect (and complete, where necessary) the auto-generated type transformers and
write state transformers, when needed; across all patches, we had to write 80 lines
of code for Icecast, 12 for Memcached and 81 lines for Space Tyrant.
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4.5 Experiments

We performed a suite of experiments to evaluate how our approach balances
safety and liveness, and to measure the overhead of using our approach to build and
run updateable software. We considered the following aspects:

1. Update availability. To see how the protocols described in Sections 4.2.1
and 4.2.2 perform in practice, we measured, for each of the updates we have
considered (13 in total), the time from the moment an update was signaled
to the time it could safely be applied. Our main findings are that the relaxed
approach provides higher availability than the barrier approach, and that per-
forming only the activeness check improves availability even more, though at
the expense of safety.

2. Application performance. We measured the overhead that update support
imposes on a application performance, by running stress tests on unmodified
and Ginseng-compiled versions of the same program. We also measured the
additional overhead that Ginseng imposes on multi-threaded programs, as
opposed to single-threaded Ginseng. We found that DSU overhead is modest
for the applications we considered.

3. Memory footprint. We also measured the update support overhead in terms of
memory footprint, again for unmodified applications, and updatable applica-
tions compiled with single- and multi-threaded versions of Ginseng. We found
the increase to be negligible for Icecast and Memcached (less than 1% and 4%,
respectively), but up to 46% for Space Tyrant.

4. Build time. We also measured the running time of Ginseng to build our test
programs using Ginseng, to measure the overhead of compilation and our
analyses. In all cases, the time to compile and link the programs was less than
30 seconds.

We conducted our experiments using a client-server setup, where the update-
able applications ran on a quad-core Xeon 2.66GHz server with 4GB of RAM running
Red Hat Enterprise Linux AS release 4, kernel version 2.6.9. The clients ran on a
two-way SMP Xeon 2.8GHz machine with 3.6GB of RAM running Red Hat Enter-
prise Linux WS release 3, kernel version 2.4.21. The client and server systems were
connected by a 100Mbps network. All C code (generated by Ginseng or otherwise),
was compiled with gcc 3.4.6 at optimization level -O2.

4.5.1 Update Availability

To gain additional insights into the trade-offs of different thread synchroniza-
tion protocols, in addition to P-Barrier and P-Relaxed, the two protocols pre-
sented in Section 4.2.1 and Section 4.2.2, we have implemented two other protocols,
P-OpWait and P-PostRelaxed. We now proceed to describing these protocols
in more detail.
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P-OpWait. This is a simple, optimistic protocol. Whenever a thread reaches
a check-in point, if an update has been requested, that thread yields by calling
sched yield (alternatively, we could have the thread sleep by calling nanosleep). This
gives the other threads a chance to reach their check-in points as well. If the last
thread discovers that all threads are at check-in point, we do the safety check and
apply the update if it is safe to do so. As we will see shortly, this protocol performs
poorly in practice; it usually times out without being able to reach a safe update
point.

P-PostRelaxed. In this protocol, check-ins are no-ops if an update has not been
requested. Once an update is requested, threads will check-in their restrictions and
continue running. Once all threads have checked-in their restrictions at least once,
the update protocol is the leader/follower used in P-Relaxed. The advantage of
this protocol is low runtime overhead: we only perform check-ins when an update
has actually been requested.

In addition to the four protocols presented so far, we also implemented type-
safety only versions of P-Relaxed and P-Barrier; we denote these P-Relaxed-
D and P-Barrier-D. The reason we considered these D-only protocols was to
compare our approach against one based on the activeness check.

The time to reach a safe update point (in ms), is presented for each protocol
in Table 4.4. The first column shows the program, while the second column shows
the update sequence number, e.g., entry ‘0’ for Icecast corresponds to the update
Icecast 2.2.0→ Icecast 2.3.0rc1, entry ‘0’ for Memcached corresponds to the update
Memcached 1.2.2 → Memcached 1.2.3, etc.

We ran experiments for each update and measured the time it took the system
from the moment the update was signaled to the moment it could safely be applied.
We tested two configurations, 4 and 16 concurrent clients. The number of server-
side threads varied, depending on the application and number of clients, as we
explain below. Icecast has a fixed number of threads (in our configuration this
number was 6 in Icecast 2.2.0, and 7 in later versions, respectively), regardless of
the number of clients.6 Memcached has a thread pool with a configurable number
of handler threads, independent of the number of clients. We present results for
two configurations, one with four server threads (Memc-4), and one with 16 server
threads (Memc-16). Space Tyrant uses two threads per connected client, plus three
fixed threads that perform housekeeping. To summarize, the number of server-side
threads were:

• Icecast: 6 for update # 0, and 7 for updates # 1–3.

• Memcached: 4 and 16 for Memc-4 and Memc-16 respectively.

6In the first version, the number of connection handler threads is configurable, but in later
versions there is only one connection handling thread, so for update # 0 we fixed the number of
handlers to one, to keep things consistent with later versions.
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• Space Tyrant: 11 (8 client handlers + 3 fixed) for the 4-client configuration,
and 35 (32 client handlers + 3 fixed) for the 16-client configuration.

We are interested in measuring update availability (time between an update
is signaled until it can be applied safely), using the six protocols, while the server
is under load (since thread activity is likely to obstruct updates from taking effect).

The methodology for each program was to start the server, connect 4 (or 16)
clients that are constantly asking for data, and while the server is performing work,
send an update request. We then measured the time from the moment an update
was requested to the moment the update could be safely applied, or time out after
30 seconds7. We performed each experiment 11 times; we report the median time
to reach a safe update point for terminating runs. An ‘X’ entry means that for
that specific configuration, none of the 11 runs could reach such a point within 30
seconds. We also measured update loading times (time to load a dynamic patch
after reaching a safe point). Since this is not our focus, we omit showing the loading
times; they are proportional to patch size, and in all cases were less than 3 ms.

Overall, P-Relaxed (columns 3 and 4 of Table 4.4) performs best. As ex-
pected, P-Relaxed-D (columns 5 and 6 of Table 4.4) reaches a safe point faster
than P-Relaxed because it performs a less strict safety check; however, using P-
Relaxed-D is potentially unsafe since it can lead to version consistency violations.
P-OpWait (columns 7 and 8 of Table 4.4) performs poorly because it requires all
threads to reach check-in points simultaneously, a condition difficult to meet when
the server is under load.

Protocols P-PostRelaxed, P-Barrier and P-Barrier-D (columns 9–14
of Table 4.4) require threads to check-in only after an update has been requested, so
it takes some time until all the threads have checked in their effects. In the Memc-
16 scenario, we have 16 server threads, and activity from only 4 clients prevents
each of the 16 thread from being scheduled within the 30 seconds time-out window,
hence the ‘X’ entries. Note that P-Relaxed and P-Relaxed-D do not have this
problem because the runtime system is aware of all thread effects at all times: if
an update is compatible with each thread, then the first thread to reach a check-in
point becomes leader and applies the update. A possible fix for P-PostRelaxed
and P-Barrier would be to force a check-in when 1) a thread is being preempted,
or 2) prior to a thread entering a blocking system call, so the runtime system can
inspect each thread’s effects without having to first wait for all the threads to run
and reach a check-in point after an update has been signaled. Solution 1 is difficult
to implement without modifying the scheduler. Solution 2 can be implemented by
inserting check-ins only prior to blocking I/O. However, our performance experi-
ments in Section 4.5.2 show that, in practice, the cost of always doing check-ins is
modest, so P-Relaxed provides a good balance between overhead and availability.

The only situation where P-Relaxed takes longer to reach a safe point than a
comparatively safe protocol (P-PostRelaxed or P-Barrier) is the update #0 to

7We have chosen 30 seconds as a time-out value because we want to provide a reasonable
update availability guarantee, and reduce the vulnerability window for security fixes (i.e., the time
programs run without being patched).

71



Completion time (sec)
# Clients → 4 16

Config. Compilation → Stock Ginseng-ST Ginseng-MT Stock Ginseng-ST Ginseng-MT
Application ↓
Icecast 11.09 11.08 (-0.09) 11.09 (0.00) 40.50 40.58 (0.20) 40.84 (0.84)

Remote Memcached 31.64 31.30 (-1.07) 31.58 (-0.19) 86.32 87.08 (0.88) 87.66 (1.55)
SpaceT 44.54 44.48 (-0.13) 44.49 (-0.11) 44.62 44.51 (-0.25) 44.60 (-0.04)
Icecast 1.64 1.66 (1.22) 1.75 (6.71) 2.65 2.63 (-0.75) 2.70 (1.89)

Local Memcached 7.58 7.89 (4.09) 7.92 (4.49) 31.37 32.13 (2.42) 32.55 (3.76)
SpaceT 34.60 34.62 (0.06) 34.61 (0.03) 44.52 44.65 (0.29) 44.62 (0.22)

Table 4.5: Impact of update support on performance (absolute time, in seconds,
and in % relative to the stock server).

Icecast, presented in the first Icecast row. P-Relaxed takes 1.75 and 1.06 seconds
to reach a safe update point, compared to 1.06 and 0.94 for P-Barrier. The reason
why P-Relaxed takes longer to reach safety for this particular update is due to
numerous induced update points conflicting with this (particularly large) update. In
the relaxed approach, for a term e delimited by check-ins, whose contextual effects
are [α; ε; ω] we check-in (α ∪ ε, ω ∪ ε). This effectively prevents anything in ε from
being updated while e is being evaluated. For the Icecast update #0, the relaxed
approach has to “skip” many induced update points because the safety check fails
due to conflicts between u, the update contents, and the εi associated with each
thread i. In contrast, using the barrier approach, the safety check is more precise,
which permits us to reach a non-conflicting update point faster. However, in all
other cases P-Relaxed reaches a safe point faster (sometimes orders of magnitude
faster) than P-PostRelaxed or P-Barrier.

We can see that performing only the type safety check increases availability,
as the time to reach a safe update point is lower for P-Relaxed-D compared to P-
Relaxed and for P-Barrier-D compared to P-Barrier. However, in practice
we want to enforce version consistency, and the point of this experiment is only
to compare our approach to other multi-threaded DSU systems that employ the
activeness check. Performing the activeness/type safety check only essentially means
we “pretend” that an induced update point is a semantic update point. This is
clearly not what the programmer had intended, since global invariants might not
be satisfied at an induced update point. As a consequence, applying the update
based on the activeness check only can lead to errors at update time or later, in the
execution of the new program version.

4.5.2 Application Performance

We evaluated the impact of dynamic update support on application perfor-
mance using two metrics: 1) application-specific benchmarks, and 2) memory foot-
print. We report the performance results in Table 4.5 and memory results in Ta-
ble 4.6.

For each application, we measured the performance of its most recent version
under three configurations. The stock configuration forms our base for benchmark-
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ing, and consists of the application compiled normally, without support for updating.
The Ginseng-ST configuration is the application compiled with the single-threaded
Ginseng compiler, and using a single-threaded runtime system. The Ginseng-MT
configuration is the application compiled with the multi-threaded Ginseng com-
piler, and using a multi-threaded runtime system. Comparing the Ginseng-ST and
Ginseng-MT configurations is useful for considering the additional overhead that
multi-threading support imposes on applications compiled with Ginseng, e.g., check-
ins or locking in con functions.

For each application, we ran a specific benchmark and measured the comple-
tion time and memory footprint (at the completion of the benchmark) in all three
configurations: stock, Ginseng-ST, and Ginseng-MT. The memory footprint was
measured at the completion of each benchmark.

For Icecast, we measured the time it took the streaming server to serve eight
mp3 files to a client, using wget as a client. Each file has size 1, 2, . . . 8 MB. To
eliminate jitter due to disk I/O, we directed wget to send both its output, and the
downloaded file, to /dev/null.

For Memcached, we ran a “slap” test that comes bundled with the server.
The test program spawns multiple clients in parallel, each client inserting key/value
pairs into Memcached’s hash table. We measured the time it took the test program
to complete insertion of 50,000 key/value pairs.

For Space Tyrant, we created a scenario file that simulates a client performing
500 random moves across the universe, and spawn concurrent clients running this
scenario. We measured the time it took the server to complete serving all the clients.

In Tables 4.5 and 4.6 we report the median completion time and median mem-
ory footprint across 11 runs. We ran each benchmark in two setups. The first setup,
remote, shows the results of running the clients and server on separate machines,
a scenario that models how the updatable servers would be used in practice. The
second setup, local, shows the results of running the clients and server on the same
machine (we used the quad-core machine mentioned above). The point of measuring
overhead in a local configuration is to factor out network latency and bandwidth
issues (while reducing parallelism of the server). Similar to the update protocol
experiments in Section 4.5.1, we report figures for 4 and 16 clients, respectively.

Benchmark completion times are presented in columns 3–8 of Table 4.5. In the
remote setup, for Icecast and Space Tyrant, the completion time is similar to the
stock server. Memcached is however slower in the 16-thread configuration, with the
multi-threaded updatable version 1.6% slower. In the local setup, impact of update
support on completion time is higher than in the remote setting; this is because, as
expected, update support (e.g., check-ins, function and type indirection) slows down
the application and the slow-down cannot be masked by network latency. However,
even in this scenario the slowdown is small.

4.5.3 Memory Footprint

Memory footprint overhead is presented in columns 3–8 of Table 4.6. As ex-
pected, local or remote setups exhibit the same memory footprint. Update support
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Memory footprint (MB)
# Clients → 4 16

Config. Compilation → Stock Ginseng-ST Ginseng-MT Stock Ginseng-ST Ginseng-MT
Application ↓
Icecast 69.83 70.08 (0.36) 72.32 (3.56) 70.36 70.09 (-0.39) 72.84 (3.52)

Remote Memcached 99.94 100.21 (0.27) 99.93 (-0.00) 223.74 223.42 (-0.14) 223.91 (0.08)
SpaceT 62.75 90.15 (43.66) 92.04 (46.68) 63.42 90.18 (42.19) 91.81 (44.76)
Icecast 69.71 70.33 (0.89) 72.23 (3.62) 69.86 70.03 (0.24) 73.18 (4.75)

Local Memcached 99.39 99.14 (-0.25) 99.67 (0.28) 222.67 223.23 (0.25) 223.05 (0.17)
SpaceT 63.73 89.85 (40.99) 91.96 (44.29) 62.97 89.44 (42.03) 91.73 (45.68)

Table 4.6: Impact of update support on memory footprint (absolute footprint, in
MB, and in % relative to the stock server).

(function and type indirections, and the Ginseng runtime) increases the memory
footprint of application compiled with Ginseng. To quantify this impact, we mea-
sured the virtual memory footprint in the stock and updatable configurations using
pmap. For Memcached the difference is almost imperceptible. For Icecast, the mem-
ory footprint increases by up to 4.8% compared to the stock server. For Space
Tyrant, the increase is at most 46.7%; the reason why the increase is so large has to
do with Space Tyrant and Ginseng interaction. The median memory footprint for
the stock version is around 63 MB, while the median memory footprint for Ginseng-
compiled versions is around 92 MB. Space Tyrant uses a pre-allocated global array
that keeps the game map, divided into 100,000 sectors, and the size of this array is
7.6 MB. The Ginseng compilation scheme allows room for growth in each structure
(Section 3.2.2); by default, room for growth is equal to the initial structure size. Be-
cause the large array resides within two nested structures, its size becomes 31.2 MB,
hence the growth to 92 MB and the 46% increase. This problem could be solved by
keeping updatable data by reference or by allocating sector data on demand. Since
in our experiments we used at most 8 concurrent clients, each patrolling at most
500 sectors, the actual memory overhead would be at most 11.7% for the 4-threads
case, and 13.3% for the 16-threads case.

In almost all cases, the multi-threaded setup (Ginseng-MT) has a slightly
higher overhead on the application than the single-threaded setup (Ginseng-ST):
around 3% more for Icecast and 4% more for Space Tyrant. This increase is due
to extra work and extra memory requirements, e.g., check-ins (Section 4.2.3), and
locks for con functions (Section 4.3.2).

4.5.4 Compilation Time

To provide a sense of Ginseng’s compilation overhead, in Table 4.7 we present
the time to compile and link each test program in two configurations. The first,
normal configuration, without update support, using gcc (which in turn calls ld) is
presented in column 3. The second configuration shows build time for updateable
applications using Ginseng; it consists of compiling C code into updateable C code
using Ginseng, then followed by gcc and linking together with the Ginseng runtime
system. The build times for this case are presented in column 4; the bulk of the
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Program Size Build time
(LOC) (sec)

gcc Ginseng
Icecast 25,452 2.3 27
Memcached 5,752 0.7 4.2
Space Tyrant 10,480 2.6 20.1

Table 4.7: Time to build (compile and link) the test programs.

time is spent in the safety analyses (Sections 3.3 and 5.3.5), and we imagine the
figures could be improved with some more engineering.

4.6 Conclusion

In this chapter, we presented an approach to updating multi-threaded pro-
grams while they run, and show how we have implemented this approach in Ginseng.
Updating multi-threaded programs is more difficult than updating single-threaded
code because of the tension between update safety and update availability. We
solve this tension using a novel concept of induced update points, that allow us to
perform updates to multi-threaded while providing the same safety guarantees as
in the single-threaded case, while still allowing the update to be applied promptly.
We evaluated our approach on three realistic multi-threaded servers. We found
that programmer effort for building updateable versions of these applications was
modest, and experiments show that update support does not significantly impact
application performance.
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Chapter 5
Version Consistency

In Chapter 4 we showed how we can perform timely updates to multi-threaded
programs by using version consistency—ensuring that certain code blocks are atomic
with respect to updating. In this chapter we provide formalisms for reasoning about,
and soundness proofs for, version consistency.

5.1 Introduction

As mentioned in Section 4.1, to update multi-threaded programs, the user
must designated semantic update points. Semantic update points serve as a useful
mechanism for reasoning about update safety, while induced update points permit
flexibility in choosing when an update takes place. In particular, programmers can
think of updates as possibly occurring at semantic update points only, while the run-
time system can actually apply the update at any time so long as it maintains this
illusion. The crucial property that allow us to make updates appear as having taken
place at a semantic update point is version consistency, a property that Ginseng
enforces using static analysis information and runtime checks.

To implement version consistency, we developed an extension of type and
effect systems called contextual effects, a formalism that permits reasoning about
the effects of past and future computation. In Section 5.2 we present our contextual
effects calculus and sketch its soundness proof. We then extend contextual effects
with support for updates and transactions (version-consistent lexically scoped code
blocks), and prove that under certain conditions updates can be safely performed
inside transactions, while preserving version consistency (Section 5.3). Next, we
extend our update calculus with check-ins (Section 5.4) that help us model relaxed
updates. Finally, in Section 5.5 we add multi-threading support to our relaxed
update calculus and prove that relaxed updates to multi-threaded programs preserve
version consistency.

5.2 Contextual effects

Type and effect systems provide a framework for reasoning about the possible
side effects of a program’s executions. Effects traditionally consider assignments or
allocations, but can also track other events, such as functions called or operations
performed. A standard type and effect system [66, 83] proves judgments ε; Γ ` e :
τ , where ε is the effect of the expression e. For many applications, knowing the
effect of the context in which e appears is also useful. For example, if e includes a
security-sensitive operation, then knowing the effect of execution prior to evaluating
e could be used to support history-based access control [4, 100]. Conversely, knowing
the effect of execution following e could be used for some forms of static garbage
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collection, e.g., to free initialization functions once initialization is complete [40].
In this section we introduce our core contextual effects calculus. Our contex-

tual effect system proves judgments of the form Φ; Γ ` e : τ , where Φ is a tuple
[α; ε; ω] containing ε, the standard effect of e, and α and ω, the prior effect and
future effect, respectively, of e’s context. For example, in an application e1 e2, the
prior effect of e2 includes the effect of e1, and likewise the future effect of e1 includes
the effect of e2. We believe that contextual effects have many other uses, in par-
ticular any application in which the past or future computation of the program is
relevant at various program points.

5.2.1 Syntax

Figure 5.1 presents our source language, which contains expressions e that
consist of values v (integers or functions); variables; let binding; function application;
and the conditional if0, which tests its integer-valued guard against 0. Our language
also includes updateable references ref L e along with dereference and assignment.
Here we annotate each syntactic occurrence of ref with a label L, which serves as the
abstract name for the locations allocated at that program point. We use labels to
define contextual effects. For simplicity we do not model recursive functions directly
in our language, but they can be encoded using references.

Our system uses two kinds of effect information. An effect, written α, ε, or ω,
is a possibly-empty set of labels, and may be 1, the set of all labels. A contextual
effect, written Φ, is a tuple [α; ε; ω]. In our system, if e′ is a subexpression of e, and
e′ has contextual effect [α; ε; ω], then

• The current effect ε is the effect of evaluating e′ itself.

• The prior effect α is the effect of evaluating e up until we begin evaluating e′.

• The future effect ω is the effect of the remainder of the evaluation of e after
e′ is fully evaluated.

Thus ε is the effect of e′ itself, and α ∪ ω is the effect of the context in which e′

appears—and therefore α ∪ ε ∪ ω contains all locations accessed during the entire
reduction of e.

To make contextual effects easier to work with, we introduce some shorthand.
We write Φα, Φε, and Φω for the prior, current, and future effect components,
respectively, of Φ. We also write Φ∅ for the empty effect [1; ∅; 1]—by subsumption,
discussed below, an expression with this effect may appear in any context. In what
follows, we refer to contextual effects simply as effects, for brevity.

5.2.2 Typing

We now present a type and effect system to determine the contextual effect of
every subexpression in a program. Types τ , listed at the end of Figure 5.1, include
the integer type int ; reference types ref ε τ , which denote a reference to memory of
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Expressions e ::= v | x | let x = e in e | e e
| if0 e then e else e
| ref L e | ! e | e := e

Values v ::= n | λx.e
Effects α, ε, ω ::= ∅ | 1 | {L} | ε ∪ ε
Contextual Effs. Φ ::= [α; ε;ω]
Types τ ::= int | ref ε τ | τ −→Φ τ
Labels L

Figure 5.1: Contextual effects source language

type τ where the reference itself is annotated with a label L ∈ ε; and function types
τ −→Φ τ ′, where τ and τ ′ are the domain and range types, respectively, and the
function has contextual effect Φ.

Figure 5.2 presents our contextual type and effect system. The rules prove
judgments of the form Φ; Γ ` e : τ , meaning in type environment Γ, expression e
has type τ and contextual effect Φ. The first two rules, (TInt) and (TVar), assign
the expected types and the empty effect, since values have no effect.

(TLet) types subexpressions e1 and e2, which have effects Φ1 and Φ2, respec-
tively, and requires that these effects combine to form Φ, the effect of the entire
expression. We use a call-by-value semantics, and hence the effect of the let should
be the effect of e1 followed by the effect of e2. We specify the sequencing of effects
with the combinator Φ1 �Φ2 ↪→ Φ, defined by (XFlow-Ctxt) in the middle part
of Figure 5.2. Since e1 happens before e2, this rule requires that the future effect of e1

be ε2∪ω2, i.e., everything that happens during the evaluation of e2, captured by ε2,
plus everything that happens after, captured by ω2. Similarly, the past effect of e2

must be ε1 ∪α1, since e2 happens just after e1. Lastly, the effect Φ of the entire ex-
pression has α1 as its prior effect, since e1 happens first; ω2 as its future effect, since
e2 happens last; and ε1 ∪ ε2 as its current effect, since both e1 and e2 are evaluated.
We write Φ1 � Φ2 � Φ3 ↪→ Φ as shorthand for (Φ1 � Φ2 ↪→ Φ′) ∧ (Φ′ � Φ3 ↪→ Φ).

(TIf) requires that its branches have the same type τ and effect Φ2, which
can be achieved with subsumption (below), and uses � to specify that Φ1, the effect
of the guard, occurs before either branch. (TRef) types memory allocation, which
has no effect but places the annotation L into a singleton effect {L} on the output
type. This singleton effect can be increased as necessary by using subsumption.

(TDeref) types the dereference of a memory location of type ref ε τ . In a
standard effect system, the effect of ! e is the effect of e plus the effect ε of accessing
the pointed-to memory. Here, the effect of e is captured by Φ1, and because the
dereference occurs after e is evaluated, (TDeref) puts Φ1 in sequence just before
some Φ2 such that Φ2’s current effect is ε. Therefore by (XFlow-Ctxt), Φε is
Φε

1 ∪ ε, and e’s future effect Φω
1 must include ε and the future effect of Φ2. On

the other hand, Φω
2 is unconstrained by this rule, but it will be constrained by the

context, assuming the dereference is followed by another expression. (TAssign) is
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Typing

(TInt)
Φ∅; Γ ` n : int

(TVar)
Γ(x) = τ

Φ∅; Γ ` x : τ

(TLet)

Φ1; Γ ` e1 : τ1 Φ2; Γ, x : τ1 ` e2 : τ2
Φ1 � Φ2 ↪→ Φ

Φ; Γ ` let x = e1 in e2 : τ2

(TIf)

Φ1; Γ ` e1 : int Φ2; Γ ` e2 : τ
Φ2; Γ ` e3 : τ Φ1 � Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ
(TRef)

Φ; Γ ` e : τ

Φ; Γ ` refL e : ref {L} τ

(TDeref)
Φ1; Γ ` e : ref ε τ Φε

2 = ε Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

(TAssign)

Φ1; Γ ` e1 : ref ε τ Φ2; Γ ` e2 : τ
Φε

3 = ε Φ1 � Φ2 � Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ

(TLam)
Φ; Γ, x : τ ′ ` e : τ

Φ∅; Γ ` λx.e : τ ′ −→Φ τ
[TApp]

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ1
Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

(TSub)
Φ′; Γ ` e : τ ′ τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e : τ

Effect combinator

(XFlow-Ctxt)

Φ1 = [α1; ε1; (ε2 ∪ ω2)]
Φ2 = [(ε1 ∪ α1); ε2; ω2]
Φ = [α1; (ε1 ∪ ε2); ω2]

Φ1 � Φ2 ↪→ Φ

Subtyping

(SInt)
int ≤ int

(SRef)
τ ≤ τ ′ τ ′ ≤ τ ε ⊆ ε′

ref ε τ ≤ ref ε′
τ ′

(SFun)
τ ′1 ≤ τ1 τ2 ≤ τ ′2 Φ ≤ Φ′

τ1 −→Φ τ2 ≤ τ ′1 −→Φ′
τ ′2

(SCtxt)
α2 ⊆ α1 ε1 ⊆ ε2 ω2 ⊆ ω1

[α1; ε1; ω1] ≤ [α2; ε2; ω2]

Figure 5.2: Contextual effects type system

similar to (TDeref), combining the effects Φ1 and Φ2 of its subexpressions with a
Φ3 whose current effect is ε.

(TLam) types the function body e and sets the effect on the function arrow
to be the effect of e. The expression as a whole has no effect, since the function
produces no run-time effects until it is actually called. (TApp) types function
application, which combines Φ1, the effect of e1, with Φ2, the effect of e2, and Φf ,
the effect of the function.

The last rule in our system, (TSub), introduces subsumption on types and
effects. The judgments τ ′ ≤ τ and Φ′ ≤ Φ are defined at the bottom of Figure 5.2.
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(SInt), (SRef), and (SFun) are standard, with the usual co- and contravariance
where appropriate. (SCtxt) defines subsumption on effects, which is covariant
in the current effect, as expected, and contravariant in both the prior and future
effects. To understand the contravariance, first consider an expression e with future
effect ω1. Since future effects should soundly approximate (i.e., be a superset of)
the locations that may be accessed in the future, we can use e in any context that
accesses at most locations in ω1. Similarly, since past effects approximate locations
that were accessed in the past, we can use e in any context that accessed at most
locations in α1.

5.2.3 Semantics and Soundness

The semantics of the contextual effects system, the formal definitions of its
key soundness properties, and its soundness proof are due to Pratikakis and can be
found in his dissertation [94]. We include here the contextual effects semantics and
the formal definitions of its key soundness properties for completeness.

The top of Figure 5.3 gives some basic definitions needed for our operational
semantics. We extend values v to include the form rL, which is a run-time heap
location r annotated with label L. We need to track labels through our operational
semantics to formulate and prove soundness, but these labels need not exist at run-
time. We define heaps H to be maps from locations to values. Finally, we extend
typing environments Γ to assign types to heap locations.

The bottom part of Figure 5.3 defines a big-step operational semantics for our
language. The reduction rules are straightforward. [Id] reduces a value to itself
without changing the state or the effects. [Call] evaluates the first expression to
a function, the second expression to a value, and then the function body with the
formal argument replaced by the actual argument. [Ref] generates a fresh location
r, which is bound in the heap to v and evaluates to rL. [Deref] reads the location
r in the heap and adds L to the standard evaluation effect. This rule requires that
the future effect after evaluating e have the form ω′ ∪ {L}, i.e., L must be in the
capability after evaluating e, but prior to dereferencing the result. Then L is added
to α′ in the the output configuration of the rule. Notice that ω′ ∪ {L} is a standard
union, and so L may also be in ω′. This allows the same location can be accessed
multiple times. [Assign] behaves similarly to [Deref].

Lastly, [If-T] and [If-F] give the two cases for conditionals, and [Let] binds x
to the result of evaluating e1 inside of e2. Our semantics also includes rules (not
shown) that produce err when the program tries to access a location that is not in
the input capability, or when values are used at the wrong type.

Given this operational semantics, we can now prove that the contextual effect
system in Figure 5.2 is sound. We now state our main lemmas and theorems.

We begin with a standard definition of heap typing.

Definition 5.2.1 (Heap Typing). We say heap H is well-typed under Γ, written
Γ ` H, if dom(Γ) = dom(H) and if for every r ∈ dom(H), we have Φ∅; Γ ` H(r) :
Γ(r).
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Values v ::= . . . | rL

Heaps H ::= ∅ | H, r 7→ v
Environments Γ ::= ∅ | Γ, x : τ | Γ, r : τ

[Id]
〈α, ω, H, v〉 −→∅ 〈α, ω, H, v〉

[Call]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1,H1, λx.e〉
〈α1, ω1,H1, e2〉 −→ε2 〈α2, ω2,H2, v2〉

〈α2, ω2,H2, e[x 7→ v2]〉 −→ε3 〈α′, ω′,H ′, v〉
〈α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈α′, ω′,H ′, v〉

[Ref]
〈α, ω, H, e〉 −→ε 〈α′, ω′,H ′, v〉 r /∈ dom(H ′)

〈α, ω, H, ref L e〉 −→ε 〈α′, ω′, (H ′, r 7→ v), rL〉

[Deref]
〈α, ω, H, e〉 −→ε 〈α′, ω′ ∪ {L},H ′, rL〉 r ∈ dom(H ′)
〈α, ω, H, ! e〉 −→ε∪{L} 〈α′ ∪ {L}, ω′,H ′,H ′(r)〉

[Assign]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1,H1, rL〉
〈α1, ω1,H1, e2〉 −→ε2 〈α2, ω2 ∪ {L}, (H2, r 7→ v′), v〉

〈α, ω, H, e1 := e2〉 −→ε1∪ε2∪{L}
〈α2 ∪ {L}, ω2, (H2, r 7→ v), v〉

[If-T]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1,H1, v1〉 v1 = 0
〈α1, ω1,H1, e2〉 −→ε2 〈α2, ω2,H2, v〉

〈α, ω, H, if0 e1 then e2 else e3〉 −→ε1∪ε2 〈α2, ω2,H2, v〉

[If-F]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1,H1, v1〉 v1 = n 6= 0
〈α1, ω1,H1, e3〉 −→ε3 〈α3, ω3,H3, v〉

〈α, ω, H, if0 e1 then e2 else e3〉 −→ε1∪ε3 〈α3, ω3,H3, v〉

[Let]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1,H1, v1〉
〈α1, ω1,H1, e2[x 7→ v1]〉 −→ε2 〈α2, ω2,H2, v2〉
〈α, ω, H, let x = e1 in e2〉 −→ε1∪ε2 〈α2, ω2,H2, v2〉

Figure 5.3: Contextual effects operational semantics (partial)

Given this definition, we show the standard effect soundness theorem, which
states that the program does not go wrong and that the standard effect Φε captures
the effect of evaluation.

Theorem 5.2.2 (Standard Effect Soundness). If Φ; Γ ` e : τ and Γ ` H and
〈1, 1, H, e〉 −→ε 〈1, 1, H ′, R〉, then there is a Γ′ ⊇ Γ such that R is a value v for
which Φ0; Γ

′ ` v : τ where Γ′ ` H ′ and ε ⊆ Φε.

Next, we show the operational semantics is adequate, in that it moves effects
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from the future to the past during evaluation.

Lemma 5.2.3 (Adequacy of Semantics). If 〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉 then
α′ = α ∪ ε and ω = ω′ ∪ ε.

Next we must define what it means for the statically-ascribed contextual effects
of some expression e to be sound with respect to the effects of e’s evaluation. Suppose
that ep is a program that is well-typed according to typing derivation T and evaluates
to some value v as witnessed by an evaluation derivation D. Observe that each term
e1 that is reduced in a subderivation of D is either a subterm of ep, or is derived
from a subterm e2 of ep via reduction; in the latter case it is sound to give e1 the
same type and effect that e2 has in T . To reason about the soundness of the effects,
therefore, we must track the static effect of expression e2 as it is evaluated.

We do this by defining a new typed operational semantics that extends stan-
dard configurations with a typing derivation of the term in that configuration. The
key property of this semantics is that it preserves the effect Φ of a term throughout
its evaluation, and we prove that given standard evaluation and typing derivations
of the original program, we can always construct a corresponding typed operational
semantics derivation.

Finally, we prove that given a typed operational semantics derivation, the
effect Φ in the typing in each configuration conservatively approximates the actual
prior and future effect.

Theorem 5.2.4 (Prior and Future Effect Soundness). If

E :: 〈T, α, ω,H, e〉 −→ε 〈Tv, α
′, ω′, H ′, v〉

where T :: Φ; Γ ` e : τ , α ⊆ Φα and ω′ ⊆ Φω then for all sub-derivations Ei of E,
Ei :: 〈Ti, αi, ωi, Hi, ei〉 −→ε 〈Tvi

, α′
i, ω

′
i, H

′
i, vi〉 where Ti :: Φi; Γi ` ei : τi, it will hold

that αi ⊆ Φα
i and ω′

i ⊆ Φω
i .

The proof of the above theorem is by induction on the derivation, starting
at the root and working towards the leaves, and relying on Theorem 5.2.2 and
Lemma 5.2.3.

Finally, the soundness of the Contextual Effects system follows as a corollary.

Theorem 5.2.5 (Contextual Effect Soundness). Given a program ep with no free
variables, its typing T and its canonical evaluation D, we can construct a typed eval-
uation E such that for every sub-derivation E :: 〈T, α, ω,H, e〉 −→ε 〈Tv, α

′, ω′, H ′, v〉
in E, where T :: Φ; Γ ` e : τ , it is always the case that α ⊆ Φα, ε ⊆ Φε and ω ⊆ Φω′.

5.2.4 Contextual Effect Inference

The typing rules in Figure 5.2 form a checking system, but we would prefer
to infer effect annotations rather than require the programmer to provide them.
Here we sketch the inference process, which is straightforward and uses standard
constraint-based techniques.
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We change the rules in Figure 5.2 into inference rules by making three mod-
ifications. First, we make the rules syntax-driven by integrating (TSub) into the
other rules [76]; second, we add variables χ to represent as-yet-unknown effects; and
third, we replace implicit equalities with explicit equality constraints.

The resulting rules are mostly as expected, with one interesting difference for
(TApp). We might expect inlining subsumption into (TApp) to yield the following
rule:

(*)

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ ′1
τ ′1 ≤ τ1 Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ ` e1 e2 : τ2

However, this would cause the inferred Φf effect to be larger than necessary if there
are multiple calls to the same function. For example, consider the following code,
where f is some one-argument function, x, y, and z are references, and A and B
identify two program points:

( if0 ... then /∗A∗/ (f 1; !x) else /∗B∗/ (f 2; !y )); !z

If we used rule (*), then from branch A, we would require {x, z} ⊆ Φω
f , and from

branch B , we would require {y, z} ⊆ Φω
f , where Φf is the effect of function f. Putting

these together, we would thus have Φω
f = {x, y, z}. This result is appropriate, since

any of those locations may be accessed after some call to f. However, consider the
future effect Φω

A at program point A. By (XFlow-Ctxt), Φω
A would contain Φω

f ,
and yet y will not be accessed once we reach A, since that access is on another
branch. The analogous problem happens at program point B , whose future effect
is polluted by x.

The problem is that our effect system conflates all calls to f. One solution
would be to add Hindley-Milner style parametric polymorphism, which would ad-
dress this particular example. However, even with Hindley-Milner polymorphism
we would suffer the same problem at indirect function calls, e.g., in C, calls through
function pointers would be monomorphic.

The solution is to notice that inlining subsumption into (TApp) should not
yield (*), but instead results in the following rule:

(TApp′)

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ ′1
Φf ≤ Φ′

f τ ′1 ≤ τ1 Φ′
f fresh

Φ1 � Φ2 � Φ′
f ↪→ Φ

Φ; Γ ` e1 e2 : τ2

Applied to the above example, (TApp′) results in two constraints on the future
effect of Φf :

Φω
f ⊇ Φω

fA = {x, z} Φω
f ⊇ Φω

fB = {y, z}

Here ΦfA and ΦfB are the fresh function effects at the call to f in A and B, re-
spectively. Notice that we have Φω

f = {x, y, z}, as before, since f is called in both
contexts. But now Φω

fA need not contain y, and ΦfB need not contain x. Thus with
(TApp′), a function’s effect summarizes all of its contexts, but does not cause the
prior and future effects from different contexts to pollute each other.
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Definitions d ::= main e
| var g = v in d
| fun f(x) = e in d

Expressions e ::= v | x | let x = e in e | e e
| if0 e then e else e
| ref e | ! e | e := e
| tx e | updateα,ω

Values v ::= n | z
Effects α, ω, ε ::= ∅ | 1 | {z} | ε ∪ ε
Global symbols f, g, z ∈ GSym

Dynamic updates upd ::= {chg , add}
Additions add ∈ GSym ⇀ (τ × b)
Changes chg ∈ GSym ⇀ (τ × b)
Bindings b ::= v | λx.e

Figure 5.4: Proteus-tx syntax, effects, and updates

To perform type inference, we apply our inference rules, viewing them as
generating the constraints C in their hypotheses, given by the following grammar:

C ::= τ ≤ τ ′ | Φ ≤ Φ′ | Φ1 � Φ2 ↪→ Φ

We can then solve the constraints by performing graph reachability to find, for each
variable χ, the set of base effects {L} or 1 that reach it. In practice, these constraints
can be solved very efficiently using a toolkit such as Banshee [61].

5.3 Single-threaded Transactional Version Consistency

In Chapter 4 we showed how we allow programmers to specify semantic update
points and how our runtime system permits updates in between semantic update
points (i.e., at induced update points) while still maintaining the illusion that code
between semantic update points executes at the same version. In this section we
present a formalism and proof of version consistency.

We model semantic and induced update points using two syntactic elements:
transactions tx B and update points updateα,ω. A transaction tx B designates a
lexically scoped code block B whose execution should be version consistent. Trans-
actions are a restricted form of semantic update point placement: instead of allowing
arbitrary semantic update point placement, we require that semantic update points
are paired, and delimit lexical scopes. In other words, the beginning and end of
transaction correspond to two semantic update points. We require lexical scoping
because it makes modeling and reasoning about version consistency easier, with-
out hampering flexibility in choosing update points—instead of inserting a semantic
update point at the end of a loop iteration, the programmer simply designates the
loop body as a transaction. An update point updateα,ω in our calculus represents
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an induced update point, where α and ω are the contextual effects at that point.
As we will see in Section 5.3.3, contextual effects impose constraints on updates, to
ensure that version consistency is preserved.

Transactional version consistency for DSU is similar to the property of iso-
lation in database-style transactions: just as in the ACID model other operations
can either see the entire effect of a transaction, or no effect at all, in DSU the
execution of a lexical scope delimited by semantic update points can either be at-
tributed to the old version, or the new version, but not both. Transactions allow
us to reason easier about version consistency without placing undue burden on the
programmer: instead of having one update point at the beginning of a loop itera-
tion (Section 4.4.4), we simply designate the loop body as a transaction. The formal
property our calculus establishes is called transactional version consistency (TVC),
meaning that transactions execute as if they were entirely the old version or entirely
the new version, no matter where an update actually occurs.

5.3.1 Syntax

Figure 5.4 presents Proteus-tx, which extends the language from Section 5.2
to model transactional version-consistent dynamic updates, adapting the ideas of
Proteus, our prior dynamic updating calculus [107]. A Proteus-tx program is a
definition d, which consists of an expression main e, possibly preceded by definitions
of global symbols, written f, g, or z and drawn from a set GSym. The definition
var g = v in d binds mutable variable g to v within the scope of d, and the definition
fun f(x) = e in d binds f to a (possibly-recursive) function with formal parameter x
and body e.

Expressions e in Proteus-tx have several small differences from the language of
Figure 5.1. We add global symbols z to the set of values v. We also remove anony-
mous lambda bindings to keep things simpler, for reasons discussed in Section 5.3.3.
To mark transactions, we add a form tx e for a transaction whose body is e.

We specify program points where dynamic updates may occur with the term
updateα,ω, where the annotations α and ω specify the prior and future effects at the
update point, respectively. When evaluation reaches updateα,ω, an available update
is applied if its contents do not conflict with the future and prior effect annotations;
otherwise evaluation proceeds without updating.

A dynamic update upd consists of a pair of partial functions chg and add that
describe the changes and additions, respectively, of global symbol bindings. The
range of these functions is pairs (τ, b), where b is the new or replacement value
(which may be a function λx.e) and τ is its type. Note that Proteus-tx disallows
type-altering updates, though Section 5.3.5 explains how they can be supported by
employing ideas from our earlier work [107]. Also, although Ginseng allows state
initialization functions, for simplicity we do not model them in Proteus-tx.

Finally, effects in Proteus-tx consist of sets of global symbol names z, which
represent either a dereference of or assignment to z (if it is a variable) or a call to
z (if it is a function name). Because updates in Proteus-tx can only change global
symbols (and do not read or write through their contents), we can ignore the effects
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(TMain)
Φ; Γ ` e : τ

Γ ` main e
(TDVar)

Φ∅; Γ ` v : τ Γ, g : ref {g} τ ` d

Γ ` var g = v in d

(TDFun)

Γ′ = Γ, f : τ −→Φ τ ′ Φ; Γ′, x : τ ` e : τ ′

Γ′ ` d {f} ⊆ Φ
Γ ` fun f(x) = e in d

(TGvar)
Γ(f) = τ

Φ∅; Γ ` f : τ
(TUpdate)

Φα ⊆ α′ Φω ⊆ ω′

Φ; Γ ` updateα′,ω′ : int

(TTransact)
Φ1; Γ ` e : τ Φα ⊆ Φα

1 Φω ⊆ Φω
1

Φ; Γ ` tx e : τ

Figure 5.5: Proteus-tx typing (extends Figure 5.2)

of the latter (we use syntax ref e instead of ref L e).

5.3.2 Typing

Figure 5.5 extends the core contextual effect typing rules from Figure 5.2 to
Proteus-tx. The first three rules define the judgment Γ ` d, meaning definition d is
well-typed in environment Γ. (TMain) types e in Γ, where e may have any effect
and any type. (TDVar) types the value v, which has the empty effect (since it is
a value), and then types d with g bound to a reference to v labeled with effect {g}.
The last definition rule, (TDFun), constructs a new environment Γ′ that extends Γ
with a binding of f to the function’s type. The function body e is type checked in Γ′,
to allow for recursive calls. This rule also requires that f appear in all components
of the function’s effect Φ, written {f} ⊆ Φ. We add f to the prior effect because f
must have been called for its entry to be reached. We add f to the current effect
so that it is included in the effect at a call site. Lastly, we add f to the future
effect because f is on the call stack and we consider its continued execution to be
an effect. Note that this prohibits updates to main(), which is always on the stack.
However, we can solve this problem by extracting portions of main() into separate
functions, which can then be updated; Ginseng provides support to automate this
process via loop and code extraction (explained in Sections 3.2.4 and 4.3.1). The
next rule, (TGVar), types global variables, which are bound in Γ. The last two
rules type the dynamic updating-related elements of Proteus-tx. (TUpdate) types
update by checking that its prior and future effect annotations are supersets of (and
thus conservatively approximate) the prior and future effects of the context.

Finally, (TTransact) types transactions. A key design choice here is decid-
ing how to handle nested transactions. In (TTransact), we include the prior and
future effects of Φ, from the outer context, into those of Φ1, from the transaction
body. This ensures that an update within a child transaction does not violate version
consistency of its parent. However, we do not require the reverse—the components
of Φ1 need not be included in Φ. This has two consequences. First, sequenced
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transactions are free to commit independently. For example, consider the following
code

tx { tx { /∗A∗/ }; /∗B∗/ tx { /∗C∗/ } }

According to (TTransact), the effect at B is included in the prior and future
effects of C and A, respectively, but not the other way around. Thus neither trans-
action’s effect propagates into the other, and therefore does not influence any update
operations in the other.

The second consequence is that version consistency for a parent transaction
ignores the effects of its child transactions. This resembles open nesting in con-
currency transactions [81]. For example, suppose in the code above that A and C
contain calls to a hash table T . Without the inner transaction markers, an update
to T available at B would be rejected, because due to A it would overlap with the
prior effect, and due to C it would overlap with the future effect. With the inner
transactions in place, however, the update would be allowed. As a result, the parent
transaction could use the old version of the hash table in A and the new version
in C .

This treatment of nested transactions makes sense when inner transactions
contain code whose semantics is largely independent of the surrounding context,
e.g., the abstraction represented by a hash table is independent of where, or how
often, it is used. Baumann et al.[11] have applied this semantics to successfully
partition dynamic updates to the K42 operating system into independent, object-
sized chunks. While we believe open nesting makes sense, we can see circumstances
in which closed nesting might be more natural, so we expect to refine our approach
in future work.

5.3.3 Operational Semantics

Figures 5.6 and 5.7 define a small-step operational semantics that reduces
configurations 〈n; Σ; H; e〉, where n defines the current program version (a successful
dynamic update increments n), Σ is the transaction stack (explained shortly), H is
the heap, and e is the active program expression. Reduction rules have the form
〈n; Σ; H; e〉 −→η 〈n′; Σ′; H ′; e′〉, where the event η on the arrow is either µ, a
dynamic update that occurred (discussed below), or ε, the effect of the evaluation
step.

In our semantics, heaps map references r and global variables z to triples
(τ, b, ν) consisting of a type τ , a binding b (defined in Figure 5.4), and a version
set ν. The first and last components are relevant only for global symbols; the type τ
is used to ensure that dynamic updates do not change the types of global bindings,
and the version set ν contains all the program versions up to, and including, the
current version since the corresponding variable was last updated. When an update
occurs, new or changed bindings are given only the current version, while all other
bindings have the current version added to their version set (i.e., we preserve the
fact that the same binding was used in multiple program versions).

As evaluation proceeds, we maintain a transaction stack Σ, which is a list of
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Update Safety

updateOK (upd , H, (α, ω), dir) =

dir = bck ⇒ α ∩ dom(updchg ) = ∅
∧ dir = fwd ⇒ ω ∩ dom(updchg ) = ∅
∧ Γ = types(H)
∧ Γupd = Γ, types(updadd )

∧ ∀z 7→ (τ, b, ·) ∈ updchg .`
Φ∅; Γupd ` b : τ ∧ heapType(τ, z) = Γ(z)

´
∧ ∀z 7→ (τ, b, ·) ∈ updadd .`

Φ∅; Γupd ` b : τ ∧ z /∈ dom(H)
´

Trace Safety

traceOK (n, σ) = (∀(z, ν) ∈ σ. n ∈ ν)

Heap Updates

U [(z 7→ (τ, b, ν), H)]updn =

8>><>>:
z 7→ (τ, b′, {n}),U [H]upd

n

if updchg (z) 7→ (τ, b′)

z 7→ (τ, b, ν ∪ {n}),U [H]upd
n

otherwise

U [(r 7→ (·, b, ∅), H)]updn = (r 7→ (·, b, ∅)),U [H]upd
n

U [∅]updn = {z 7→ (τ, b, {n}) | z 7→ (τ, b) ∈ updadd}

Heap Typing Environments

types(∅) = ∅
types(z 7→ (τ, b, ν), H′) = z : heapType(τ, z), types(H′)

heapType(τ1 −→Φ τ2, z) = τ1 −→Φ τ2 z ∈ Φ

heapType(τ, z) = ref {z} τ τ 6= (τ1 −→Φ τ2)

Trace Stack Updates

U [(n′, σ)]upd,fwd
n = (n′, σ)

U [(n′, σ)]upd,bck
n = (n,Ut[σ]updn )

Ut[σ]updn = {(z, ν ∪ {n} | z 6∈ dom(updchg )}
∪ {(z, ν) | z ∈ dom(updchg )}

Figure 5.7: Proteus-tx update safety

pairs (n, σ) that track the currently active transactions. Here n is the version the
program had when the transaction began, and σ is a trace. A trace is a set of pairs
(z, ν), each of which represents a global symbol access paired with its version set
at the time of use. The traces act as a log of dynamic events, and we track them
in our semantics so we can prove that all global symbols accessed in a transaction
come from the same version.

To evaluate a program d, we first compute C(∅, d) using the function C shown
at the top of Figure 5.6, which yields a pair H; e. This function implicitly uses
the types derived by typing d using the rules in Figure 5.5. Then we begin regular
evaluation in the configuration 〈0; (0, ∅); H; e〉, i.e., we evaluate e at version 0, with
initial transaction stack (0, ∅), and with the declared bindings H. This causes the
top-level expression e in main e to be treated as if it were enclosed in a transaction
block.

The first several reduction rules in Figure 5.6 are straightforward. [let], [ref],
[deref], [assign], [if-t], and [if-f] are small-step versions of the rules in Figure 5.3,
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though normal references no longer have effects. None of these rules affects the
current version or transaction stack. [cong] is standard.

[gvar-deref], [gvar-assign], and [call] each have effect {z} and add (z, ν)
to the current transaction’s trace, where ν is z’s current version set. Notice that
[call] performs dereference and application in one step, finding z in the heap and
performing substitution. Since dynamic updates modify heap bindings, this ensures
that every function call is to the most recent version. Notice that although both
functions and variables are stored in the heap, we assign regular function types
to functions ((TDFun) in Figure 5.5) so that they cannot be assigned to within
a program. Including λ-terms in the expression language would either complicate
function typing or make it harder to define function updates so we omit them to
keep things simpler.

The next several rules handle transactions. [tx-start] pushes the pair (n, ∅)
onto the right of the transaction stack, where n is the current version and ∅ is the
empty trace. The expression tx e is reduced to intx e, which is a new form that
represents an actively-evaluating transaction. The form intx e does not appear in
source programs, and its type rule matches that of tx e (see Figure 5.8).

Next, [tx-cong-1] and [tx-cong-2] perform evaluation within an active
transaction intx e by reducing e to e′. The latter rule applies if e’s reduction does not
include an update, in which case the effect ε of reducing e is treated as ∅ in the outer
transaction. This corresponds to our model of transaction nesting, which does not
consider the effects of inner transactions when updating outer transactions. Oth-
erwise, if an update occurs, then [tx-cong-1] applies, and we use the function U
to update version numbers on the outermost entry of the transaction stack. U is
discussed shortly.

The key property guaranteed by Proteus-tx, that transactions are version con-
sistent, is enforced by [tx-end], which gets stuck unless traceOK (n′′, σ′′) holds. This
predicate, defined just below the reduction rules, states that every element (z, ν) in
the transaction’s trace σ′′ satisfies n′′ ∈ ν, meaning that when z was used, it could be
attributed to version n′′, the version of the transaction. If this predicate is satisfied,
[tx-end] strips off intx and pops the top (rightmost) entry on the transaction stack.

The last two rules handle dynamic updates. When updateα,ω is in redex posi-
tion, these rules try to apply an available update bundle µ, which is a pair (upd , dir)
consisting of an update (from Figure 5.4) and a direction dir that indicates whether
we should consider the update as occurring at the beginning or end of the trans-
action, respectively. If updateOK (upd , H, (α, ω), dir) is satisfied for some dir , then
[update] applies and the update occurs. Otherwise [no-update] applies, and the
update must be delayed.

If [update] applies, we increment the program’s version number and update
the heap using U [H]updn+1, defined in the middle-right of Figure 5.6. This function
replaces global variables and adds new bindings according to the update. New and
replaced bindings’ version sets contain only the current version, while unchanged
bindings add the current version to their existing version sets.

The updateOK () predicate is defined just below the reduction rules in Fig-
ure 5.6. The first two conjuncts enforce the update safety requirement discussed in
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TIntrans
Φ1; Γ ` e : τ Φα ⊆ Φα

1 Φω ⊆ Φω
1

Φ; Γ ` intx e : τ

dom(Γ) = dom(H)
∀z 7→ (τ −→Φ τ ′, λx.e, ν) ∈ H.

Φ; Γ, x : τ ` e : τ ′ ∧ Γ(z) = τ −→Φ τ ′ ∧ z ∈ Φ
∀z 7→ (τ, v, ν) ∈ H. Φ∅; Γ ` v : τ ∧ Γ(z) = ref ε τ ∧ z ∈ ε
∀r 7→ (·, v, ν) ∈ H. Φ∅; Γ ` v : τ ∧ Γ(r) = ref ε τ
∀z 7→ (τ, b, ν) ∈ H. n ∈ ν

n; Γ ` H

(TC1)

f ∈ σ ⇒ f ∈ α
f ∈ ε⇒ n ∈ ver(H, f)
[α; ε;ω], ·;H ` (n, σ)

(TC2)

Φ′,R;H ` Σ
f ∈ σ ⇒ f ∈ α

f ∈ ε⇒ n ∈ ver(H, f)
[α; ε;ω],Φ′,R;H ` (n, σ),Σ

where ver(H, f) = ν iff H(f) = (τ, b, ν)

Figure 5.8: Proteus-tx typing extensions for proving soundness

Section 5.3. There are two cases. If dir = bck , then we require that the update not
intersect the prior effects, so that the update will appear to have happened at the
beginning of the transaction. In this case, we need to update the version number
of the transaction to be the new version, and any elements in the trace not mod-
ified by the update can have the new version added to their version sets, i.e., the
past effect can be attributed to the new version. To do this, [update] applies the
function U [(n′, σ)]upd ,dir

n+1 , defined on the bottom right of Figure 5.6, with dir = bck .
The update applies to outer transactions as well, and thus [tx-cong-1] applies this
same version number replacement process across the transaction stack.

In the other case, if dir = fwd , we require that the remainder of the transaction
not be affected by the update, so the update will appear to have happened at the
end of the transaction. In this case we need not modify the transaction stack, and
hence U [(n′, σ)]upd ,dir

n with dir = fwd simply returns (n′, σ).
The remaining premises of updateOK () determine whether the update itself

is well-formed: each replacement binding must have the same type as the original,
and new and added bindings must type check in the context of the updated heap.

5.3.4 Soundness

We have proven that well-typed Proteus-tx programs are version-consistent.
The main result is that a well-typed, well-formed program either reduces to a value
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or evaluates indefinitely while preserving typing and version consistency. To prove
this we need two additional judgments, shown in Figure 5.8. Heap typing n; Γ ` H
extends Definition 5.2.1 from the core system, where the additional conditions ensure
that global symbols are well-typed, have well-formed effects, and include version n
(presumed to be the current version) in their version sets.

Stack well-formedness R; H ` Σ checks that a transaction stack Σ is correctly
approximated by a transaction effect R, which consists of a list of contextual effects
Φ, one for each nested transaction. R is computed from a typing derivation in
a straightforward way according to the function JΦ; Γ ` e : τK = R, extracting Φ1

from each occurrence of (TIntrans) recursively; the rules are not shown due to
space constraints. Stack well-formedness ensures two properties. First, it ensures
that each element in the trace σ is included in the corresponding prior effect α (i.e.,
f ∈ σ ⇒ f ∈ α). As a result, we know that bck updates that rewrite the stack will
add the new version to all elements of the trace, since none have changed. Second,
it ensures that elements in each transaction’s current effect (i.e., the part yet to be
executed) have the version of that transaction: f ∈ ε⇒ n ∈ ver(H, f).

With this we can prove the core result:

Theorem 5.3.1 (Single-step Soundness). If Φ; Γ ` e : τ where JΦ; Γ ` e : τK = R;
and n; Γ ` H; and Φ,R; H ` Σ; and traceOK (Σ), then either e is a value, or
there exist n′, H ′, Σ′, Φ′, e′, and η such that 〈n; Σ; H; e〉 −→ η 〈n′; Σ′; H ′; e′〉 and
Φ′; Γ′ ` e′ : τ where JΦ′; Γ′ ` e′ : τK = R′; and n′; Γ′ ` H ′; and Φ′,R′; H ′ ` Σ′; and
traceOK (Σ′) for some Φ′, Γ′,R′.

The proof is based on progress and preservation lemmas, as is standard. De-
tails are in Appendix B.

From this lemma we can prove soundness:

Corollary 5.3.2 (Soundness). If Φ; Γ ` e : τ and 0; Γ ` H then 〈0; (0, ∅); H; e〉; A

〈n′; (n′′, σ); H ′; v〉 for some value v or else evaluates indefinitely, where ; A is the
reflexive, transitive closure of the −→ η relation such that A is a set of events η.

5.3.5 Implementing Version Consistency for C Programs

Ginseng implements transactional version consistency for C using contextual
effects. The programmer indicates transactional blocks as lexically scoped blocks
delimited by semantic update points, and the compiler annotates these points with
contextual effects information.

To perform effect inference, we first compute a context-sensitive points-to anal-
ysis using CIL [80]. Then we generate (context-insensitive) effect constraints (as
described in Section 5.2.4) using labels derived from the points-to analysis, and we
solve the constraints with Banshee [61].

After computing the contextual effects, Ginseng transforms the program to
make it updateable, and transforms each occurrence of updateα,ω into a call to a
function DSU induced update(α, ω, D). Here α and ω are the prior and future effects
at the update point, pre-computed by our contextual effect inference, and D is the
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capability (Section 3.3.1), i.e., the set of type names whose definitions cannot be
modified and variable or functions whose types cannot be modified.

When DSU induced update is called at run time, it checks to see whether an
update is available and, if so, applies the update if it is both type safe (i.e., no
variable or type in D has been changed by the update to have a different type)
and version consistent (given α and ω). If an update is not safe, it is delayed and
execution continues at the old version.

State Transformation. Our version consistency condition is slightly more com-
plicated in practice due to state transformers (described in Section 3.4). The pro-
grammer writes the state transformer as if it will be run at the beginning or end
of a transaction, and our system must ensure that this appearance is true. That
is, to allow an update to occur within a transaction, we must ensure that (1) the
writes performed by the state transformer do not violate the version consistency of
the current program transactions, and (2) the effects of the current transactions do
not violate the version consistency of the state transformer itself. We achieve both
ends by considering the update changes (dom(upd chg)) and the state transformer’s
current effect εxf as the effect of the update when performing the usual checks for
version consistency.

For example, if an update point DSU induced update(α, ω, D) is reached within
a transaction and ω ∩ (εxf ∪ dom(upd chg)) = ∅, then the remaining actions of the
transaction will not affect the state transformer, and vice versa. Therefore, the
update appears to have occurred at the end of the transaction. Likewise, if
α ∩ (εxf ∪ dom(upd chg)) = ∅ then the effect of the transaction to this point has no
bearing on the execution of the state transformer, and vice versa, so it is as if
the update occurred at the beginning of the transaction. Note that because state
transformers can also access the heap from global variables we need to include
accesses to standard heap references (i.e., names L as in Section 5.2) in our effects.

A similar complication arises from the use of type transformers (Section 3.2.2).
If type transformers have effects (e.g., call functions or access global variables), these
effects need to be taken into account for our version consistency condition. We can
do this by simply adding the effects of all type transformers to dom(upd chg), as
we do with the effects of state transformers above. In our current implementation,
we do not consider type transformer effects—we have manually inspected our type
transformers and found them to be safe, since the type transformer code for our test
applications is very simple. However, we plan to add this feature in future work.

5.3.6 Experiments

We measured the potential benefits of transactional version consistency by
analyzing 12 dynamic updates to Vsftpd. When updating Vsftpd (Section 3.5.3),
we manually placed one semantic update point at the end of an iteration of the long-
running accept loop. Placing the update point there ensured that updates were de
facto version consistent, as the entire loop iteration executes at the same (old or
new) version. However, having a single update point hampers update availability,
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Version Size Time Candidate Type-safe VC-safe
(LOC) (sec) upd. points

1.1.0 10,157 193 344 300 33
1.1.1 10,245 196 346 19 9
1.1.2 10,540 234 350 25 8
1.1.3 10,723 238 354 19 8
1.2.0 12,027 326 413 31 9
1.2.1 12,662 264 438 368 146
1.2.2 12,691 278 439 32 9
2.0.0 13,465 440 471 392 9
2.0.1 13,478 420 471 459 9
2.0.2pre2 13,531 632 471 471 9
2.0.2pre3 14,712 686 484 484 8
2.0.2 17,386 649 471 468 9

Figure 5.9: Version consistency analysis results.

as we need to wait until the end of an iteration to apply the update. In this section,
we try to determine how induced update points can improve availability by allowing
updates to be applied inside transactions, while preserving version consistency.

We first designated the two long-running loops in Vsftpd (the accept loop
and the command processing loop) as transactions. Then, we modified Ginseng
to seed the code used in transactions with candidate update points (i.e., induced
update points). While we could conceivably insert induced update points at every
statement, we found through manual examination that inserting them just before
the return statement of any function reachable from within a transaction provides
good coverage. Finally, we used Ginseng to infer the contextual effects and type
modification restrictions at each induced update point, and computed at how many
of them we could safely apply the update.

We conducted our experiments on an Athlon 64 X2 dual core 4600 machine
with 4GB of RAM, running Debian, kernel version 2.6.18. Figure 5.9 summarizes
our results. For each version, we list its size, the time Ginseng takes to pre-compute
contextual effects and type modification restrictions, and the number of candidate
update points that were automatically inserted. The analysis takes around 10 min-
utes for the largest example, and we expect that time could be reduced with more
engineering effort. The last two columns indicate how many update points are type
safe, and how many are both type safe and version consistent, with respect to the
update from the version in that row to the next version. Note that determining
whether an update is type safe and version consistent is very fast, and so we do not
report the time for that computation.

From the table, we can see that several induced update points are type safe
and version consistent. We manually examined all of these points. For all program
versions except 1.1.0, 1.2.1, and 2.0.2pre2, we found that roughly one-third of the
VC-safe induced update points occur somewhere in the middle of a transaction,
providing better potential update availability. Another third occur close to or just
before the end of a transaction, and the last third occur in dead code, providing no
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advantage. For the remaining versions, 1.1.0, 1.2.1, and 2.0.2pre2, we found that
roughly 10% of the induced update points are in the middle of transactions, and
almost all the remaining ones are close to the end of a transaction, with a few more
in dead code.

One reason so many safe induced update points tend to occur toward the end
of the transaction is due to the field-insensitivity of the alias analysis we used. In
Vsftpd, the type vsf session contains a multitude of fields and is used pervasively
throughout the code. The field-insensitive analysis causes spurious conflicts when
one field is accessed early in the transaction but others are accessed later on, as is
typical. This pushes the safe induced update points to the end of the transaction,
following vsf session ’s last use. We plan to integrate a field-sensitive alias analysis
into Ginseng to remedy this problem.

Interestingly, there are generally far more updates that are exclusively type
safe than those that are both type safe and version consistent. We investigated
some of these, and we found that the reasons for this varied with the update. For
example, the updates that do not change vsf session (e.g., 1.1.0) have a high number
of type-safe update points, while those that do (e.g., 1.1.1) have far fewer. This
makes sense, given vsf session ’s frequent use.

In summary, these results show that many induced update points are both
type safe and version consistent, providing greater availability of updates than via
manual placement. We expect still more update availability with a more accurate
alias analysis.

5.4 Relaxed Updates

The barrier approach for updating multi-threaded programs (Section 4.2.1)
performs a synchronous safety check at update points: the contextual effects (α, ω)
of a thread are computed statically, and a runtime check verifies whether they con-
flict with the update contents u.

To avoid barrier synchronization, in Section 4.2.2 we proposed a relaxed ap-
proach where threads periodically check-in their effects. We call these relaxed up-
dates, because an update does not necessarily take place at an update point. When
an update becomes available, the runtime system does not have to barrier synchro-
nize to do the safety check—all it has to do is inspect the checked-in effects of each
thread. To ensure update safety, we need a means to prove that check-ins are safe,
i.e., at runtime, they over-approximate the actual thread effects.

5.4.1 Syntax

The language syntax is presented in Figure 5.10; it extends the calculus in
Figure 5.4 with support for check-ins (all additions and changes are highlighted ).
We only discuss these additions. Check-ins checkinα,ω “snapshot” a thread’s prior
(α) and future (ω) effects. To account for effects of code blocks between check-
in points, we use two extra components in the type-level contextual effects. The
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Definitions d ::= main e
| var g = v in d
| fun f(x) = e in d

Expressions e ::= v | x | let x = e in e | e e
| if0 e then e else e
| ref e | ! e | e := e

| tx e | checkinα,ω

Values v ::= n | z
Effects α, ω, ε, δ ::= ∅ | 1 | {z} | ε ∪ ε

Cntxt Effs. Φ ::= [α; ε;ω; δi ; δo ]
Global symbols f, g, z ∈ GSym

Dynamic updates upd ::= {chg , add}
Additions add ∈ GSym ⇀ (τ × b)
Changes chg ∈ GSym ⇀ (τ × b)
Bindings b ::= v | λx.e

Figure 5.10: Source language for relaxed updates.

contextual effect Φ of a term e is [α; ε; ω; δi; δo] where α, ε, and ω are the prior,
normal and future effects, as described in Section 5.3. The output check-in effect,
δo is the effect of the program after evaluating e, up to the next check-in point. The
input check-in effect, δi contains the effect from the start of e’s evaluation up to the
first check-in term in e, or in e’s continuation. The relation δi = δo ∪ ε holds for
terms that do not contain check-ins.

5.4.2 Typing

We present the relevant type rules in Figure 5.11. The rules not shown are
identical to the ones in Figure 5.5, and we highlight the differences for the ones we
present. The fundamental rule for contextual effects is the (XFlow-Ctxt); if an
expression e consists of two sub-expressions e1 and e2 where e1 is evaluated first,
(XFlow-Ctxt) captures this by adding e1’s normal effect (ε1) to e2’s prior effect,
and adding e2’s normal effect (ε2) to e1’s future effect; the combined effect Φ is a
tuple whose prior effect is e1’s prior effect, normal effect is the union of normal effects
of e1 and e2, and future effect is the future effect of e2. Note how the e1’s output
check-in effect, δo1, is the same as e2’s input effect δi2; this ensures proper chaining
for check-in effects. The subtyping rule, (TSub), allows an expression e, whose
contextual effect is Φ′, to be type-checked in a context Φ if Φ′ ≤ Φ; intuitively,
this means that the prior and future components of Φ make fewer assumptions
about the prior and future computations, but we can pretend that e’s normal effect
is larger. The rules for deference (TDeref) and assignment (TAssign) ensure
proper check-in effect chaining from Φ1 to Φ2 in the premise Φδi

2 = Φδo
2 ∪ ε. The

application rule, (TApp), pushes the prior and future effects of the caller into the
callee, and adds the effect of the body of the callee to the effect of the call. The
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transaction rule, (TTransact), pushes Φ, the effect of the transaction’s enclosing
scope, into the transaction body. The rationale for this is to disallow an update in
an inner transaction that could potentially break version consistency for an outer
transaction. (TCheckin) is the key rule that makes the static contextual effects
available to the runtime system. Note how the runtime prior effect, α′ contains not
only the effects of the program so far, α, but also the effects of the evaluation up
to the next check-in point, δo. This is necessary because we do not have control
over when an update is applied in the interval from the current check-in point up
to the next check-in point. The runtime future effect ω′ is a safe approximation of
the type-level future effect, ω′. We provide an example of how the check-in effects
work in practice in Section 4.2.2.

5.4.3 Operational Semantics

Our operational semantics extends the Proteus-tx semantics from Section 5.3.3
with support for checkin-ins; additions and changes are highlighted. The evalua-
tion rules (Figure 5.12) are transitions between configurations 〈n; Σ; H; e〉 −→η

〈n′; Σ′; H ′; e′〉 where n is a global program version, Σ is a transaction stack, and
H is the heap. A stack element has the form (n′, σ, κ) where n′ is the program
version associated with the transaction, σ (trace) contains the bindings accessed so
far in the transaction, and κ is a runtime restriction. When a function is called
or a global variable is dereferenced [gvar-deref], the name is added to the trace.
When we start a transaction [tx-start], we push a new element on the transaction
stack, with an empty trace and an initial restriction κ, and we mark the fact that
we are evaluating inside a transaction using an intx marker. Reductions inside a
transaction can proceed normally [tx-cong-1], or perform an update [tx-cong-2],
in which case we update the stack using the U [] function. If the expression in the
transaction body has been reduced to a value, we can exit the transaction via the
[tx-end] rule. Updates [update] can only take place if the runtime restriction κ
does not conflict with the update contents upd . The [checkin] rule will set a new
runtime restriction κ.

The definitions of update safety check, heap updates and stack updates are
presented in Figure 5.13; they are straightforward extensions of the definitions used
in synchronous updates (see Figure 5.7 and Section 5.3.3).

5.4.4 Soundness

The goal of our formal system is to prove that relaxed updates are version
consistent. We first need to introduce some auxiliary definitions (Figure 5.14).
Configuration typing and (TIntrans) are the same as the one used in Section 5.3.3.

The definition of a well-formed transaction stack, R; H ` Σ, differs from
the one used in the synchronous case to account for κ, the runtime approximation
for contextual effects. (TC1) shows the well-formedness condition for one stack
element. The first premise is unchanged; it ensures that each element in the trace
σ is included in the corresponding prior effect α. The second premise ensures that
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(XFlow-Ctxt)

Φ1 = [α1; ε1; (ε2 ∪ ω2); δi1 ; δi2 ]

Φ2 = [(ε1 ∪ α1); ε2; ω2; δi2 ; δo2 ]

Φ = [α1; (ε1 ∪ ε2); ω2; δi1 ; δo2 ]

Φ1 � Φ2 ↪→ Φ

(SCtxt)

α2 ⊆ α1 ε1 ⊆ ε2 ω2 ⊆ ω1

δi1 ⊆ δi2 δo2 ⊆ δo1

[α1; ε1; ω1; δi1 ; δo1 ] ≤ [α2; ε2; ω2; δi2 ; δo2 ]

(TSub)

Φ′; Γ ` e : τ ′

τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e : τ
(TDeref)

Φ1; Γ ` e : ref ε τ

Φε
2 = ε Φδi

2 = Φδo
2 ∪ ε

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

(TAssign)

Φ1; Γ ` e1 : ref ε τ Φ2; Γ ` e2 : τ

Φε
3 = ε Φδi

3 = Φδo
3 ∪ ε

Φ1 � Φ2 � Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ

(TApp)

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ1

Φ1 � Φ2 � Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

Φδi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ; Γ ` e1 e2 : τ2

(TTransact)
Φ1; Γ ` e : τ Φα ⊆ Φα

1 Φω ⊆ Φω
1

Φ; Γ ` tx(Φα
1∪Φ

δi
1 ,Φω

1 ∪Φε
1) e : τ

(TCheckin)
α ∪ δo ⊆ α′ ω ⊆ ω′

[α; ∅; ω; ∅; δo]; Γ ` checkinα′,ω′ :int

Figure 5.11: Selected type rules for relaxed updates.

elements in each transaction’s current effect (i.e., the part yet to be executed, up to
the first checkin) have the version of that transaction: f ∈ (ε∩ δi)⇒ n ∈ ver(H, f).
The third premise ensures that the runtime approximation of the prior effect, κα,
covers the prior execution, and the rest of the execution up to the next check-in
point. It is necessary that κα include not only the past execution, but part of the
future execution as well, because we do not know where exactly an update will be
applied in the evaluation from the current redex to the next check-in point. The
fourth premise ensures that the runtime approximation of the future effect, κω,
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covers the current term and its continuation.
With this we can prove the core result:

Theorem 5.4.1 (Single-step Soundness). If Φ; Γ ` e : τ where JΦ; Γ ` e : τK = R;
and n; Γ ` H; and Φ,R; H ` Σ; and traceOK (Σ), then either e is a value, or
there exist n′, H ′, Σ′, Φ′, e′, and η such that 〈n; Σ; H; e〉 −→ η 〈n′; Σ′; H ′; e′〉 and
Φ′; Γ′ ` e′ : τ where JΦ′; Γ′ ` e′ : τK = R′; and n′; Γ′ ` H ′; and Φ′,R′; H ′ ` Σ′; and
traceOK (Σ′) for some Φ′, Γ′,R′.

The proof is based on progress and preservation lemmas, as is standard. De-
tails are in Appendix C.

5.5 Multi-threaded Version Consistency

The formal system presented in Section 5.4 ensures version consistency for re-
laxed updates to single-threaded programs. In this section, we extend the formalism
to be able to prove version consistency for multi-threaded programs. This is essen-
tial for ensuring safety in our multi-threaded Ginseng implementation (Chapter 4).
Our multi-threaded calculus extends the calculus presented in Section 5.4 with the
ability to model multiple threads. Again, we only present newly-introduced rules,
or rules that are different from the single-threaded calculus.

5.5.1 Syntax

The additions to the syntax are presented in Figure 5.15. In this calculus,
each thread has its own transaction stack Σ and its own evaluation context e. We
use T to denote the sequence of all threads’ evaluation contexts as a sequence of
pairs (Σ, e). The new expression forkκ e models spawning a new thread: the current,
parent, thread forks a new child thread whose body is e, where κ is the child thread’s
initial runtime effect.

5.5.2 Typing

The only new type rule is (TFork)—the rule for spawning a thread (Fig-
ure 5.16). The child thread’s initial restriction has two components. The prior
effect, α′ ∪ δi

′, ensures that an update in the child thread takes into account the
prior execution in the parent (α′) and the effect of the evaluation up to the first
check-in point in the child (δi

′). The future effect consists solely of the effect of
the evaluation in the child, ε′; this is modeling the “exit” after the child thread has
finished execution.

5.5.3 Operational semantics.

Configuration typing (Figure 5.17) is the same as single-threaded configuration
typing in Figure 5.8, n; Γ ` H. This is because the heap H is shared among threads,
there is only one global version n, and we require well-typing for each thread.
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The operational semantics extends the semantics from Section 5.4.3 with sup-
port for multiple threads. The multi-threaded semantics (Figure 5.18) models an
abstract machine that non-deterministically chooses a thread and lets that thread
take a step; this is similar to multi-threading formal models used by others [36, 46].
Depending on the expression in redex position, the step taken is either one from the
single-threaded semantics, or a concurrency-specific step such as thread creation
([fork]) or thread exit ([return]). The evaluation rules consist of transitions of
form:

〈n; H; T 〉 ⇒(η,j) 〈n′; H ′; T ′〉

where T is the sequence of thread contexts, j is the thread taking a step, and η
is the effect of the evaluation. There is a single global version n and a single heap
H, just like in the single-threaded semantics. Rule [fork] spawns a new thread
by pushing a new thread context onto T ; note that the new thread’s restriction
comes from the (TFork) typing rule. Rule [return] does just the opposite: when
a thread has finished evaluation (i.e., its evaluation context is a single value), it is
removed from the context sequence. Rule [mt-update] states that we can perform
a multi-threaded update if each thread can take an [update] step (Figure 5.12); this
implies that no thread can conflict with the update. The crucial aspect of setting
the [update] and [mt-update] rules this way is that the system can perform an
asynchronous update, at any point, without the need to have an update in redex
position (compare these rules with the synchronous [update] rule in Figure 5.6).

5.5.4 Soundness

The goal of our formal system is to prove that updating a multi-threaded pro-
gram preserves version consistency. In our system, a program is version-consistent
if each thread is version-consistent. Albeit simple, this definition of version consis-
tency essentially says that transactions in different threads are unrelated, though
this might be considered too lax. With this we can prove the core result:

Theorem 5.5.1 (Multi-threading Soundness). Let T = (Σ1, e1).(Σ2, e2) . . . (Σ|T |, e|T |).
Suppose we have the following:

1. n ` H, T

2. ∀i ∈ 1..|T |. Φi,Ri; H ` Σi

3. ∀i ∈ 1..|T |. traceOK (Σi)

Then for all Σi such that Φi,Ri; H ` Σi, and traceOK (Σi), either ei is a value, or
there exist n′, H ′, T ′, j, n′, Γ′ such that:

n; H; T ⇒(ε,j) n′; H ′; T ′

T ′ = (Σ′
1, e

′
1).(Σ

′
2, e

′
2) . . . (Σ′

|T |, e
′
|T |)

and we have:
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1. n′ ` H ′, T ′ (such that n′; Γ′ ` H ′ and ∀i ∈ 1..|T |′. Φ′
i; Γ

′ ` e′i : τ ; R′
i Γ′ ⊇ Γ

and some Φ′
i such that

• Φ′
i = Φi, if i 6= j

• Φ′
i ≡ [Φα

i ∪ ε0; ε
′
i; Φ

ω
i ; Φδi

i ; Φδo
i ], ε′i ∪ ε0 ⊆ Φε

i , if i = j

2. ∀i ∈ 1..|T |′. Φ′
i,R′

i; H
′ ` Σ′

i

3. ∀i ∈ 1..|T |′. traceOK (Σ′
i)

The proof is based on progress and preservation lemmas, as is standard. De-
tails are in Appendix D.

5.6 Conclusion

This chapter first introduces contextual effects, which extend standard effect
systems to capture the effect of the context in which each subexpression appears.
Then, we present transactional version consistency, a new correctness condition for
dynamic software updates. Finally, we present two formalisms based on contextual
effects (relaxed updates and a multi-threaded calculus) that help us safely update
multi-threaded programs.
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TIntrans
Φ1; Γ ` e : τ Φα ⊆ Φα

1 Φω ⊆ Φω
1

Φ; Γ ` intx e : τ

dom(Γ) = dom(H)
∀z 7→ (τ −→Φ τ ′, λx.e, ν) ∈ H.

Φ; Γ, x : τ ` e : τ ′ ∧ Γ(z) = τ −→Φ τ ′ ∧ z ∈ Φ
∀z 7→ (τ, v, ν) ∈ H. Φ∅; Γ ` v : τ ∧ Γ(z) = ref ε τ ∧ z ∈ ε
∀r 7→ (·, v, ν) ∈ H. Φ∅; Γ ` v : τ ∧ Γ(r) = ref ε τ
∀z 7→ (τ, b, ν) ∈ H. n ∈ ν

n; Γ ` H

(TC1)

f ∈ σ ⇒ f ∈ α
f ∈ (ε ∩δi )⇒ n ∈ ver(H, f)

κα ⊇ (α ∪ δi)

κω ⊇ (ω ∪ ε)

[α; ε; ω; δi ; δo ], ·; H ` (n, σ, κ )

(TC2)

Φ′,R; H ` Σ
f ∈ σ ⇒ f ∈ α

f ∈ (ε ∩δi )⇒ n ∈ ver(H, f)

κα ⊇ (α ∪ δi)

κω ⊇ (ω ∪ ε)

[α; ε; ω; δi ; δo ], Φ′,R; H ` (n, σ, κ ), Σ

where ver(H, f) = ν iff H(f) = (τ, b, ν)

Figure 5.14: Relaxed updates: typing extensions for proving soundness

Thread Sequences T ::= (Σ, e) | (Σ, e).T
Expressions e ::= . . . | forkκ e

Figure 5.15: Multi-threaded syntax

TFork

Φ′; Γ ` e : τ ; ·
Φ′ ≡ [α′; ε′; ω′; δi

′; δo
′]

Φ; Γ ` forkα′∪δi
′, ε′ e : int ; ·

Figure 5.16: Multi-threaded additions for expression typing

n; Γ ` H
T = (Σ1, e1).(Σ2, e2) . . . (Σ|T |, e|T |)

∀i ∈ 1..|T |. Φi; Γ ` ei : τ ; Ri where Φi ≡ [αi; εi; ωi; δii; δoi]

n ` H; T

Figure 5.17: Multi-threaded configuration typing
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Chapter 6
Related Work

Over the past thirty years, a variety of approaches have been proposed for
dynamically updating running software. In this section we compare our approach
with a few past systems, focusing on differences in functionality, safety, and updating
model.

6.1 Dynamic Software Updating

6.1.1 Update Support

A large number of compiler- or library-based systems have been developed
for C [42, 47, 20, 6], C++ [52, 60], Java [17, 86, 31, 70], and functional languages
like ML [32, 43] and Erlang [8]. Many do not support all of the changes needed
to make dynamic updates in practice. For example, updates cannot change type
definitions or function prototypes [86, 31, 52, 60, 6], or else only permit such changes
for abstract types or encapsulated objects [60, 43]. In many cases, updates to active
code (e.g., long-running loops) are disallowed [43, 70, 42, 47, 60], and data stored
in local variables may not be transformed [50, 47, 42, 52]. Some approaches are
intentionally less full-featured, targeting “fix and continue” development [58, 44]
or dynamic instrumentation [20]. On the other hand, Erlang [8] and Boyapati et
al. [17] are both quite flexible, and have been used to build and upgrade significant
applications.

Many systems employ the notion of type or state transformer, as we do. Boy-
apati et al. [17] improve on our interface by letting one type transformer look at
the old representation of an encapsulated object, to allow both the parent and the
child to be transformed at once. In our setting, the child will always have to be
transformed independent of the parent, which can make writing transformers more
complicated or impossible (e.g., if a field was moved from a child object into the
parent), though we have not run into this problem as yet. Duggan [32] also proposes
lazy dynamic updates to types using type transformers, using fold/unfold primitives
similar to our conT/absT. Ours is the first work to explore the implementation of
such primitives.

The most similar system to ours is DLpop—Hicks’s work on providing dynamic
updating in a type-safe C-like language called Popcorn [50]. While that system
is fairly flexible, this work makes three substantial improvements. First, DLpop
could not transform data in local variables, could not automatically update function
pointers, and had no support for updating long-running loops. We have found all of
these features to be important in the server programs, and are part of our current
work. Second, while DLpop ensured that all updates were type-safe, it did not
ensure they were representation-consistent (Section 3.3), as it permitted multiple
versions of a type to coexist in the running program. In particular, when a type
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definition changed, it required making a copy of existing data having the old type,
opening the possibility that old code could operate on stale data. Finally, DLpop
only experimented with a single program (a port of the Flash web server, about
8,000 LOC), and all updates to it were crafted by the author, rather than being
official releases.

6.1.2 Correctness of Dynamic Software Updating

Several systems for on-line updates have been proposed. In this section we
focus on how prior work controls update timing to assure its effects are correct. Re-
call that in our approach, the programmer can control update timing by placement
of update points (Section 3.3.5), and Ginseng adds constraints on types that can
change at an update point, to preserve type safety.

Most DSU systems disallows updates to code that is active, i.e., actually run-
ning or referenced by the call stack. The simplest approach to updating active code,
taken by several recent systems [43, 69, 23], is to passively wait for it to become inac-
tive. This can be problematic for multi-threaded programs, since there is a greater
possibility that active threads reference a to-be-updated object. To address this
problem, the K42 operating system [60, 103, 12, 11] employs a quiescence protocol.
Once an update for an object is requested, an adapter object is interposed to block
subsequent callers of the object. Once the active threads have exited, the object is
upgraded and the blocked callers are resumed. The danger is that dependencies be-
tween updated objects could result in a deadlock. While applying updates based on
code inactivity is useful, activeness is not sufficient for ensuring correctness—update
timings allowed by the this approach can result in incorrect combinations of old and
new behavior. In particular, version consistency may require delaying an update if
to-be-updated objects are not currently active but were during the transaction.

Lee [63] proposed a generalization of the quiescence condition by allowing
programmers to specify timing constraints on when elements of an update should
occur; recent work by [24] is similar. As an example, the condition update P, Q

when P, M, S idle specifies that procedures P and Q should be updated only when
procedures P, M, and S are not active. Lee provides some guidance for using these
conditions. For example, if procedure P’s type has changed, then an update to it
and its callers should occur when all are inactive. Our work relies on programmer-
designated transactions (which are higher-level and arguably easier to find out and
specify), and uses program analysis to discover conditions that enforce transactional
version consistency.

Ginseng’s updatability analysis (Section 3.3) gathers type constraints imposed
by the active (old) code at each program point and only allows an update to take
place if it satisfies the constraints. This is more fine-grained than Lee’s constraints—
if the type of a function changes, we can update it even when its callers are active
so long as they will not call the updated function directly. Our current work is
complementary to this work, as a type-safe update will not necessarily be version-
consistent, and depending on how transactions are specified the reverse may also be
true.
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Our use of transactions to ensure version consistency resembles work by [17]
on lazily upgrading objects in a persistent object store (POS). Using a type system
that guarantees object encapsulation, their system ensures that an object’s transfor-
mation function, used to initialize the state of a new version based on old state, sees
only objects of the old version, which is similar to our version consistency property.
How updates interact with application-level transactions is less clear to us. The as-
sumption seems to be that updates to objects are largely semantically-independent,
so there is less concern about version-related dependencies between objects within
a transaction.

6.1.3 Multi-threaded Systems

Several existing systems permit updates to multi-threaded programs. They
tend to be either less flexible than Ginseng, or if flexible, no automatic safety support
is provided, leaving the problem entirely to the programmer.

First, there are systems that do not permit updates to currently-running func-
tions, and rely on the activeness check for safety, such as the K42 operating sys-
tem [103, 12, 11], OPUS [6], or Ksplice [1]. The problem with these approaches
is two-fold: 1) the activeness check does not preclude badly timed updates (see
Section 4.5.1), and 2) updating long-running multi-threaded programs requires up-
dates to active functions; our approach permits updates to running code using code
extraction (Section 3.2.4).

The second category is systems that do not employ the activeness check, such
as Lucos [23], Polus [24], and UpStare [68]. Lucos and Polus employ binary rewriting
in function prologues to redirect calls to the new function versions, and permit
updates to active code, but active functions continue to execute at the old version.
This is problematic as it can lead to type safety violations and precludes updates
to long-running loops.

UpStare permits dynamic updates to multi-threaded C programs using a tech-
nique called stack reconstruction: an update can be applied at any point in any
thread, and the stack state for all threads is reconstructed according to the new
stack layout in the new program version; this resembles our code extraction tech-
nique for supporting sub-function level updates to code, but UpStare’s technique
is more general since it does not require explicitly annotations for code to be ex-
tracted. Albeit very flexible, this approach permits updates at points where the
global state is likely not consistent, e.g., in the middle of a loop, without making
the update appear at the beginning or end of the iteration. Another disadvantage
of UpStare is that threads need to cooperate with the update coordinator thread,
in other words, to apply an update, all threads but one must be blocked; detecting
whether threads are blocked is difficult. Our system uses check-ins and does not
have this requirement, as the runtime system always keeps a safe approximation of
each thread’s effects; if a thread does not conflict with the update, it can continue
executing while an update is applied.
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6.1.4 Operating Systems

Chen et al. [23] have developed LUCOS, an approach to updating Linux using
Xen-based virtualization. Xen is used for hardware decoupling, as well as update
management (initiation, rollback). Detecting changes between versions, as well as
update construction is completely manual. To update functions, stack-walking and
binary rewriting will find and fix all references to old functions, and redirect them
to the new versions. To update data, paging is set up to detect when an access to an
old type value occurs, and, upon such accesses, a transformer function will convert
the old type value to a new type value.

Although the authors present some realistic updates from the 2.6.10 → 2.6.11
patch, the approach has some room for improvement. First, LUCOS does not require
quiescence for an update to be applied, but this can be problematic, as the update
could be applied while updated type values are (or will be) used concretely, might
have live pointers into them, updated functions are still on the stack, or function
signatures change. These issues can all lead to type safety violations. Manual
patch construction (finding instances of changed data, finding all the functions that
changed) is also unlikely to scale, especially in a large system as the Linux kernel.

Baumann et al. [103, 10, 12] have worked on implementing dynamic updates in
K42, an operating system developed at IBM Research. K42 is almost entirely object-
oriented, and is written in C++. In K42, dynamic updates are performed at class
level: since all the code is encapsulated behind class interfaces, a dynamic update
to code or data consist of updates to one or more classes. All classes that might be
subject to dynamic updating have to provide state import and state export methods,
thus upon update, the new version imports the old version’s exported state. This is
similar to our type transformers, but in K42 import and export methods are written
manually, whereas in Ginseng type transformers are generated mostly automatically.
Quiescence detection [103] is based on a mechanism similar to RCU [72]. The update
is split into two phases: first, while existing calls finish, all the incoming calls are
tracked; second, after all untracked calls have finished, incoming calls are blocked,
while waiting for the tracked calls to finish. At the end of the second phase the
object is quiescent and can be dynamically updated. All objects of a certain type
are accounted for using factories. Object updates can be performed either lazily, or
at update time. Changes to class interfaces are supported via adapters; to avoid
changing callers when the interface of an objects changes, an adapter will expose
the old class interfaces to objects using the old interface. Encapsulation makes the
task of updating K42 easier than updating C code: ADTs are explicit, so types
and functions operating on those types change together; because all accesses go via
indirection (OTT), abstraction-violating pointers are ruled out.

Ksplice [1] is a dynamic update approach for updating the Linux kernel. It
supports changes to functions only (no changes to types or function signatures) by
loading the new functions as a kernel module, and inserting trampolines at the entry
points of old functions to redirect the callers to the new function versions. Ksplice
uses the activeness check to only allow function updates if the changed function does
not appear on any thread’s stack, and exhibits the deficiencies of activeness-check
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based DSU systems.

6.1.5 DSU in Languages Other Than C

DVM [70] and DUSC [86] add dynamic updating support to Java; both systems
preserve update type safety by requiring that a class update keep the class interface
unchanged. DVM changes the Java virtual machine to add type safety checks upon
patch loading, and uses a split phase mark-and-sweep algorithm for marking to-be-
update classes at update time, and performing the update lazily. DUSC does not
require changes to the JVM, because it uses a source-to source transformation tools
(called proxy-, and implementation-class builders) to redirect all accesses to classes
that could potentially be updated to wrapper classes. Wrapper classes use delegation
to direct the access to the most recent version of an updatable class. Upon update,
the wrapper class will instantiate an updated class object for each existing old
instance, passing the state of the old instance as a parameter to the constructor of the
new instance. Naming issues restrict the developer of updatable classes from using
public or private fields directly—accesses must use methods instead. Since neither
DVM nor DUSC support changes to actively-running methods or class interfaces,
the scope of possible updates is limited.

DynamicML [43] uses encapsulation to permit updates to ML modules. Up-
dates cannot change function signatures, but the new interface can add functions,
types and values. DynamicML uses the ML garbage collector in an elegant fashion
to support updates to values. All updateable values are tagged with a runtime type,
and when the generational garbage collector performs a from→ to copy operation,
all tagged values are updated if needed. The garbage-collector approach can also
help with rolling back an update: if during an update an exception is thrown, the
system simply reverts to the from space, effectively canceling any modifications
performed during the update. Like K42, DynamicML uses encapsulation to permit
whole-module updates without worry about module’s implementation internals, at
the expense of having to wait for the module to be quiescent before proceeding with
the update. C has no modules or encapsulation boundaries, which allow us to update
types, function signatures and active code in an unrestricted fashion; however, the
burden of reasoning about safety guarantees (beyond type safety) and appropriate
update points falls on the programmer.

Stewart and Chakravarty [104] provide a solution for dynamic reconfiguration
and dynamic updating of Haskell applications. Their approach is based on chang-
ing the software architecture such that configuration values, application state and
application code are separated; configuration and state are optional arguments to a
modified application main function that is ready to accept exiting state. Dynamic
update or reconfiguration is simply a matter of reinvoking main with a (possibly
changed) configuration and the old state. Changes in type representations are dealt
with prior to the update: before saving the global state, the old state values are
converted to the new format, so that upon reloading, the new code will directly see
new data. Unlike Ginseng, this approach requires changes to the software architec-
ture; it is also not clear to us how easy it is to separate data from code, given a
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legacy application.

6.1.6 Edit and Continue Development

Microsoft’s Visual Studio IDE allows programmers to make (and observe the
effects of) small-scale changes to their applications after having started the appli-
cation in the debugger. This feature, called “Edit and Continue”, is available for
several programming languages such as C++, C# and Visual Basic [74]. Though
convenient, Edit and Continue only permits a limited set of changes to code and
data, so this approach is suitable for incremental development rather than long-term
software evolution. For example, the documentation for the C++ version of Edit
and Continue does not support “most changes to global or static data”, or “Changes
to a data type that affect the layout of an object, such as data members of a class”,
or “Adding more than 64k bytes of new code or data”. In contrast, Ginseng permits
such changes, but requires programs to be compiled specially, and offers no smooth
integration with a debugger/IDE.

Java supports a limited class replacement mechanism, primarily meant to be
used by debuggers, IDEs (for incremental development) and profilers [30]. The
JVM Tool Interface (JVMTI [3]) is a programming interface that development and
monitoring tools can use to communicate with (and control) the JVM. JVMTI
provides a RedefineClasses() method that allows runtime class redefinition, but
the only thing the new class can change is method bodies. Threads having old
methods on the stack continue to execute the old code, but all new invocations
will use the new method (JVMTI also supports a PopFrame() operation that can
be used to discard currently running old methods by effectively popping the old
method’s stack frame and returning to the call site). Method replacement in Java
is hence similar to the approach we take in Ginseng—following an update, all calls
to replaced functions are to new versions. Although easy to implement [29], this
method replacement scheme can lead to violations of version consistency.

6.1.7 Dynamic Code Patching

Dynamic code patching is a helpful technique for debugging, instrumentation,
or small-scale updates, e.g., fixing a limited-scope security bug. Dyninst [20] uses
binary rewriting to replace code in a process with programmer-defined code. Dyninst
supports fine-grained changes to code within a function, and works on unmodified
binaries. It is difficult however, to achieve long-term code evolution using code
patching only: updating data, and providing safety guarantees become necessary
for non-trivial, realistic updates and multi-year changes.

6.2 Alternative (Non-DSU) Approaches to Online Updating

A typical approach to upgrading on-line systems is to use a load-balancer [18,
85]. It redirects requests away from a to-be-updated application until it is idle, at
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which point it can be halted and replaced with a new version. Such approaches
typically employ redundant hardware, which, while required for fault-tolerance, is
undesirable in some settings (e.g., upgrading a personal OS).

Microvisor [65] employs a virtual-machine monitor (VMM) to follow this basic
methodology on a single node. When an application or OS on a server node is to
be upgraded, a second OS instance is started concurrently on the same node and
upgraded. When the original instance becomes idle, applications are restarted on
the new instance and the machine is devirtualized. While Microvisor avoids the need
for extra hardware, it shares the same drawbacks as the load-balancing approach:
applications must be stateless (so they can be stopped and restarted) or they must
be able to save their state under the old version, and then restore the state under
the new version. While checkpointing [19] or process migration [102, 75] can be used
to stop and restart the same version of an application, it cannot support version
changes. DSU handles application state changes naturally. Since all state is visible
to an update, it can be changed as necessary to be compatible with the new code.

Zap [87] combines checkpoint/restart with virtualization to support process
migration in Linux. Autopod [82, 93] builds on Zap to provide OS upgrades without
disrupting user applications by checkpointing user processes, starting a new OS
instance, upgrading it, and reinstating the user processes on the updated machine.
The range of OS upgrades is limited, however, since all the virtualization metadata
layout has to be kept the same across upgrades, or converted upon process restart.

Another similar model is dependency-agnostic upgrades [33] at the system
level. In this model, the new software version is installed on a different machine; old
and new versions continue to run in parallel, and the data is converted gradually.
While the data is migrated and converted, writes to old data are invalidated to
prevent inconsistency. It is less clear to us whether the upgrade can be totally
dependency-agnostic due to the presence of system-level state (e.g., open files, OS
and application data in memory) which might need to be transferred as well.

While checkpointing [92, 19] or process migration [102] can be used to stop
and restart the same version of an application, it cannot support version changes.
DSU handles application state changes naturally. Since all state is visible to an
update, it can be changed as necessary to be compatible with the new code. Indeed,
one can imagine composing our approach with checkpointing to combine updating
with process migration.

6.3 Software Evolution

A number of systems for identifying differences between programs have been
developed. We discuss a few such systems briefly.

Yang [114] developed a system for identifying “relevant” syntactic changes
between two versions of a program, filtering out irrelevant ones that would be pro-
duced by diff. Yang’s solution matches parse trees (similar to ASTdiff) and can
even match structurally different trees using heuristics. In contrast, ASTdiff stops
at the very first node mismatch in order not to introduce spurious name or type
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bijections. Yang’s tool cannot deal with variable renaming or type changes, and in
general focuses more on finding a maximum syntactic similarity between two parse
trees. We take the semantics of AST nodes into account, distinguish between dif-
ferent program constructs (e.g., types, variables and functions) and specific changes
associated with them.

Horwitz [53] proposed a system for finding semantic, rather than syntactic,
changes in programs. Two programs are semantically identical if the sequence of
observable values they produce is the same, even if they are textually different.
For example, with this approach semantics-preserving transformations such as code
motion or instruction reordering would not be flagged as a change, while they would
in our approach. Horwitz’s algorithm runs on a limited subset of C that does not
include functions, pointers, or arrays.

Binkley [14] proposes using semantic differencing to reduce the cost of regres-
sion testing—for a new version of a program, regression tests only need to be run
for components whose behavior has changed. A semantic difference is defined as a
difference in program’s behavior, e.g., values assigned to variables, values of boolean
predicates, or return values for procedures. Regression testing is performed only for
components whose behavior has changed. The target language used is a simplified
one that does not contain pointers, arrays, or global variables.

Jackson and Ladd [57] developed a differencing tool that analyzes two versions
of a procedure to identify changes in dependencies between formals, locals, and
globals. Their approach is insensitive to local variable names, like our approach,
but their system performs no global analysis, does not consider type changes, and
sacrifices soundness for the sake of suppressing spurious differences.

6.4 Contextual Effects

Contextual effects extend standard effect systems to capture the effect of the
context in which each subexpression appears, i.e., the effect of evaluation both
before and after the evaluation of the subexpression. We use contextual effects
to determine the effects of past and future computation at each program point,
and enforce transactional version consistency while allowing updates to occur more
frequently within programs.

Several researchers have proposed extending standard effect systems [66, 83] to
model more complex properties. One common approach is to use traces of actions
for effects rather than sets of actions. These traces can be used to check that
resources are accessed in the correct order [55], to statically enforce history-based
access control [100], and to check communication sequencing [83].

Skalka et al.’s trace effects include sequencing, choice, and recursion operators
to precisely describe an execution history, in contrast to standard effects which are
sets of unordered events. We believe we could construct contextual versions of trace
effects (and thus derive prior and future trace effects), at least for sequencing and
choice, via extension to our � operator.

Nielson et al.’s communication analysis [83] uses a type and effect system to
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characterize the actions of a concurrent program and the temporal order among
them. Their effects resemble our normal effects, but there are no prior or future
effects in their system. However, our prior and future effects consists of sets, and
do not capture order; we could imagine adding ordering to our system by using a
sequencing operation on effects (;), and defining composition as (Φ1 �Φ2)

ε = Φε
1; Φ

ε
2

instead of (Φ1 � Φ2)
ε = Φε

1 ∪ Φε
2.

While these systems can model the ordering of events, they do not compute
the prior or future effect at a program point. We believe we could combine trace
effects with our approach to create a contextual trace effect system, which we leave
for future work.

Hicks et al. [51] introduced continuation effects γ, which resemble the union
ε ∪ ω of our standard and future effects. Judgments in this system have the form
γ; Γ ` e : τ ; γ′, where γ′ describes the effect of e’s continuation in the remainder of
the program, and γ is equivalent to ε ∪ γ′ where ε is the standard effect of e. The
drawback of this formulation is that the standard effect ε of e cannot be recovered
from γ, since (ε ∪ γ′) − γ′ 6= ε when ε ∩ γ′ 6= ∅. This system also does not include
prior effects.

Capabilities in Alias Types [101] and region systems like CL [110] are likewise
related to our standard and future effects. A capability consists of static approx-
imation of the memory locations that are live in the program, and thus may be
dereferenced in the current expression or in later evaluation. Because these sys-
tems assume their inputs are in continuation passing style (CPS), the effect of a
continuation is equivalent to our future effects. The main differences are that we
compute future effects at every program point (rather than only for continuations),
that we compute prior effects, and that we do not require the input program to be
CPS-converted.
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Chapter 7
Future Work

In this dissertation we have shown that DSU can be practical for updating re-
alistic applications as they are written now, and as they evolve in practice. However,
the three dimensions of DSU practicality (flexibility, safety, and efficiency) could be
further explored. In this section we lay out some possible directions for future work.

7.1 DSU for Other Categories of Applications

DSU is useful for long-running programs that do not tolerate reboots. In
Figure 7.1 we present a spatio-temporal categorization of long-running applications,
based on how long a history they keep, and where state is stored. In this dissertation
we have focused on programs in quadrant 1, i.e., programs that keep long-lived, in-
memory state. We now discuss the other categories of applications (quadrants 2–4)
from a DSU perspective, trying to answer questions such as “Does DSU provide
significant benefits for this application class?”, or “What are the costs of making a
certain application class updateable on-the-fly?”.

1: Long history, volatile state. This is the class of applications we have focused
on in this work. DSU is appealing for such programs because restarting the
program causes the in-memory state to be lost, which causes disruption at
the client, or performance degradation at the server. For example, restarting
OpenSSHd shuts down all the long-lived SSH connections, which is disruptive
for the clients, while restarting Icecast interrupts live streaming. Restarting
Zebra causes all the routing information the server has accumulated to be
lost; upon restart, the BGP, RIP and OSPF routing daemons using Zebra
will have to take time to re-learn routes. Restarting Memcached will cause
the underlying HTTP server to query the database for each web page, which
degrades performance while the new instance of Memcached fills up its cache.

2: Short history, volatile state. Applications falling into this category are servers
with short-lived connections/requests, e.g., NTP servers or non-caching web
servers. The standard approaches to updating web servers are 1) deny ac-
cess to new clients while the pending requests are completed, followed by
update installation and restart at the new version, or 2) taking down a cer-
tain percentage of servers and updating them, and redirecting new requests
away from the old web server to an updated server running the new version.
These stop/restart approaches have certain disadvantages. Shutting down the
server while requests are pending is undesirable, especially for e-commerce
applications. Waiting for pending requests to complete might have security
implications, e.g., if the update fixes a security bug that might be triggered by
a pending request. Redirecting new connections to a spare web server requires
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Figure 7.1: Spatio-temporal characteristics of long-running applications.

spare resources. All these issues can make DSU support attractive for web
servers. However, if the system is already provisioned with spare hardware or
spare virtual machines for fault-tolerance, then upgrades based on redirecting
new requests away from the old web server to a server running the new version
make sense.

3: Short history, persistent state. An example of such an application is an email
server such as Sendmail. The state of an email server (email messages) is per-
sistent, but is under the server’s control for only a short period, i.e., while the
server is accepting the e-mail and delivering it to other servers or to users’
mailboxes. The server’s history (emails accepted and delivered in the past)
is not significant to the current system state. Shutting down and restarting
the server does not cause significant client disruption and slow operation dur-
ing the warm-up phase. Therefore, DSU is a less compelling case for such
short-history, persistent state applications.1

4: Long history, persistent state. Database systems make canonical examples
of applications with long history and persistent state. Schemas for long-

1Incidentally, SMTP is designed with support for high availability using mail exchangers. Ex-
changers act as backup servers that can accept email messages when the primary server is down,
and deliver them to recipients later, when the main server comes back up. This scheme makes
SMTP even more tolerant of server reboots.
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running databases need to evolve, but the current approach is tedious. It
involves changing the application to use the new schema, shutting down the
database, creating a new table with the new schema, writing code that popu-
lates the new table and converts the old elements in the process, and finally
restarting the system. ACID semantics guarantee that shutting down a server
will not lead to corrupted state. However, being able to perform on-the-fly
changes to a database schema without shutting down the DBMS has several
advantages [27]: the process presented above is time consuming, and mostly
manual, the database is unavailable during the operation, and application soft
state (e.g. caches) is lost.

Ultimately, application users have to decide whether the cost of running an
updateable (DSU) application with a slight overhead outweighs the cost of having
to shut down and restart the application, and bear the associated disruption or
warm-up costs. In an enterprise where redundant hardware is used for fault toler-
ance anyway, the redirect/reboot approach might be less expensive than the cost
(hardware resources, power consumption) incurred because of DSU performance
overhead. On the other hand, for low-cost systems (e.g., home routers, PCs, lap-
tops, cell phones), the cost of extra hardware might be prohibitive, and the users
prefer to pay a performance penalty in exchange for the convenience of not having
to reboot.

7.2 DSU for Operating Systems

It has become commonplace for OS vendors to release their patches online; end-
users download the patch, install it, and restart the OS so that the patch can take
effect. Experts suggest that high release frequency is needed to reduce vulnerability
of end-user systems, but increased patch release frequency is burdensome for patch
recipients. The reason why users and administrators are slow in applying OS patches
is because they are disruptive and might introduce new bugs [97]. The disruption
stems from the OS’s position at the bottom of the software stack: upon restart, all
the transient state is lost. The lack of confidence in the latest patch is due in part
to difficulties in expressing and validating update safety.

Despite a lot of progress toward on-the-fly OS updates, updating a commodity
OS’s kernel (e.g., updating to the next Linux kernel version) still requires rebooting.
The main reason is that OS code is low-level, sizable, complex, highly concurrent
and performance-critical. This presents a significant opportunity for improvement,
and is an area worth exploring in future work.

Updating an OS requires solving two main problems: finding a safe update
point, and after reaching a safe update point, redirecting execution to the new
version.

Finding safe update points. As explained in Section 3.3.5, update timing is
crucial for update correctness, and picking a right update point is up to the pro-
grammer. In Chapter 5 we showed that to preserve version consistency, updates
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should be applied at program points where they do not conflict with in-flight trans-
actions. Therefore, the challenge is to define what constitutes an OS transaction,
and identify transactions in the OS code. One possible direction is to model the
operating system as an event processor, where “processing an event” could be serv-
ing an interrupt/exception or running a bottom half. If we define processing an
event as a transaction, we can compute contextual effects at possible update points
in the OS code, and leverage our transactional version consistency framework to
determine whether applying the update at a certain program point is safe. Apply-
ing static and dynamic analyses to kernel code is not trivial, due to the presence of
wild casts, inline assembly, preemption and non-standard control flow [96, 16], etc.
Nevertheless, recent results [35] indicate that modeling and reasoning about some
of these low-level operations formally is feasible.

Redirecting execution to the new version. One approach to OS updating is
to perform an in-place update where new code and data are loaded into a running
OS. This is the solution used by Ginseng and other systems [69, 23]. An alternative
would be a checkpointing/VM approach [65]: save the entire OS state at the old
version, create a new virtual machine that runs the new OS version, and import the
old state into the new machine.

The difference between these two solutions consists in how they reorganize
the memory image after an update. For the in-place approach, the concern is find-
ing, converting and accommodating data whose representation has changed, which
often requires indirection and imposes some overhead. In the checkpointing/VM
approach, at update time, we have to find and checkpoint all the data, convert data
whose representation has changed and reinstate it in the new virtual machine, a pro-
cess that is complicated and time-consuming. However, this approach offers more
flexibility in dealing with changes to data representations, and there is no overhead.
The ideal solution would be to combine the ease of use of the in-place approach and
the low overhead/flexibility of the VM approach.

7.3 Safety of Dynamic Software Updating

As argued throughout this dissertation, safety is a paramount concern for
dynamic updating, as the consequences of violating update safety can be severe.2

In Section 3.3.5 we showed how a type safe update can go wrong due to improper
timing. Therefore, we would like a DSU system to provide safety guarantees that
give application developers (and patch developers) assurances that following the
update, the program will behave as intended. The question, though, is how to
define update correctness.

2In a recent incident [62], a nuclear power plant was forced to shut down because a software
update on a monitoring system reset the data on a control system. The incident was the result
of applying an otherwise safe update to only one party in a distributed system: a perfectly safe
update was applied on the monitoring system only, instead of both monitoring and control systems
being updated simultaneously. Allowing this inconsistency triggered data synchronization and the
subsequent reset.
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Gupta [47] proposed the following correctness property: given program P1 and
its new version P2, an update to the active P1 will eventually lead to a program state
reachable from a normal evaluation of P2. That is, an update U to P1 is correct iff for
all P ′

1 such that P1 −→∗ P ′
1 there exists some P12, P

′
2 such that P ′

1 −→ U P12 −→∗

P ′
2 implies P2 −→∗ P ′

2. While illuminating, in practice this property is too strong
because it cannot account for bug fixes and some kinds of feature enhancements,
which are the most frequent reasons a program is changed.

As a consequence, we have to relax the update correctness condition, and
define an update as correct if, following an update U to program P1, the resulting
updated program P1 ⊕ U exhibits property Π. Here Π is defined in terms of a
specific program verification technique. For example, when using regression testing,
satisfying Π means that the updated program passes the new program’s regression
tests. If using type-based approaches to correctness, Π could mean that the type of
a function has not changed as result of an update.

We now present several dynamic and static approaches that aim to satisfy this
relaxed update correctness condition.

7.3.1 Dynamic Approaches

An obvious approach to finding update-introduced errors is to apply regression
tests after the update, as we would test the new release. The accuracy of finding
update correctness errors depends on the existence of a thorough test suite for the
application. However, this is not sufficient, because update timing and program
state might influence the outcome of the test, so to test the update, we would
have to try applying it at various update points, and in various program states.
This can quickly lead to an explosion of states and update points that need to be
tested. An interesting area for exploration is how to reduce this possible explosion
by identifying equivalent update points and equivalent states, so we only apply the
update at one representative update point, and in one state, respectively, for each
equivalence class.

Another approach to guaranteeing correctness after applying the update is to
use checkpointing, speculations, or transactional memory and I/O [15] so we can
roll back when applying an update has lead to a program crash, exception, etc.
The idea is to take a checkpoint, start a transaction or speculation [108] prior to
applying the update, and let the program run for a while. If the program crashes
or throws an exception, we restart from the pre-update checkpoint, or abort the
speculation/transaction. A similar approach named “Band-aid Patching” [99], based
on Dyninst [20], forks extra processes that run the continuation of the update point
in parallel, at the old and new version. If the old or new version crashes, it is
discarded. However, this approach needs to deal with resource duplication, and the
coexistence of old and new versions.
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7.3.2 Static Approaches

Several formalisms allow expressing and checking program correctness prop-
erties: type systems, model checking, theorem proving, etc. We show how these
formalisms could be used to express and check our relaxed notion of update correct-
ness.

Type-based Approaches. Advanced type systems can capture higher-level pro-
gram correctness properties. For example, if the original application contains lock
acquire/release operations, one of the possible specifications for update correctness
is that after applying the update, the locks are in the same state as they were in
the original program. This could be modeled using refinement types [41, 71], type
qualifiers [39, 25], or dependent types [88, 112, 113].

Type-based approaches for update safety have two main advantages. First,
Ginseng performs type checking for, and has access to, both the old and new pro-
gram; therefore, a straightforward comparison between program elements’ types in
the old and new version could reveal potential errors. Second, type checkers are
fast, and with certain restrictions, decidable, so they do not place undue burden on
the programmers of updateable applications.

Model Checking and Theorem Proving. Advances in software model checking
and theorem prover -based verifiers have made these techniques increasingly popular.
In the last few years, a variety of checkers and verifiers have shown to be able to
efficiently verify substantial, realistic programs [48, 9, 49, 38, 37]. These features
make checkers and verifiers a suitable candidate for enforcing update correctness in
Ginseng. Returning to our locking example we could model lock operations via a
state machine, and lock usage not conforming to the state machine is flagged as an
error (e.g., taking a lock twice or releasing an unlocked lock). Again, if the original
application contains lock acquire/release operations, we could use model checking
to ensure that, as a result of update, the locks keep their state.

7.4 Software Evolution

Understanding how software changes over time can improve our ability to
build and maintain it. We have access to the history of many sizable open source
programs, but, to be able to tap the potential of large source code repositories, we
need to build tools to effectively “mine” repositories and try to paint a clearer image
of the software evolution process. Having such tools can have beneficial implications
beyond DSU systems. Apart from learning what classes of changes are frequent,
and using them to design the next DSU systems, we can inform tool and language
writers what artifacts would be needed to facilitate change and make software easier
to maintain.

Detecting common classes of changes developers make when writing/maintain-
ing their programs can reveal certain “evolution patterns,” such as refactoring. By
providing automatic support for effecting such changes in development tools and
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environments, we cut down on time and errors. Similarly, mining repositories for
common fixes enables us to infer “bug patterns” [111] that can be generalized and
added to bug detectors [54], allowing us to root out certain classes of defects early
in the process.

One possible direction for continuing this work is to extend ASTdiff (Chap-
ter 2) with support for tracking a larger set of program aspects e.g., software com-
plexity metrics, or support for inferring patterns in the observed changes. In fact,
coming up with formal models or theories that allow us to understand how software
evolves is listed as one of the most important challenges of software evolution [73, 26].
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Chapter 8
Conclusions

The central idea of this dissertation is that Dynamic Software Updating can
be practical: programs can be updated while they run, with modest programmer
effort, while providing certain update safety guarantees, and without imposing a
significant performance overhead.

As evidence for this thesis, we present an approach and tool called Ginseng,
that permits constructing and applying dynamic updates to C programs, along
with an evaluation of Ginseng on six realistic server applications. This dissertation
shows that Ginseng makes DSU practical by meeting several criteria we believe to
be critical for supporting long-term dynamic updates to C programs:

• Flexibility. Ginseng permits updates to single- and multi-threaded C pro-
grams. The six test programs are realistic, substantial and most of them
are widely used in constructing real-world Internet services. Ginseng sup-
ports changes to functions, types, and global variables, and as a result we
could perform all the updates in the 10 months–4 years time frame we consid-
ered. Patches were based on actual releases, even though the developers made
changes without having dynamic updating in mind.

• Efficiency. We had to make very few changes to the application source code.
Despite the fact that differences between releases were non-trivial, generating
and testing patches was relatively straightforward. We developed tools to
generate most of a dynamic patch automatically by comparing two program
versions, reducing programmer work. We found that DSU overhead is modest
for I/O bound applications, but more pronounced for CPU-bound applications.
Our novel version consistency property improves update availability, resulting
in a smaller delay between the moment an update is available and the moment
the update is applied.

• Safety. Updates cannot be applied at arbitrary points during a program’s
execution, because that could lead to safety violations. Ginseng performs a
suite of static safety analyses to determine times during the running program’s
execution at which an update can be performed safely.

In summary, this dissertation makes the following contributions:

1. A practical framework to support dynamic updates to single- and multi-
threaded C programs. Ours is the most flexible, and arguably the most safe,
implementation of a DSU system to date.

2. A substantial study of the application of our system to six sizable C server
programs, three single-threaded, and three multi-threaded, over long periods
of time ranging from 10 months to 4 years worth of releases.
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3. A novel type-theoretical system that generalizes standard effect systems, called
contextual effects ; contextual effects are useful when the past or future com-
putation of the program is relevant at various program points, and have ap-
plications beyond DSU. We also present a formalism and soundness proof
for our novel update correctness property, version consistency, which permits
us to provide certain update safety guarantees for single- and multi-threaded
programs

4. An approach for comparing the source code of different versions of a C pro-
gram, as well as a software evolution study of various versions of popular open
source programs, including BIND, OpenSSH, Apache, Vsftpd and the Linux
kernel.
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Appendix A
Developing Updateable Software Using Ginseng

When developing updateable software with Ginseng, the programmer might
need to intervene at two stages: when compiling the initial program, and when
generating dynamic patches. We will touch on these two aspects in turn.

A.1 Preparing Initial Sources

To prepare C programs for compilation with Ginseng, developers might have to
annotate the source code with #pragma directives which indicate where the update
points are, which loops ought to be extracted, which functions act like malloc, etc.

A.1.1 Specifying Update Points

Update points in single-threaded programs and semantic update points in
multi-threaded programs are points in the program at which there are no partially-
completed transactions, and all global state is consistent (see Sections 3.5.3 and 4.2).
Dynamic updates are best applied at such quiescent points, and preferably those that
are stable throughout a system’s lifetime. If the application/thread is structured
around an event processing loop, the end of the loop defines a stable quiescent
point: there are no pending function calls, little or no data on the stack, and the
global state is consistent. Once the user has identified such quiescent points in the
program, an update point can be specified by inserting a call to the runtime system:
DSU update().

A.1.2 Code Extraction

Ginseng cannot replace code on the stack, but can replace functions via func-
tion indirection (Section 3.2). Thus, to replace a code block on the stack, we can
direct Ginseng to extract the block in a separate function, a technique called code
extraction (Section 3.2.4). The user can request code extraction as indicated in Fig-
ure A.1. The first step is delimiting the code to be extracted, by adding a labeled
scope (e.g., FOO), and the second step is adding a #pragma DSU extract(”FOO”) to the
source file.

Ginseng also supports a combination of loop body extraction and automatically-
inserted update points at the end of an iteration of long-running loops using the
directive #pragma DSU loopupd(‘‘label’’).

A.1.3 Memory Allocation Functions

Ginseng treats malloc and other memory allocation functions specially. Since
these functions (named absT [106]) are used to construct wrapped type values,
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1 ...
2 f ();
3 g();
4 ...

1 #pragma DSU extract(”FOO”)
2

3 ...
4 FOO: {
5 f ();
6 g();
7 }
8 ...

Original program Program prepared for code extraction

Figure A.1: Directing Ginseng to perform code extraction.

Ginseng has to properly initialize the version field of a type wrapped value (Sec-
tion 3.2.2). Ginseng recognizes malloc, calloc and alloca by default, but sometimes the
applications use custom memory allocators, hence the names of allocation functions
have to be communicated to the compiler using #pragma DSU malloc(”function name”).
For instance, OpenSSH uses a custom function for memory allocation called “xmalloc”,
so the user has to notify Ginseng by adding the following line to the original program:
#pragma DSU malloc(”xmalloc”).

A.1.4 Analysis

As described in Section 3.5.3, Ginseng performs safety analyses to detect types
used in a representation-dependent way that hampers future changes in a type’s rep-
resentation. For example, uses of sizeof or unsafe type casts that are legal in the
current program version might become illegal in future versions, once the type rep-
resentation has changed. A type used in an illegal fashion is deemed non-updateable;
Ginseng will not use the type wrapping scheme for such a type, and its representa-
tion cannot change in future versions.

The programmer might have to guide Ginseng’s safety analysis in certain cases.
Since the analysis is monomorphic, it will not detect universal or existential uses
of types, rendering certain types non-updateable, although they are used in a type-
safe, representation-independent fashion. On the other hand, the analysis might
deem a type updateable, but the programmer needs to have a fixed, non-wrapped
representation for the type in question.

To override the analysis and force a type (non)updateable, Ginseng provides
two pragma primitives, #pragma DSU FORCE NONUPDATABLE and
#pragma DSU FORCE UPDATABLE. Their use is detailed below.

Whenever Ginseng encounters an “illegal” type use, it prints out an error
message of the form:

(<source file>:<line>) setTypeNonUpdatable(<type name>) (<reason>)

This points the programmer to the offending source code line; there are cases
when changes to the source code eliminate the offending use (e.g., instantiating
an existential). When such changes are not effective, the last resort is forcing
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types updateable. For example, when updating Sshd we had to use the directive
#pragma DSU FORCE UPDATABLE(”struct Channel”) to tell Ginseng that an existential
use of struct Channel is update-safe. Conversely, when updating Vsftpd we used
a #pragma DSU FORCE NONUPDATABLE(”struct vsf sysutil ipv4addr”) to prevent Ginseng
from wrapping struct vsf sysutil ipv4addr whose representation must exactly match
the IP address format.

C lacks support for universal or existential polymorphism, so programmers
have to resort to using void ∗ for polymorphism. Ginseng checks all upcasts to void ∗
and downcasts from void ∗ to ensure no type “laundering” occurs (Section 3.3.3).
Ginseng tracks all upcasts from an abstract type pointer T ∗ into void ∗ by annotat-
ing the void ∗ and tracking its subsequent flow. If a void ∗ flows to an abstract type
pointer S ∗, with T 6= S, both S and T are set non-updateable, to avoid represen-
tation inconsistencies. Whenever a downcast to S ∗ from a void ∗ with annotation
T ∗, U ∗, V ∗, etc . is encountered, Ginseng emits an error message of the form:

(<source file>:<line>) printVoidConstraints <S> <= <T U V>

The user can then decide whether this a benign or problematic cast. Note that
having non-updateable types in a program limits the range of possible updates, so
the developers should strive to reduce the number of such types.

A.1.5 Check-ins

Ginseng supports both synchronous (barrier-based) and asynchronous (re-
laxed) updates. Synchronous updates take place at an user-specified update point
(marked by a user-inserted DSU update(), as explained in Section 3.3). Asynchronous
updates take place at an induced update point or an arbitrary, though safe, point
inside a scoped check-in block (Section 4.2). To designate a check-in block, the user
simply adds curly braces around the code block and a DSU CHECKIN <name> label
to the block, as shown in Figure A.2; no #pragma is necessary. Scoped check-ins
“snapshot” a safe approximation of thread’s current restriction plus the effects of
executing the block; the result of this is that the effects of the block will appear
in both the prior and future restrictions for the entire execution of the block (Sec-
tion 4.2.2). While, in our example, this prevents f, g, and s from changing, the
advantage is that multi-threaded programs can perform updates without the need
for blocking synchronization—as long as all threads have check-in effects that do
not conflict with the update, the update can be performed right away.

A.2 Dynamic Patches

Dynamic patches are generated mostly automatically by Ginseng, but (de-
pending on the nature of changes between versions), the programmer might still
have to complete the auto-generated type transformers and write state transformers
(Section 3.4). Source code for patches consists of two files: a .patch.custom.c file con-
taining state and type transformers, which can be tailored by the programmer, and
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1 struct S { int i ; };
2 ...
3 struct S s ;
4 ...
5 f ();
6 s . i = 0;
7 g();
8 ...

1 struct S { int i ; };
2 ...
3 struct S s ;
4 ...
5 DSU CHECKIN 1: {
6

7 // {S,f ,g} = α {S,f ,g} = ω
8

9 f ();
10 s . i = 0;
11 g();
12

13 // {S,f ,g} = α {} = ω
14 }
15 ...

Original program Program annotated with check-ins

Figure A.2: Directing Ginseng to perform check-ins.

a .patch.gen.c containing definitions of new (or changed) types and functions. Gin-
seng generates both these files automatically, but the programmer is only supposed
to alter the former.

We now provide examples of completing auto-generated type transformers and
writing state transformers.

A.2.1 Type Transformers

When type representations change, type transformers will convert values from
the old representation to the new one. Ginseng compiler automatically generates
type transformer skeletons containing “best guess” conversion functions between
representations, but the programmer still has to intervene in order to verify the
auto-generated conversions and add initialization code where needed. For instance,
if a struct type has changed, the stub consists of code to copy the preserved fields
over from the old to the new definition, and the programmer will have to initialize
newly added fields. Type transformers have the following signature:

void DSU tt type(type old ∗xin , type new ∗xout, wrapped type ∗xnew)

The arguments are pointers to the concrete type representations (xin and xout) and
to the wrapped representation (xnew); most of the time, xin and xout are sufficient for
writing the conversion function, but when converting linked structures e.g., trees or
lists, xnew is needed as well. In most cases type is a struct, and the effort consists of
initializing newly added fields.

As an example, in Figure A.3 we show the Ginseng-generated type transformer
for struct Authct in the update from Sshd version 3.7.1p2 to version 3.8p1. The new
version adds a field force pwchange (line 13). Ginseng generates code to copy the
existing fields, but the programmer has to write the correct initializer for the newly-
introduced field. Depending on when or how the new code uses the newly added
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1 // OLD program, sshd 3.7.1p2
2 struct Authct old {
3 int failures ;
4 char ∗user ;
5 char ∗ service ;
6 struct passwd ∗pw;
7 char ∗ style ;
8 };
9

10 // NEW program, sshd 3.8p1
11 struct Authct new {
12 int failures ;
13 int force pwchange;
14 char ∗user ;
15 char ∗ service ;
16 struct passwd ∗pw;
17 char ∗ style ;
18 };

1 void tt Authct(struct Authct old ∗xin ,
2 struct Authct new ∗xout) {
3 xout→ failures = xin→ failures;
4 xout→ force pwchange = ??;
5 xout→ user = xin→ user;
6 xout→ service = xin→ service;
7 xout→ pw = xin→ pw;
8 xout→ style = xin→ style;
9 }

(a) Source code (c) Type Transformer

Figure A.3: Type transformer example.

1 // OLD program, zebra 0.93b
2 struct route table ∗ rib table ipv4 ;
3 struct route table ∗ static table ipv4 ;
4

5 struct route table ∗ rib table ipv6 ;
6 struct route table ∗ static table ipv6 ;
7

8 // NEW program, zebra 0.94
9 struct route table ∗vrf [4];

1 void DSU state xform() {
2 vrf [0] = rib table ipv4 ;
3 vrf [1] = rib table ipv6 ;
4 vrf [2] = static table ipv4 ;
5 vrf [3] = static table ipv6 ;
6 }

(a) Source code (b) State Transformer

Figure A.4: State transformer example.

fields, writing the type transformer can range from trivial (assigning a default value)
to impossible (Section 3.5.3).

If no type has changed, the auto-generated .patch.custom.c will be empty, mean-
ing there are no type transformers to be filled out. Note however that state trans-
formers (described in the next section) might still be necessary.

A.2.2 State Transformers

A state transformer is an optional function supplied by the programmer and
invoked by the runtime system run at update time (Section 3.4). The purpose of
state transformers is two-fold: 1) to convert global state and establish the invariants
the new program version expects, and 2) to run initialization code the new program
depends on, but is not part of the old program’s initialization code.
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Since a state transformer function is optional, it is not included by default in
the .patch.custom.c; the programmer has to add it using the following skeleton:

void DSU state xform() { ... }

As an example, in Figure A.4 we show the state transformer we had to write
for the update from Zebra version 0.93b to version 0.94. We see that the old version
keeps routing tables in four different global variables (rib table ipv4, static table ipv4 ,
rib table ipv6, and static table ipv6), whereas the new version uses a routing table array,
vrf . The state transformer makes the array elements point the associated routing
table.

Just like in the type transformer case, state transformer complexity can range
from trivial (if at all needed) to impossible (e.g., if at boot time hardware is initial-
ized differently by the old and the new program). The most complicated cases we
have encountered were refactorings of global structures where global state had to be
transferred between the old and new storage model.
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Appendix B
Proteus-tx Proofs
Lemma B.0.1 (Weakening). If Φ; Γ ` e : τ and Γ′ ⊇ Γ then Φ; Γ′ ` e : τ .

Proof. By induction on the typing derivation of Φ; Γ ` e : τ .

Lemma B.0.2 (Flow subtyping). If Φ1 � Φ2 ↪→ Φ then Φ1 ≤ Φ and Φ2 ≤ Φ.

Proof. Follows directly from the definitions.

Lemma B.0.3 (Subtyping reflexivity). τ ≤ τ for all τ .

Proof. Straightforward, from the definition of subtyping in Figure 5.2.

Lemma B.0.4 (Subtyping transitivity). For all τ, τ ′, τ ′′, if τ ≤ τ ′ and τ ′ ≤ τ ′′ then τ ≤ τ ′′.

Proof. By simultaneous induction on τ ≤ τ ′ and τ ′ ≤ τ ′′. Notice that subtyping is syntax-directed, and this forces
the final rule of each derivation to be the same:

case (SInt,SInt) :

From the definition of (SInt), we have int ≤ int , hence τ ≤ τ ′′ follows directly.

case (SRef,SRef) :

We have:

SRef τ ≤ τ ′ τ ′ ≤ τ ε ⊆ ε′

ref ε τ ≤ ref ε′
τ ′

SRef τ ′ ≤ τ ′′ τ ′′ ≤ τ ′ ε′ ⊆ ε′′

ref ε′
τ ′ ≤ ref ε′′

τ ′′

We know that ε ⊆ ε′ ∧ ε′ ⊆ ε′′ ⇒ ε ⊆ ε′′, and by induction we have that τ ≤ τ ′ ∧ τ ′ ≤ τ ′′ ⇒ τ ≤ τ ′′ and
τ ′ ≤ τ ∧ τ ′′ ≤ τ ′ ⇒ τ ′′ ≤ τ , respectively.
We can now apply (SRef):

SRef τ ≤ τ ′′ τ ′′ ≤ τ ε ⊆ ε′′

ref ε τ ≤ ref ε′′
τ ′′

case (SFun,SFun) :

We have:

SFun

τ ′1 ≤ τ1 τ2 ≤ τ ′2
Φ ≤ Φ′

τ1 −→Φ τ2 ≤ τ ′1 −→Φ′
τ ′2

SFun

τ ′′1 ≤ τ ′1 τ ′2 ≤ τ ′′2
Φ′ ≤ Φ′′

τ ′1 −→Φ′
τ ′2 ≤ τ ′′1 −→Φ′′

τ ′′2

We know that Φ ≤ Φ′ ∧ Φ′ ≤ Φ′′ ⇒ Φ ≤ Φ′′, and by induction (see (SRef,SRef) above) we have τ ′′1 ≤ τ1
and τ2 ≤ τ ′′2 .

We can now apply (SFun):

SFun

τ ′′1 ≤ τ1 τ2 ≤ τ ′′2
Φ ≤ Φ′′

τ1 −→Φ τ2 ≤ τ ′′1 −→Φ′′
τ ′′2

Lemma B.0.5 (Value typing). If Φ; Γ ` v : τ then Φ′; Γ ` v : τ for all Φ′.

Proof. By induction on the typing derivation of Φ; Γ ` v : τ .

case (TInt) :

Thus v ≡ n and we prove the result as follows:

TSub
TInt

Φ∅; Γ ` n : int int ≤ int
SCtxt Φ∅ ≡ Φ∅ Φ′ ≡ [α; ε′; ω] ∅ ⊆ ε′

Φ∅ ≤ Φ′

Φ′; Γ ` n : int
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case (TGvar) :

We have

TGvar Γ(f) = τ

Φ∅; Γ ` f : τ

We prove the result as follows:

TSub
TGvar Γ(f) = τ

Φ∅; Γ ` f : τ τ ≤ τ
SCtxt Φ∅ ≡ Φ∅ Φ′ ≡ [α; ε′; ω] ∅ ⊆ ε′

Φ∅ ≤ Φ′

Φ′; Γ ` f : τ

case (TLoc) :

Similar to (TGvar).

case (TSub) :

We have

TSub Φ′′; Γ ` v : τ ′ τ ′ ≤ τ
SCtxt Φ′′ ≡ [α; ε′′; ω] Φ ≡ [α; ε; ω] ε′′ ⊆ ε

Φ′′ ≤ Φ

Φ; Γ ` v : τ

The result follows by induction on Φ′′; Γ ` v : τ ′ and by applying [TSub].

Lemma B.0.6 (Subtyping Derivations). If Φ; Γ ` e : τ then we can construct a proof derivation of this judgment
that ends in one use of (TSub) whose premise uses a rule other than (TSub).

Proof. By induction on Φ; Γ ` e : τ .

case (TSub) :

We have

TSub Φ′; Γ ` e : τ ′ τ ′ ≤ τ
SCtxt Φ′ε ⊆ Φε Φα ⊆ Φ′α Φω ⊆ Φ′ω

Φ′ ≤ Φ

Φ; Γ ` e : τ

By induction, we have

TSub Φ′′; Γ ` e : τ ′′ τ ′′ ≤ τ ′
SCtxt Φ′′ε ⊆ Φ′ε Φ′α ⊆ Φ′′α Φ′ω ⊆ Φ′′ω

Φ′′ ≤ Φ′

Φ′; Γ ` e : τ ′

where the derivation Φ′′; Γ ` e : τ ′′ does not conclude with (TSub). By the transitivity of subtyping
(Lemma B.0.4), we have τ ′′ ≤ τ ; we also have ε′′ ⊆ ε and finally we get the desired result by (TSub):

TSub Φ′′; Γ ` e : τ ′′ τ ′′ ≤ τ
SCtxt Φ′′ε ⊆ Φε Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ′′ ≤ Φ

Φ; Γ ` e : τ

case all others :

Since we have that the last rule in Φ; Γ ` e : τ is not (TSub), we have the desired result by applying (TSub)
(where τ ≤ τ follows from the reflexivity of subtyping, Lemma B.0.3):

TSub Φ; Γ ` e : τ τ ≤ τ Φ ≤ Φ

Φ; Γ ` e : τ

Lemma B.0.7 (Flow effect weakening). If Φ; Γ ` e : τ where Φ ≡ [α; ε; ω], then Φ′; Γ ` e : τ where Φ′ ≡ [α′; ε; ω′],
α′ ⊆ α, and ω′ ⊆ ω, and all uses of [TSub] applying Φ′ ≤ Φ require Φ′ω = Φω and Φ′α = Φα.
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Proof. By induction on Φ; Γ ` e : τ .

case (TGvar),(TInt),(TVar) :

Trivial.

case (TUpdate) :

We have

TUpdate α ⊆ α′′ ω ⊆ ω′′

(Φ∅); Γ ` updateα′′,ω′′
: int

Since α′ ⊆ α and ω′ ⊆ ω we can apply (TUpdate):

TUpdate α′ ⊆ α′′ ω′ ⊆ ω′′

([α′; ε; ω′]); Γ ` updateα′,ω′
: int

case (TTransact) :

We have

TTransact

Φ′′; Γ ` e : τ
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` tx e : τ

Let Φ′ = [α′; ε; ω′]. Since Φ′α ⊆ Φα and Φ′ω ⊆ Φω we can apply (TTransact):

TTransact

Φ′′; Γ ` e : τ
Φ′α ⊆ Φ′′α Φ′ω ⊆ Φ′′ω

Φ′; Γ ` tx e : τ

case (TIntrans) :

Similar to (TTransact).

case (TSub) :

We have

TSub Φ′; Γ ` e : τ ′ τ ′ ≤ τ

Φ′ε ⊆ Φε Φω ⊆ Φ′ω Φα ⊆ Φ′α

Φ′ ≤ Φ

Φ; Γ ` e : τ

Let Φ′′ = [Φα; Φ′ε; Φω ]. Thus we have

TSub Φ′′; Γ ` e : τ ′ τ ′ ≤ τ

Φ′′ε ⊆ Φε Φω = Φ′′ω Φα = Φ′′α

Φ′′ ≤ Φ

Φ; Γ ` e : τ

where the first premise follows by induction (which we can apply because Φ′′ω ⊆ Φ′ω and Φ′′α ⊆ Φ′α by
assumption); the first premise of Φ′′ ≤ Φ is by assumption, and the latter two premises are by definition of
Φ′′.

case (TRef) :

We know that

TRef Φ; Γ ` e : τ

Φ; Γ ` ref e : ref ε τ

and have Φ′; Γ ` e : τ by induction, hence we get the result by (TRef).

case (TDeref) :

We know that

TDeref

Φ1; Γ ` e : ref ε τ
Φε

2 = ε Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

We have Φ′ ≡ [α′; Φε
1 ∪ Φε

2; ω′] where α′ ⊆ Φα and ω′ ⊆ Φω . Choose Φ′
1 ≡ [α′; Φε

1; Φε
2 ∪ ω′] and Φ′

2 ≡
[α′ ∪ Φε

1; Φε
2; ω′], hence Φ′

1 −→ Φ′
2, Φ′ε

2 = Φε
2 = ε, and Φ′ ≡ Φ′

1 � Φ′
2. We want to prove that Φ′; Γ ` ! e : τ .

Since α′ ⊆ α and Φε
2 ∪ ω′ ⊆ Φε

2 ∪ ω we can apply induction to get Φ′
1; Γ ` e : ref ε τ and we get the result

by applying (TDeref):

TDeref

Φ′
1; Γ ` e : ref ε τ

Φ′ε
2 = ε Φ′

1 � Φ′
2 ↪→ Φ′

Φ′; Γ ` ! e : τ
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case (TRet) :

Similar to [TDeref].

case (TApp) :

We know that

TApp

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ1
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ; Γ ` e1 e2 : τ2

We have Φ′ ≡ [α′; Φε
1 ∪ Φε

2 ∪ Φε
3; ω′] where α′ ⊆ Φα and ω′ ⊆ Φω . Choose Φ′

1 ≡ [α′; Φε
1; Φε

2 ∪ Φε
3 ∪ ω′],

Φ′
2 ≡ [α′ ∪Φε

1; Φε
2; Φε

3 ∪ω′], Φ′
3 ≡ [α′ ∪Φε

1 ∪Φε
2; Φε

3; ω′], hence Φ′ε
3 = Φε

3 = εf , and Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′. We

want to prove that Φ′; Γ ` e1 e2 : τ2. Since α′ ⊆ α and Φε
2 ∪Φε

3 ∪ω′ ⊆ Φε
2 ∪Φε

3 ∪ω′ we can apply induction

to get Φ′
1; Γ ` e1 : τ1 −→Φf τ2. Similarly, since α′ ∪ Φε

1 ⊆ α ∪ Φε
1 and Φε

3 ∪ ω′ ⊆ Φε
3 ∪ ω, we can apply

induction to get Φ′
2; Γ ` e2 : τ1. We get the get the result by applying (TApp):

TApp

Φ′
1; Γ ` e1 : τ1 −→Φ′

f τ2 Φ′
2; Γ ` e2 : τ1

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

Φ′; Γ ` e1 e2 : τ2

case (TAssign), (TIf), (TLet) :

Similar to (TApp).

Definition B.0.8. If Φ; Γ ` e : τ , JΦ; Γ ` e : τK = R, and Φ; Γ ` e : τ ; R′ then R ≡ R′, where JΦ; Γ ` e : τK is
defined in Figure B.1.

Lemma B.0.9 (Left subexpression version consistency). If Φ,R; H ` Σ and Φ1 � Φ2 ↪→ Φ then Φ1,R; H ` Σ.

Proof. We know that Φ1 � Φ2 ≡ [α1; ε1 ∪ ε2; ω2]. We have two cases:

R ≡ ·: Thus Σ ≡ (β, σ) and by assumption we have:

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

[α1; ε1 ∪ ε2; ω2], ·; H ` (β, σ)

The result follows from [TC1]:

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ⇒ n′ ∈ ver(H, f)

[α1; ε1; ω1], ·; H ` (β, σ)

R ≡ Φ′,R′: Thus we must have

TC2

Φ′,R′; H ` Σ′

Φ ≡ [α1; ε1 ∪ ε2; ω2]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

Φ, Φ′,R′; H ` ((β, σ), Σ′)

where Σ ≡ ((β, σ), Σ′). The result follows by [TC2]:

TC2

Φ′,R′; H ` Σ′

Φ1 ≡ [α1; ε1; ω1]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ⇒ n′ ∈ ver(H, f)

Φ1, Φ′,R′; H ` ((β, σ), Σ′)

where the first premise follows by assumption.
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s
(TInt)

Φ∅; Γ ` n : int

{
= ·

s
(TVar)

Γ(x) = τ

Φ∅; Γ ` x : τ

{
= ·

s
(TGvar)

Γ(f) = τ

Φ∅; Γ ` f : τ

{
= ·

u

ww
v(TSub)

D :: Φ′; Γ ` e : τ ′

τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e : τ

}

��
~ = R, where JDK = R

t

(TUpdate)
Φα ⊆ α′ Φω ⊆ ω′

Φ; Γ ` updateα′,ω′
: int

|

= ·

s
(TRef)

D :: Φ; Γ ` e : τ

Φ; Γ ` ref e : ref ε τ

{
= R, where JDK = R

u

ww
v(TDeref)

D1 :: Φ1; Γ ` e : ref ε τ
Φε

2 = ε Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

}

��
~ = R1, where JD1K = R1

u

ww
v(TAssign)

D1 :: Φ1; Γ ` e1 : ref ε τ D2 :: Φ2; Γ ` e2 : τ
Φε

3 = ε Φ1 � Φ2 � Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ

}

��
~ = R1 ./ R2, where

JD1K = R1

JD2K = R2

e1 6≡ v ⇒R2 = ·

u

wwwww
v
(TIf)

D1 :: Φ1; Γ ` e1 : int
D2 :: Φ2; Γ ` e2 : τ D3 :: Φ2; Γ ` e3 : τ

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ

}

�����
~

= R1, where
JD1K = R1

JD2K = ·
JD3K = ·

u

w
v(TLet)

D1 :: Φ1; Γ ` e1 : τ1 D2 :: Φ2; Γ, x : τ1 ` e2 : τ2
Φ1 � Φ2 ↪→ Φ

Φ; Γ ` let x : τ1 = e1 in e2 : τ2

}

�
~ = R1, where

JD1K = R1

JD2K = ·

u

wwwwwww
v

(TApp)

D1 :: Φ1; Γ ` e1 : τ1 −→Φf τ2 D2 :: Φ2; Γ ` e2 : τ1
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ; Γ ` e1 e2 : τ2

}

�������
~

= R1 ./ R2, where
JD1K = R1

JD2K = R2

e1 6≡ v ⇒R2 = ·

s
(TTransact)

Φ1; Γ ` e : τ Φα ⊆ Φα
1 Φω ⊆ Φω

1

Φ; Γ ` tx e : τ

{
= ·

s
(TIntrans)

D1 :: Φ1; Γ ` e : τ Φα ⊆ Φα
1 Φω ⊆ Φω

1

Φ; Γ ` intx e : τ

{
= Φ,R1 where JD1K = R1

· ./ R = R ∧ R ./ · = R

Figure B.1: Transaction effect extraction

Lemma B.0.10 (Subexpression version consistency). If Φ,R1 ./ R2; H ` Σ and Φ1 � Φ2 ↪→ Φ then

(i) R2 ≡ · implies Φ1,R1; H ` Σ

(ii) R1 ≡ · and Φε
1 ≡ ∅ implies Φ2,R2; H ` Σ

Proof. (i) Since R2 = · by assumption, we have R1 = R1 ./ R2. We have two cases:
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R1 ≡ ·: Thus we must have

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

[α1; ε1 ∪ ε2; ω2], ·; H ` (β, σ)

where Σ ≡ (β, σ). The result follows from [TC1] :

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ⇒ n′ ∈ ver(H, f)

[α1; ε1; ω1], ·; H ` (β, σ)

R1 ≡ Φ′,R′: Thus we must have

TC2

Φ′,R′; H ` Σ′

Φ ≡ [α1; ε1 ∪ ε2; ω2]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

Φ, Φ′,R′; H ` ((β, σ), Σ′)

where Σ ≡ ((β, σ), Σ′). The result follows by [TC2]:

TC2

Φ′,R′; H ` Σ′

Φ1 ≡ [α1; ε1; ω1]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ⇒ n′ ∈ ver(H, f)

Φ1, Φ′,R′; H ` ((β, σ), Σ′)

where the first premise follows by assumption.

(ii) Since R1 = · by assumption, we have R2 = R1 ./ R2. We have two cases:

R2 ≡ ·: Thus we must have

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

[α1; ε1 ∪ ε2; ω2], ·; H ` (β, σ)

where Σ ≡ (β, σ). Since Φε
1 ≡ ∅ and Φα

2 = Φα
1 ∪ Φε

1 we have Φα
2 = Φα

1 and the result follows from
[TC1]:

TC1

f ∈ σ ⇒ f ∈ α2

f ∈ ε2 ⇒ n′ ∈ ver(H, f)

[α2; ε2; ω2], ·; H ` (β, σ)

R2 ≡ Φ′,R′: Thus we must have

TC2

Φ′,R′; H ` Σ′

Φ ≡ [α1; ε1 ∪ ε2; ω2]
f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∪ ε2 ⇒ n′ ∈ ver(H, f)

Φ, Φ′,R′; H ` ((β, σ), Σ′)

where Σ ≡ ((β, σ), Σ′). The result follows by [TC2] and Φα
2 = Φα

1 (because Φε
1 ≡ ∅ and Φα

2 =
Φα

1 ∪ Φε
1):

TC2

Φ′,R′; H ` Σ′

Φ2 ≡ [α2; ε2; ω2]
f ∈ σ ⇒ f ∈ α2

f ∈ ε2 ⇒ n′ ∈ ver(H, f)

Φ2, Φ′,R′; H ` ((β, σ), Σ′)

where the first premise follows by assumption.

Lemma B.0.11 (Stack Shapes). If 〈n; Σ; H; e〉 −→ε0 〈n; Σ′; H′; e′〉 then top(Σ) = (β, σ) and top(Σ′) = (β′, σ′)
where n′ = n′′ and σ ⊆ σ′.

Proof. By induction on 〈n; Σ; H; e〉 −→ε0 〈n; Σ′; H′; e′〉.
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Lemma B.0.12 (Update preserves heap safety). If n; Γ ` H and updateOK (upd , H, (α, ω), dir) then n+1;U [Γ]upd `
U [H]updn+1.

Proof. Let n′ = n + 1 and Γ′ ≡ U [Γ]upd and H′ ≡ U [H]upd
n′ . From the definition of heap typing (Figure 5.8), to

prove n′; Γ′ ` H′, we need to show:

1. dom(Γ′) = dom(H′)

2. ∀z 7→ (τ, v, ν) ∈ H′. Φ∅; Γ
′ ` v : τ ∧ Γ′(z) = ref ε τ ∧ z ∈ ε

3. ∀z 7→ (τ −→Φ τ ′, λ(x).e, ν) ∈ H′. Φ; Γ′, x : τ ` e : τ ′ ∧ Γ′(z) = τ −→Φ τ ′ ∧ z ∈ Φα ∧ z ∈ Φε

4. ∀r 7→ (·, v, ν) ∈ H′. Φ∅; Γ
′ ` v : τ ∧ Γ′(r) = ref ε τ

5. ∀z 7→ (τ, b, ν) ∈ H′. n′ ∈ ν

Proof by induction on H.

case H ≡ ∅ :

We have U [∅]upd
n′ = updadd (modified to have version set {n + 1}), and thus dom(H′) = dom(updadd ). Our

assumption dom(H) = dom(Γ) implies that Γ = ∅, and thus Γ′ = U [∅]upd = types(updadd ).

1. dom(Γ′) = dom(types(updadd )) = dom(updadd ) = dom(H′).

2. Since H′ = updadd , this follows directly from updateOK (upd , H, (α, ω), dir) given the definition of

Γ′ = U [∅]upd = types(updadd ).

3. Similar to 2.

4. Vacuously true, since r 6∈ dom(H′) = dom(updadd ) for all r.

5. Holds by the definition of U [∅]upd
n′ .

case H ≡ (r 7→ (·, b, ∅), H′′) :

We have H′ ≡ U [(r 7→ (·, b, ∅), H′′)]upd
n′ = (r 7→ (·, b, ∅)),U [H′′]upd

n′ . Our assumption dom(H) = dom(Γ)

implies Γ ≡ (r : τ, Γ′′) for some Γ′′, where dom(H′′) = dom(Γ′′) and Γ′ ≡ U [r : τ, Γ′′]upd = r : τ,U [Γ′′]upd .

1. By induction we know dom(U [Γ′′]upd ) = dom(U [H′′]upd
n′ ). But dom(H′) = dom(r = (·, b, ∅)),U [H′′]upd

n′ ) =

{r} ∪ dom(U [H′′]upd
n′ ), and dom(Γ′) = dom(r : τ,U [Γ′′]upd ) = {r} ∪ dom(U [Γ′′]upd ).

2. Follows by induction, since r 6= z for all z.

3. Same as above.

4. For r, this follows by assumption, since it is clear that H(r) = U [H]upd
n′ (r) and Γ(r) = U [Γ]upd (r),

and for the rest of the heap the property follows by induction.

5. Follows by induction, since r 6= z for all z.

case H ≡ (z = (τ, b, ν), H′′) :

We have H′ ≡ U [(z 7→ (τ, b, ν), H′′)]upd
n′ = (z 7→ (τ, b′, ν′)),U [H′′]upd

n′ . Our assumption dom(H) = dom(Γ)

implies Γ ≡ (z : heapType(z, τ), Γ′′) for some Γ′′, where dom(H′′) = dom(Γ′′) and Γ′ ≡ U [z : τ, Γ′′]upd = z :

heapType(z, τ),U [Γ′′]upd .

1. Similar to the argument for the H ≡ (r 7→ (...), H′′) case.

4. This follows by induction, since z 6= r.

Now consider the remaining cases according to z with respect to updchg :

case z 6∈ dom(updchg ) :

2. For z, this follows by assumption, since it is clear that H(z) = U [H]upd
n′ (z) and Γ(z) =

U [Γ]upd (z). The rest of the heap follows by induction.

3. Same as above.
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5. We have U [(z 7→ (τ, b, ν), H′′)]upd
n′ = (z 7→ (τ, b, ν ∪ {n′}),U [H′′]upd

n′ ) where n′ ∈ (ν ∪ {n′}) for
z, and the rest follows by induction.

case z ∈ dom(updchg ) :

2. From the definition of updateOK (upd , H, (α, ω), dir) we know that (i) Φ∅;U [Γ]upd ` v′ : τ .
Considering z, from the definition of heapType(τ, z) we have (ii) heapType(τ, z) = ref ε τ where z ∈
ε. Combining (i) and (ii) yields

Φ∅; Γ
′ ` v : τ ∧ Γ′(z) = ref ε τ ∧ z ∈ ε

The property holds for the rest of the heap by induction.

3. Similar to the previous.

5. We have U [(z 7→ (τ, b, ν), H′′)]upd
n′ = (z 7→ (τ, b′, {n′}),U [H′′]upd

n′ ) and obviously n′ ∈ {n′} for
z, and the rest by induction.

The following lemma states that if we start with a well-typed program and a version-consistent trace and
we take an update step, then afterward we will still have a well-typed program whose trace is version-consistent.

Lemma B.0.13 (Update preservation).
Suppose we have the following:

1. n ` H, e : τ (such that Φ; Γ ` e : τ ; R and n; Γ ` H for some Γ, Φ)

2. Φ,R; H ` Σ

3. traceOK (Σ)

4. 〈n; Σ; H; e〉 −→ µ 〈n + 1;Σ′; H′; e〉

where H′ ≡ U [H]updn+1, Γ′ ≡ U [Γ]upd , µ = (upd , dir), Σ′ ≡ U [Σ]upd,dir
n , and top(Σ′) = (β′, σ′). Then for some Φ′

such that Φ′α = Φα, Φ′ω = Φω, and Φ′ε ⊆ Φε and some Γ′ ⊇ Γ we have that:

1. n + 1 ` H′, e : τ where Φ′; Γ′ ` e : τ ; R and n + 1; Γ′ ` H′

2. Φ′,R; H′ ` Σ′

3. traceOK (Σ′)

4. (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ω ⇒ ver(H, f) ⊆ ver(H′, f))

Proof. Since U [Γ]upd ⊇ Γ, Φ;U [Γ]upd ` e : τ ; R follows by weakening (Lemma B.0.1). Proceed by simultaneous
induction on the typing derivation of e (n ` H, e : τ) and on the evaluation derivation 〈n; Σ; H; e〉 −→ µ 〈n +
1;Σ′; H′; e〉. Consider the last rule used in the evaluation derivation:

case [gvar-deref], [gvar-assign], [call], [let], [tx-start], [tx-end], [ref], [deref], [assign], [if-t], [if-f], [no-
update] :

Not possible, as these transitions cannot cause an update to occur.

case [update] :

This implies that e ≡ updateα,ω and thus

〈n; (β, σ); H; updateα,ω〉 −→ µ 〈n + 1;U [(β, σ)]upd,dir
n+1 ;U [H]updn+1; 1〉

where µ ≡ (upd , dir) and updateOK (upd , H, (α, ω), dir). By subtyping derivations (Lemma B.0.6) we have

TSub

TUpdate α ⊆ α′′ ω ⊆ ω′′ Φu ≡ [α; ∅; ω]

Φu; Γ ` updateα′′,ω′′
: int ; ·

int ≤ int Φu ≤ Φ Φ ≡ [α; ε; ω]

Φ; Γ ` updateα,ω : int ; ·
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and by flow effect weakening (Lemma B.0.7) we know that α and ω are unchanged in the use of (TSub).

Let Φ′ = Φu (hence Φ′α = Φα, Φ′ω = Φω , and ∅ ⊆ Φε as required) and (β′, σ′) ≡ U [(β, σ)]upd,dir
n+1 .

To prove 1., we get n + 1; Γ′ ` H′ by Lemma B.0.12 and Φu; Γ′ ` 1 : int ; · by [Tint].

To prove 2., we must show Φu, ·; H′ ` (β′, σ′). By assumption, we have

TC1

f ∈ σ ⇒ f ∈ α
f ∈ ε ⇒ n′ ∈ ver(H, f)

[α; ε; ω], ·; H ` (β, σ)

We need to prove

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ∅ ⇒ n′′ ∈ ver(H′, f)

[α; ∅; ω], ·; H′ ` (β′, σ′)

We have the first premise by assumption (since dom(σ) = dom(σ′) from the definition of U [(β, σ)]upd,dir
n+1 ).

The second premise holds vacuously.

To prove 3., we must show traceOK (β′, σ′). Consider each possible update type:

case dir = bck :

From the definition of U [(β, σ)]upd,bck
n+1 , we know that n′′ = n + 1. Consider (f, ν) ∈ σ; it must be

the case that f 6∈ dom(updchg ). This is because dir = bck implies α ∩ dom(updchg ) = ∅ and by
assumption (from the first premise of [TC1] above) f ∈ α. Therefore, since f 6∈ dom(updchg ), its σ′

entry is (f, ν ∪ {n′′}), which is the required result.

case dir = fwd :

Since U [(β, σ)]upd,fwd
n+1 = (β, σ), the result is true by assumption.

To prove 4., we must show n′′ ≡ n + 1 ∨ (f ∈ ω ⇒ ver(H, f) ⊆ ver(H′, f)). Consider each possible update
type:

case dir = bck :

From the definition of U [(β, σ)]upd,bck
n+1 , we know that n′′ = n + 1 so we are done.

case dir = fwd :

We have U [(β, σ)]upd,fwd
n+1 = (β, σ), and from updateOK (upd , H, (α, ω), dir) we know that f ∈ ω ⇒ f 6∈

dom(updchg ). From the definition of U [H]upd
n we know that U [(f 7→ (τ, b, ν), H)]updn+1 = f 7→ (τ, b, ν ∪

{n+1}) if f 6∈ dom(updchg ). This implies that for f ∈ ω, ver(H, f) = ν and ver(H′, f) = ν ∪{n+1},
and therefore ver(H, f) ⊆ ver(H′, f).

case [tx-cong-1] :

We have that 〈n; ((β, σ), Σ); H; intx e〉 −→ µ 〈n+1; (U [(β, σ)]upd,dir
n+1 , Σ′); H′; intx e′〉 follows from 〈n; Σ; H; e〉 −→ µ

〈n + 1; Σ′; H′; e′〉 by [tx-cong-1], where µ ≡ (upd , dir). Let (β′, σ′) ≡ U [(β, σ)]upd,dir
n+1 . By assumption and

subtyping derivations (Lemma B.0.6) we have

TSub
TIntrans

Φe; Γ ` e : τ ′ ; R
α ⊆ Φα

e ω ⊆ Φω
e

[α; ∅; ω]; Γ ` intx e : τ ′ ; Φe,R τ ′ ≤ τ [α; ∅; ω] ≤ [α; ε; ω]

[α; ε; ω]; Γ ` intx e : τ ; Φe,R

and by flow effect weakening (Lemma B.0.7) we know that α and ω are unchanged in the use of (TSub). We
have Φe ≡ [αe; εe; ωe], so that ωe ⊇ ω and αe ⊇ α. To apply induction, we must show that Φe,R; H ` Σ
(which follows by inversion on Φ, Φe,R; H ` ((β, σ), Σ)); Φe; Γ ` e : τ ′ ; R (which follows by assumption);
and n; Γ ` H (by assumption).

By induction we have:

(i) Φ′
e; Γ

′ ` e′ : τ ′ ; R and

(ii) n + 1; Γ′ ` H′

(iii) Φ′
e,R; H′ ` Σ′

(iv) traceOK (Σ′)

(v) (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ωe ⇒ ver(H, f) ⊆ ver(H′, f))
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where Φ′
e ≡ [αe; ε′e; ωe], ε′e ⊆ εe.

Let Φ′ = [α; ∅; ω] (hence Φ′α = Φα, Φ′ω = Φω , and ∅ ⊆ Φε as required). To prove 1., we can show

TSub
TIntrans

Φ′
e; Γ

′ ` e′ : τ ; R
α ⊆ Φ′α

e ω ⊆ Φ′ω
e

Φ′; Γ ` intx e′ : τ ; Φ′
e,R τ ′ ≤ τ Φ′ ≤ Φ′

Φ′; Γ ` intx e′ : τ ; Φ′
e,R

The first premise of [TIntrans] follows by (i), and the second since αe ⊇ α and ωe ⊇ ω.

To prove 2., we need to show that

TC2

Φ′
e,R; H′ ` Σ′

f ∈ σ′ ⇒ f ∈ α
f ∈ ∅ ⇒ n′′ ∈ ver(H′, f)

[α; ∅; ω], Φ′
e,R; H′ ` ((β′, σ′), Σ′)

We have the first premise by (iii), the second by assumption (since dom(σ) = dom(σ′) from the definition

of U [(β, σ)]upd,dir
n+1 ), and the last holds vacuously.

To prove 3., we must show traceOK ((β′, σ′), Σ′), which reduces to proving traceOK (β′, σ′) since we have
traceOK (Σ′) from (iv). We have traceOK (β, σ) by assumption. Consider each possible update type:

case dir = bck :

From the definition of U [(β, σ)]upd,bck
n+1 , we know that n′′ = n + 1. Consider (f, ν) ∈ σ; it must be

the case that f 6∈ dom(updchg ). This is because dir = bck implies αe ∩ dom(updchg ) = ∅ and by
assumption we have α ⊆ αe (from (TIntrans)) and f ∈ α (from the first premise of [TC1] above).
Therefore, since f 6∈ dom(updchg ), its σ′ entry is (f, ν ∪ {n′′}), which is the required result.

case dir = fwd :

Since U [(β, σ)]upd,fwd
n+1 = (β, σ), the result is true by assumption.

Part 4. follows directly from (v) and the fact that ωe ⊇ ω.

case [cong] :

We have that 〈n; Σ; H; E[e]〉 −→ µ 〈n + 1;Σ′; H′; E[e]〉 follows from 〈n; Σ; H; e〉 −→ µ 〈n + 1;Σ′; H′; e〉 by
[cong], where µ ≡ (upd , dir). Consider the shape of E:

case :

The result follows directly by induction.

case E e2 :

By assumption, we have Φ; Γ ` (E e2)[e1] : τ ; R. By subtyping derivations (Lemma B.0.6) we
know we can construct a proof derivation of this ending in (TSub):

TSub

TApp

Φ1; Γ ` E[e1] : τ1 −→Φf τ ′2 ; R1 Φ2; Γ ` e2 : τ1 ; ·
Φ1 � Φ2 � Φ3 ↪→ Φs

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

E [e1] 6≡ v ⇒R2 = ·
Φs; Γ ` (E e2)[e1] : τ ′2 ; R1

τ ′2 ≤ τ2
SCtxt

Φ ≡ [α; ε; ω]
Φs ≡ [α; ε1 ∪ ε2 ∪ εf ; ω]

(ε1 ∪ ε2 ∪ εf ) ⊆ ε

Φs ≤ Φ

Φ; Γ ` (E e2)[e1] : τ2 ; R1

and by flow effect weakening (Lemma B.0.7) we know that α and ω are unchanged in the use of
(TSub).

By inversion on 〈n; Σ; H; (E e2)[e1]〉 −→ µ 〈n + 1; Σ′; H′; (E e2)[e1]〉 we have 〈n; Σ; H; e1〉 −→ µ

〈n + 1;Σ′; H′; e′1〉, and then applying [cong] we have 〈n; Σ; H; E[e1]〉 −→ µ 〈n + 1;Σ′; H′; E[e′1]〉.
From Φ,R1; H ` Σ we know that:

f ∈ σ ⇒ f ∈ α
f ∈ ε ⇒ n′ ∈ ver(H, f)
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where (β, σ) is the top of Σ. Since Φ ≡ [α; ε; ω] and Φs ≡ [α; εs; ω] and εs = ε1 ∪ ε2 ∪ ε3 (where
ε3 = εf ), we have

f ∈ σ ⇒ f ∈ α
f ∈ ε1 ⇒ n′ ∈ ver(H, f)

but since Φ1 ≡ [α; ε1; ω1], we have Φ1,R1; H ` Σ. Hence we can apply induction on Φ1; Γ ` E[e1] :
τ1 −→Φf τ ′2 ; R1, yielding:

(i) Φ′
1; Γ′ ` E[e′1] : τ1 −→Φf τ2 ; R1 and

(ii) n + 1; Γ′ ` H′

(iii) Φ′
1,R1; H′ ` Σ′

(iv) traceOK (Σ′)

(v) (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ω1 ⇒ ver(H, f) ⊆ ver(H′, f))

where Φ′
1 ≡ [αs; ε′1; ω1] and ε′1 ⊆ ε1. Choose Φ′

2 = [α1 ∪ ε′1; ε2; ω2] and Φ′
3 = [α1 ∪ ε′1 ∪ ε2; εf ; ωs]

and thus Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

s and Φ′ε
3 = Φε

f . Let Φ′ = [α; ε′1 ∪ ε2 ∪ εf ; ω], where ε′1 ∪ ε2 ∪ εf ⊆ ε,

as required.

To prove 1., we have n + 1; Γ′ ` H′ by (ii), and apply (TApp):

TApp

Φ′
1; Γ′ ` E[e′1] : τ1 −→Φf τ ′2 ; R1 Φ′

2; Γ′ ` e2 : τ1 ; ·
Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′
s

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

E[e′1] 6≡ v ⇒R2 = ·
Φ′

s; Γ
′ ` (E e2)[e′1] : τ ′2 ; R1

The first premise follows by (i), the second because we have Φ2; Γ′ ` e2 : τ1 by weakening (since
Γ′ ⊇ Γ) and then Φ′

2; Γ′ ` e2 : τ1 by flow effect weakening (Lemma B.0.7) (which we can apply
because Φ′ω

2 = Φω
2 , Φ′ε

2 = Φε
2, Φ′α

2 = α1 ∪ ε′1 Φα
2 = α1 ∪ ε1 hence Φ′α

2 ⊆ Φα
2 ) the third—sixth by

choice of Φ′
2, Φ′

3 and Φ′
s, and the last as R2 ≡ · by assumption. We can now apply (TSub):

TSub

Φ′; Γ ` (E e2)[e′1] : τ ′2 ; R1

τ ′2 ≤ τ2 Φ′ ≤ Φ′

Φ′; Γ ` (E e2)[e′1] : τ2 ; R′
1

To prove part 2., we must show that Φ′,R1; H′ ` Σ′.

By inversion on Φ,R1; H ` Σ we have Σ ≡ (β, σ) or Σ ≡ (β, σ), Σ′′. We have two cases:

Σ ≡ (β, σ): By (iii) we must have R1 ≡ · such that

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′1 ⇒ n′′ ∈ ver(H′, f)

[α; ε′1; ω1], ·; H′ ` (β′, σ′)

To achieve the desired result we need to prove:

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′1 ∪ ε2 ∪ εf ⇒ n′′ ∈ ver(H′, f)

[α; ε′1 ∪ ε2 ∪ εf ; ω], ·; H′ ` (β′, σ′)

The first premise is by assumption (since dom(σ) = dom(σ′) from the definition of U [(β, σ)]upd,dir
n+1 ).

For the second premise, we need to show that for all f ∈ (ε2∪εf ) ⇒ n′′ ∈ ver(H′, f) (for those
f ∈ ε′1 the result is by assumption).
Consider each possible update type:

case dir = bck :
From the definition of U [(β, σ)]upd,bck

n+1 , we know that n′′ = n + 1; from the definition

of U [H]upd
n we know that n + 1 ∈ ver(H′, f) for all f, hence n′′ ∈ ver(H′, f) for all f.

case dir = fwd :
From (v) we have that f ∈ ω1 ⇒ ver(H, f) ⊆ ver(H′, f). Since (ε2 ∪ εf ) ⊆ ω1

(by Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′), we have f ∈ (ε2 ∪ εf ) ⇒ ver(H, f) ⊆ ver(H′, f). By

inversion on Φ,R1; H ` Σ we have f ∈ (ε1 ∪ ε2 ∪ εf ) ⇒ n′ ∈ ver(H, f), and thus

f ∈ (ε2 ∪ εf ) ⇒ n′ ∈ ver(H′, f). We have U [(β, σ)]upd,fwd
n+1 = (β, σ) hence n′′ = n′, so

finally we have f ∈ (ε2 ∪ εf ) ⇒ n′′ ∈ ver(H′, f).
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Σ ≡ (β, σ), Σ′′ By (iii), we must have R1 ≡ Φ′′,R′′ such that

TC2

Φ′′,R′′; H′ ` Σ′′

Φ′
1 ≡ [α; ε′1; ω1]

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′1 ⇒ n′′ ∈ ver(H′, f)

Φ′
1, Φ′′,R′′; H′ ` ((β′, σ′), Σ′′)

We wish to show that

TC2

Φ′′,R′′; H′ ` Σ′′

Φ′ ≡ [α; ε′1 ∪ ε2 ∪ εf ; ω]
f ∈ σ′ ⇒ f ∈ α

f ∈ (ε′1 ∪ ε2 ∪ εf ) ⇒ n′′ ∈ ver(H′, f)

Φ′, Φ′′,R′′; H′ ` ((β′, σ′), Σ′′)

Φ′′,R′′; H′ ` Σ follows by assumption while the third and fourth premises follow by the same
argument as in the Σ ≡ (β, σ) case, above.

Part 3. follows directly from (iv).

Part 4. follows directly from (v) and the fact that ω1 ⊇ ω (because ω1 ≡ ε2 ∪ εf ∪ ω).

case v E :

By assumption, we have Φ; Γ ` (v E)[e2] : τ ; R. By subtyping derivations (Lemma B.0.6) we
have:

TSub

TApp

Φ1; Γ ` v : τ1 −→Φf τ ′2 ; · Φ2; Γ ` E[e2] : τ1 ; R2

Φ1 � Φ2 � Φ3 ↪→ Φs

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

v 6≡ v′ ⇒R2 = ·
Φs; Γ ` (v E)[e2] : τ ′2 ; R2

τ ′2 ≤ τ2
SCtxt

Φ ≡ [α; ε; ω]
Φs ≡ [α; ε1 ∪ ε2 ∪ εf ; ω]

(ε1 ∪ ε2 ∪ εf ) ⊆ ε

Φs ≤ Φ

Φ; Γ ` (v E)[e2] : τ2 ; R2

and by flow effect weakening (Lemma B.0.7) we know that α and ω are unchanged in the use of
(TSub).

By inversion on 〈n; Σ; H; (v E)[e2]〉 −→ µ 〈n + 1;Σ′; H′; (v E)[e2]〉 we have 〈n; Σ; H; e2〉 −→ µ

〈n + 1;Σ′; H′; e′2〉, and then applying [cong] we have 〈n; Σ; H; E[e2]〉 −→ µ 〈n + 1;Σ′; H′; E[e2]〉.
From Φ,R2; H ` Σ we know that:

f ∈ σ ⇒ f ∈ α
f ∈ ε ⇒ n′ ∈ ver(H, f)

where (β, σ) is the top of Σ. We have Φ ≡ [α; ε; ω], Φs ≡ [αs; εs; ωs], εs ⊆ ε, εs = ε1 ∪ ε2 ∪ ε3

(where ε3 = εf ), Φ2 ≡ [α2; ε2; ω2], α2 ≡ α1 ∪ ε1 = α (since ε1 = ∅; if it’s not ∅ we can construct
a derivation for v that has ε1 = ∅ as argued in preservation (Lemma D.0.36), (TApp)-[Cong], case
v E). We have

f ∈ σ ⇒ f ∈ α
f ∈ ε2 ⇒ n′ ∈ ver(H, f)

hence Φ2,R2; H ` Σ and we can apply induction on Φ2; Γ ` E[e2] : τ1 −→Φf τ ′2 ; R2, yielding:

(i) Φ′
2; Γ′ ` E[e2] : τ1 ; R2 and

(ii) n + 1; Γ′ ` H′

(iii) Φ′
2,R2; H′ ` Σ′

(iv) traceOK (Σ′)

(v) (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ω2 ⇒ ver(H, f) ⊆ ver(H′, f))

where Φ′
2 ≡ [α2; ε′2; ω2] and ε′2 ⊆ ε2. Choose Φ′

1 = [α; ∅; ω2 ∪ ε′2] and Φ′
3 = [α ∪ ε′2; εf ; ω] and thus

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′ and Φ′ε

3 = Φε
f .

Let Φ′ ≡ [α; ε′2 ∪ εf ; ω] and thus ε′2 ∪ εf ⊆ ε as required.
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To prove 1., we have n + 1; Γ′ ` H′ by (ii), and apply (TApp):

TApp

Φ′
1; Γ′ ` v : τ1 −→Φf τ ′2 ; · Φ′

2; Γ′ ` E[e2] : τ1 ; R2

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

v 6≡ v′ ⇒R2 = ·
Φ′; Γ′ ` (v E)[e2] : τ ′2 ; R2

The first premise follows by value typing, the second by (i), the third—sixth by choice of Φ′
1 and

Φ′
3, and the last holds vacuously. We can now apply (TSub):

TSub

Φ′; Γ ` (v E)[e2] : τ ′2 ; R2

τ ′2 ≤ τ2 Φ′ ≤ Φ′

Φ′; Γ ` (v E)[e2] : τ2 ; R2

To prove part 2., we must show that Φ′,R2; H′ ` Σ′.

By inversion on Φ,R2; H ` Σ we have Σ ≡ (β, σ) or Σ ≡ (β, σ), Σ′′. We have two cases:

Σ ≡ (β, σ): By (iii) we must have R2 ≡ · such that

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′2 ⇒ n′′ ∈ ver(H′, f)

[α; ε′2; ω2], ·; H′ ` (β′, σ′)

To achieve the desired result we need to prove:

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′2 ∪ εf ⇒ n′′ ∈ ver(H′, f)

[α; ε′2 ∪ εf ; ω], ·; H′ ` (β′, σ′)

The first premise follows by assumption (since dom(σ) = dom(σ′) from the definition of

U [(β, σ)]upd,dir
n+1 ). For the second premise, we need to show that for all f ∈ εf ⇒ n′′ ∈ ver(H′, f)

(for those f ∈ ε′2 the result is by assumption).
Consider each possible update type:

case dir = bck :
From the definition of U [(β, σ)]upd,bck

n+1 , we know that n′′ = n + 1; from the definition

of U [H]upd
n we know that n + 1 ∈ ver(H′, f) for all f, hence n′′ ∈ ver(H′, f) for all f.

case dir = fwd :
From (v) we have that f ∈ ω2 ⇒ ver(H, f) ⊆ ver(H′, f). Thus εf ⊆ ω2 (by Φ′

1 � Φ′
2 �

Φ′
3 ↪→ Φ′) implies f ∈ εf ⇒ ver(H, f) ⊆ ver(H′, f). By inversion on Φ,R2; H ` Σ we

have f ∈ (ε2 ∪ εf ) ⇒ n′ ∈ ver(H, f), and thus f ∈ εf ⇒ n′ ∈ ver(H′, f). We have

U [(β, σ)]upd,fwd
n+1 = (β, σ) hence n′′ = n′, so finally we have f ∈ εf ⇒ n′′ ∈ ver(H′, f).

Σ ≡ (β, σ), Σ′′ By (iii), we must have R2 ≡ Φ′′,R′′ such that

TC2

Φ′′,R′′; H′ ` Σ′′

Φ′
2 ≡ [α; ε′2; ω2]

f ∈ σ′ ⇒ f ∈ α
f ∈ ε′2 ⇒ n′′ ∈ ver(H′, f)

Φ′
2, Φ′′,R′′; H′ ` ((β′, σ′), Σ′′)

We wish to show that

TC2

Φ′′,R′′; H′ ` Σ′′

Φ′ ≡ [α; ε′2 ∪ εf ; ω]
f ∈ σ′ ⇒ f ∈ α

f ∈ (ε′2 ∪ εf ) ⇒ n′′ ∈ ver(H′, f)

Φ′, Φ′′,R′′; H′ ` ((β′, σ′), Σ′′)

Φ′′,R′′; H′ ` Σ follows by assumption while the third and fourth premises follow by the same
argument as in the Σ ≡ (β, σ) case, above.

Part 3. follows directly from (iv).

Part 4. follows directly from (v) and the fact that ω2 ⊇ ω.
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case all others :

Similar to cases above.

This lemma says that if take an evaluation step that is not an update, the version set of any z remains
unchanged.

Lemma B.0.14 (Non-update step version preservation). If 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H′; e′〉 then for all z ∈
dom(H′), ver(H′, z) = ver(H, z).

Proof. By inspection of the evaluation rules.

The following lemma states that if we start with a well-typed program and a version-consistent trace and we
can take an evaluation step, then afterward we will still have a well-typed program whose trace is version-consistent.

Lemma B.0.15 (Preservation).
Suppose we have the following:

1. n ` H, e : τ (such that Φ; Γ ` e : τ ; R and n; Γ ` H for some Γ and Φ)

2. Φ,R; H ` Σ

3. traceOK (Σ)

4. 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H′; e′〉

Then for some Γ′ ⊇ Γ and Φ′ ≡ [Φα ∪ ε0; ε′; Φω ] such that ε′ ∪ ε0 ⊆ Φε, we have:

1. n ` H′, e′ : τ where Φ′; Γ′ ` e′ : τ ; R′ and n; Γ′ ` H′

2. Φ′,R′; H′ ` Σ′

3. traceOK (Σ′)

Proof. Induction on the typing derivation n ` H, e : τ . By inversion, we have that Φ; Γ ` e : τ ; R; consider each
possible rule for the conclusion of this judgment:

case (TInt-TVar-TGvar-TLoc) :

These expressions do not reduce, so the result is vacuously true.

case (TRef) :

We have that:

(TRef)
Φ; Γ ` e : τ ; R

Φ; Γ ` ref e : ref ε τ ; R

There are two possible reductions:

case [ref] :

We have that e ≡ v, R = ·, and 〈n; (β, σ); H; ref v〉 −→∅ 〈n; (β, σ); H′; r〉 where r /∈ dom(H) and
H′ = H, r 7→ (·, v, ∅).
Let Γ′ = Γ, r : ref ε τ and Φ′ = Φ (which is acceptable since Φ′α = Φα ∪ ∅, ε′ ∪ ∅ ⊆ Φε, and
Φ′ω = Φω), and R′ = ·. We have part 1. as follows:

(TSub)

(TLoc)
Γ′(r) = ref ε τ

Φ∅; Γ
′ ` r : ref ε τ ; · ref ε τ ≤ ref ε τ Φ∅ ≤ Φ

Φ; Γ′ ` r : ref ε τ ; ·

Heap well-formedness n; Γ′ ` H, r 7→ (·, v, ∅) holds since Φ∅; Γ
′ ` v : τ follows by value typing

(Lemma B.0.5) from Φ; Γ′ ` v : τ , which we have by assumption and weakening; we have n; Γ′ ` H
by weakening.

To prove 2., we must show Φ, ·; H′ ` (β, σ). This follows by assumption since H′ only contains an
additional location (i.e., not a global variable) and nothing else has changed. Part 3. follows by
assumption since Σ′ = Σ.
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case [cong] :

We have that 〈n; Σ; H; ref E[e′′]〉 −→ε 〈n; Σ′; H′; ref E[e′′′]〉 from 〈n; Σ; H; e′′〉 −→ε 〈n; Σ′; H′; e′′′〉.
By [cong], we have 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H′; e′〉 where e ≡ E[e′′] and e′ ≡ E[e′′′].

By induction we have:

(i) Φ′; Γ′ ` e′ : τ ; R′ and

(ii) n; Γ′ ` H′

(iii) Φ′,R′; H′ ` Σ′

(iv) traceOK (Σ′)

where Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε, and Φ′ω = Φω . We prove 1. using (ii), and applying [TRef]
using (i):

(TRef)
Φ′; Γ′ ` e′ : τ ; R′

Φ′; Γ′ ` ref e′ : ref ε τ ; R′

Part 2. follows directly from (iii), and part 3. follows directly from (iv).

case (TDeref) :

We know that

(TDeref)

Φ1; Γ ` e : ref εr τ ; R
Φε

2 = εr Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ ; R

We can reduce using either [gvar-deref], [deref], or [cong].

case [gvar-deref] :

Thus we have e ≡ z such that

〈n; (β, σ); (H′′, z 7→ (τ ′, v, ν)); ! z〉 −→{z} 〈n; (β, σ ∪ (z, ν)); (H′′, z 7→ (τ ′, v, ν)); v〉

(where H ≡ (H′′, z 7→ (τ ′, v, ν))), by subtyping derivations (Lemma B.0.6) we have

(TSub)

(TGVar)
Γ(z) = ref ε′

r τ ′

Φ∅; Γ ` z : ref ε′
r τ ′ ; ·

τ ′ ≤ τ τ ≤ τ ′ ε′r ⊆ εr

ref ε′
r τ ′ ≤ ref εr τ Φ∅ ≤ Φ1

Φ1; Γ ` z : ref εr τ ; ·

and

(TDeref)

Φ1; Γ ` z : ref εr τ ; ·
Φε

2 = εr Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! z : τ ; ·
(where R = ·) and Φ ≡ [Φα

1 ; Φε
1 ∪ εr; Φω

2 ]. Let Γ′ = Γ, Φ′ = [Φα
1 ∪{z}; ∅; Φω

2 ] and R′ = R = ·. Since
z ∈ εr (by n; Γ ` H) we have ∅∪{z} ⊆ (Φε

1 ∪ εr) hence ε′ ∪{z} ⊆ Φε. The choice of Φ′ is acceptable
since Φ′α = Φα ∪ {z}, ε′ ∪ {z} ⊆ Φε, and Φ′ω = Φω .

To prove 1., we need to show that Φ′; Γ ` v : τ ; · (the rest of the premises follow by assumption

of n ` H, ! z : τ). H(z) = (τ ′, v, ν) and Γ(z) = ref ε′
r τ ′ implies Φ′; Γ ` v : τ ′ ; · by n; Γ ` H. The

result follows by (TSub):

(TSub)
Φ′; Γ ` v : τ ′ ; · τ ′ ≤ τ Φ′ ≤ Φ′

Φ′; Γ ` v : τ ; ·

For part 2., we know Φ, ·; H ` (β, σ):

(TC1)

f ∈ σ ⇒ f ∈ Φα
1

f ∈ (Φε
1 ∪ εr) ⇒ n′ ∈ ver(H, f)

[Φα
1 ; Φε

1 ∪ εr; Φω
2 ], ·; H ` (β, σ)

and need to prove Φ′, ·; H ` (β, σ ∪ (z, ν)), hence:

(TC1)

f ∈ (σ ∪ (z, ν)) ⇒ f ∈ Φα
1 ∪ {z}

f ∈ ∅ ⇒ n′ ∈ ver(H, f)

[Φα
1 ∪ {z}; ∅; Φω

2 ], ·; H ` (β, σ ∪ (z, ν))

The first premise is true by assumption for all f ∈ σ, and for (z, ν) since z ∈ Φα
1 ∪ {z}. The second

premise is vacuously true.

For part 3., we need to prove traceOK (n′, σ ∪ (z, ν)); we have traceOK (n′, σ) by assumption, hence
need to prove that n′ ∈ ν. Since by assumption of version consistency we have that f ∈ Φε

1 ∪ εr ⇒
n′ ∈ ver(H, f) and ver(H, f) = ver(H′, f) = ν (by Lemma B.0.14), and {z} ⊆ εr (by n; Γ ` H), we
have n′ ∈ ν.
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case [deref] :

Follows the same argument as the [gvar-deref] case above for part 1.; parts 2 and 3 follow by
assumption since the trace has not changed.

case [cong] :

Here 〈n; Σ; H; ! e〉 −→ε 〈n; Σ′; H′; ! e′〉 follows from 〈n; Σ; H, e〉 −→ε 〈n; Σ′; H′, e′〉. To apply induc-
tion, we must have Φ1,R; H ` Σ which follows by Lemma B.0.9 since Φ,R; H ` Σ and Φ1�Φ2 ↪→ Φ.

Hence we have:

(i) Φ′
1; Γ′ ` e′ : ref εr τ ; R′

(ii) n; Γ′ ` H′

(iii) Φ′
1,R′; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ] where ε′1 ∪ ε0 ⊆ Φε

1. Let Φ′
2 = [Φα

1 ∪ ε0; εr; Φω
2 ]

hence Φ′ε
2 = εr and Φ′

1 � Φ′
2 ↪→ Φ′, where Φ′ ≡ [Φα

1 ∪ ε0; ε′1 ∪ εr; Φω
2 ] and (ε′1 ∪ εr) ∪ ε0 ⊆ (ε1 ∪ εr)

hence Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε, and Φ′ω = Φω as required.

We prove 1. by (ii) and by applying [TDeref]:

(TDeref)

Φ′
1; Γ′ ` e′ : ref εr τ ; R′

Φ′ε
2 = εr Φ′

1 � Φ′
2 ↪→ Φ′

Φ′; Γ′ ` ! e′ : τ ; R′

The first premise follows from (i) and the second and third premises follows by definition of Φ′ and
Φ′

2.

To prove part 2., we must show that Φ′,R′; H′ ` Σ′. We have two cases:

Σ′ ≡ (β, σ): By (iii) we must have R′ ≡ · such that

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ε′1 ⇒ n′ ∈ ver(H′, f)

[Φα
1 ∪ ε0; ε′1; Φω

1 ], ·; H′ ` (β, σ)

To achieve the desired result we need to prove:

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (ε′1 ∪ εr) ⇒ n′ ∈ ver(H′, f)

[Φα
1 ∪ ε0; ε′1 ∪ εr; Φω

1 ], ·; H′ ` (β, σ)

The first premise follows directly from (iii). To prove the second premise, we observe that by
Lemma B.0.11, top(Σ) = (n′, σ′) where σ′ ⊆ σ, and by inversion on Φ;R; H ` Σ we know
(a) f ∈ σ′ ⇒ f ∈ Φα

1 , and (b) f ∈ ε1 ∪ εr ⇒ n′ ∈ ver(H, f). The second premise follows from
(iii) and the fact that f ∈ εr ⇒ n′ ∈ ver(H, f) by (b), and for all f, ver(H, f) = ver(H′, f) by
Lemma B.0.14.

Σ′ ≡ (β, σ), Σ′′: By (iii), we must have R′ ≡ Φ′′′,R′′′ such that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ]

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ε′1 ⇒ n′ ∈ ver(H′, f)

Φ′
1, Φ′′′,R′′′; H′ ` (β, σ), Σ′′

We wish to show that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′ ≡ [Φα
1 ∪ ε0; ε′1 ∪ εr; Φω

2 ]
f ∈ σ ⇒ f ∈ Φα

1 ∪ ε0

f ∈ ε′1 ∪ εr ⇒ n′ ∈ ver(H′, f)

Φ′, Φ′′′,R′′′; H′ ` (β, σ), Σ′′

The first and third premises follow from (iii), while the fourth premise follows by the same
argument as in the Σ′ ≡ (β, σ) case, above.

Part 3. follows directly from (iv).
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case (TAssign) :

We know that:

(TAssign)

Φ1; Γ ` e1 : ref εr τ ; R1 Φ2; Γ ` e2 : τ ; R2

Φε
3 = εr Φ1 � Φ2 � Φ3 ↪→ Φ

e1 6≡ v ⇒R2 = ·
Φ; Γ ` e1 := e2 : τ ; R1 ./ R2

From R1 ./ R2 it follows that either R1 ≡ · or R2 ≡ ·.

We can reduce using [gvar-assign], [assign], or [cong].

case [gvar-assign] :

This implies that e ≡ z := v with

〈n; (β, σ); (H′′, z 7→ (τ, v′, ν)); z := v〉 −→{z} 〈n; (β, σ ∪ (z, ν)); (H′′, z 7→ (τ, v, ν)); v〉

where H ≡ (H′′, z 7→ (τ, v′, ν)). R1 ≡ · and R2 ≡ · (thus R1 ./ R2 ≡ ·).
Let Γ′ = Γ, R′ = ·, and Φ′ = [Φα∪{z}; ∅; Φω ]. Since z ∈ εr (by n; Γ ` H) we have ∅ ⊆ (ε1∪ε2∪εr),
hence ∅ ∪ {z} ⊆ (ε1 ∪ ε2 ∪ εr) which means ε′ ∪ {z} ⊆ Φε. The choice of Φ′ is acceptable since
Φ′α = Φα ∪ {z}, ε′ ∪ {z} ⊆ Φε, and Φ′ω = Φω . We prove 1. as follows. Since Φ2; Γ ` v : τ ; ·,
by value typing (Lemma B.0.5) we have Φ′; Γ ` v : τ ; ·. n; Γ ` H′ follows from n; Γ ` H and
Φ′; Γ ` v : τ ; · (since Φε = ∅).
Parts 2. and 3. are similar to the (TDeref) case.

case [assign] :

Part 1. is similar to (gvar-assign); we have parts 2. and 3. by assumption.

case [cong] :

Consider the shape of E:

case E := e :
〈n; Σ; H; e1 := e2〉 −→ε 〈n; Σ′; H′; e′1 := e2〉 follows from 〈n; Σ; H; e1〉 −→ε 〈n; Σ′; H′; e′1〉.
Since e1 6≡ v ⇒R2 = · by assumption, by Lemma B.0.10 we have Φ1,R1; H ` Σ, hence we
can apply induction:

(i) Φ′
1; Γ′ ` e′1 : ref εr τ ; R′

1 and

(ii) n; Γ′ ` H′

(iii) Φ′
1,R′

1; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
1 ≡ [Φα

1 ∪ε0; ε′1; Φω
1 ] where ε′1∪ε0 ⊆ ε1 and Φω

1 ≡ Φε
2∪εr ∪Φω

3 .

Let
Φ′

2 ≡ [Φα
1 ∪ ε′1 ∪ ε0; Φε

2; εr ∪ Φω
3 ]

Φ′
3 ≡ [Φα

1 ∪ ε′1 ∪ ε0 ∪ Φε
2; εr; Φω

3 ]

Thus Φ′ε
3 = εr and Φ′

1 �Φ′
2 �Φ′

3 ↪→ Φ′ such that Φ′ ≡ [Φα
1 ∪ε0; ε′1∪Φε

2∪εr; Φω
3 ] The choice

of Φ′ is acceptable since Φ′α = Φα ∪ ε0, (ε′1 ∪ εr ∪ ε2)∪ ε0 ⊆ (ε1 ∪ εr ∪ ε2) i.e., ε′ ∪ ε0 ⊆ Φε

and Φ′ω = Φω as required).
To prove 1., we have n; Γ′ ` H′ by (ii), and apply (TAssign):

(TAssign)

Φ′
1; Γ′ ` e′1 : ref εr τ ; R′

1

(TSub)
Φ2; Γ′ ` e2 : τ ; R2 τ ≤ τ

Φα
1 ∪ ε′1 ∪ ε0 ⊆ Φα

1 ∪ Φε
1

Φε
2 ⊆ Φε

2
εr ∪ Φω

3 ⊆ εr ∪ Φω
3

Φ2 ≤ Φ′
2

Φ′
2; Γ′ ` e2 : τ ; R2

Φ′ε
3 = εr Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′

e′1 6≡ v ⇒R2 = ·
Φ′; Γ′ ` e′1 := e2 : τ ; R′

1 ./ R2

Note that Φ2; Γ′ ` e2 : τ follows from Φ2; Γ ` e2 : τ by weakening (Lemma B.0.1).
To prove part 2., we must show that Φ′,R′

1; H′ ` Σ′ (since R′
1 ./ R2 = R′

1). By inversion
on Φ,R; H ` Σ we have Σ ≡ (β, σ) or Σ ≡ (β, σ), Σ′′. We have two cases:

Σ′ ≡ (β, σ): By (iii) we must have R′
1 ≡ · such that

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ε′1 ⇒ n′ ∈ ver(H′, f)

[Φα
1 ∪ ε0; ε′1; Φω

1 ], ·; H′ ` (β, σ)
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To achieve the desired result we need to prove:

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (ε′1 ∪ Φε
2 ∪ εr) ⇒ n′ ∈ ver(H′, f)

[Φα
1 ∪ ε0; ε′1 ∪ Φε

2 ∪ εr; Φω
3 ], ·; H′ ` (β, σ)

The first premise follows directly from (iii). To prove the second premise, we observe
that by Lemma B.0.11, top(Σ) = (n′, σ′) where σ′ ⊆ σ, and by inversion on Φ;R; H `
Σ we know (a) f ∈ σ′ ⇒ f ∈ Φα

1 , and (b) f ∈ Φε
1 ∪ Φε

2 ∪ εr ⇒ n′ ∈ ver(H, f). The
second premise follows from (iii) and the fact that f ∈ εr ⇒ n′ ∈ ver(H, f) by (b), and
for all f, ver(H, f) = ver(H′, f) by Lemma B.0.14.

Σ′ ≡ (β, σ), Σ′′: By (iii), we must have R′
1 ≡ Φ′′′,R′′′ such that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ]

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ε′1 ⇒ n′ ∈ ver(H′, f)

Φ′
1, Φ′′′,R′′′; H′ ` (β, σ), Σ′′

We wish to show that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′ ≡ [Φα
1 ∪ ε0; ε′1 ∪ Φε

2 ∪ εr; Φω
3 ]

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (ε′1 ∪ Φε
2 ∪ εr) ⇒ n′ ∈ ver(H′, f)

Φ′, Φ′′′,R′′′; H′ ` (β, σ), Σ′′

The first and third premises follow from (iii), while the fourth premise follows by the
same argument as in the Σ′ ≡ (β, σ) case, above.

Part 3. follows directly from (iv).

case r := E :
〈n; Σ; H; r := e2〉 −→ε 〈n; Σ′; H′; r := e′2〉 follows from 〈n; Σ; H; e2〉 −→ε 〈n; Σ′; H′; e′2〉.
Since e1 ≡ r, by inversion R1 ≡ ·. By Lemma B.0.10 (which we can apply because Φε

1 ≡ ∅; if
Φε

1 6≡ ∅ we can rewrite the derivation using value typing to make it so) we have Φ2,R2; H `
Σ, hence we can apply induction to get:

(i) Φ′
2; Γ′ ` e′2 : τ ; R′

2

(ii) n; Γ′ ` H′

(iii) Φ′
2,R′

2; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
2 ≡ [Φα

2 ∪ε0; ε′2; Φω
2 ] where (ε′2∪ε0) ⊆ Φε

2; note Φα
2 ≡ Φα

1 (since
Φε

1 ≡ ∅) and Φω
2 ≡ ε3 ∪ Φω

3 .

Let
Φ′

1 ≡ [Φα
1 ∪ ε0; ∅; ε′2 ∪ εr ∪ Φω

3 ]
Φ′

3 ≡ [Φα
1 ∪ ε0 ∪ ε′2; εr; Φω

3 ]

Thus Φ′ε
3 = εr and Φ′

1�Φ′
2�Φ′

3 ↪→ Φ′ such that Φ′ ≡ [Φα
1 ∪ε0; ε′2∪εr; Φω

3 ] and (ε′2∪εr)∪ε0 ⊆
(Φε

2 ∪ εr). The choice of Φ′ is acceptable since Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε and Φ′ω = Φω

as required).
To prove 1., we have n; Γ′ ` H′ by (ii), and we can apply [TAssign]:

(TAssign)

Φ′
1; Γ′ ` r : ref εr τ ; · Φ′

2; Γ′ ` e′2 : τ ; R′
2

Φ′εr
3 = εr Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′

r 6≡ v ⇒R′
2 = ·

Φ′; Γ′ ` r := e′2 : τ ; · ./ R′
2

Note that we have Φ′
1; Γ′ ` r : ref εr τ ; · from Φ1; Γ ` r : ref εr τ ; · by value typing and

weakening
To prove part 2., we must show that Φ′,R′

2; H′ ` Σ′ (since R1 ./ R2 = R′
2). By inversion

on Φ,R; H ` Σ we have Σ ≡ (β, σ) or Σ ≡ (β, σ), Σ′′. We have two cases:

Σ′ ≡ (β, σ): By (iii) we must have R′
2 ≡ · such that

(TC1)

f ∈ σ ⇒ f ∈ Φα
2 ∪ ε0

f ∈ ε′2 ⇒ n′ ∈ ver(H′, f)

[Φα
2 ∪ ε0; ε′2; Φω

2 ], ·; H′ ` (β, σ)
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To achieve the desired result we need to prove:

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (εr ∪ ε′2) ⇒ n′ ∈ ver(H′, f)

[Φα
1 ∪ ε0; ε′2 ∪ εr; Φω

3 ], ·; H′ ` (β, σ)

The first premise follows from (iii) since Φα
1 = Φα

2 .
To prove the second premise, we observe that by Lemma B.0.11, top(Σ) = (n′, σ′)
where σ′ ⊆ σ, and by inversion on Φ;R; H ` Σ we know (a) f ∈ σ′ ⇒ f ∈ Φα

1 , and (b)
f ∈ εr ∪ Φε

2 ⇒ n′ ∈ ver(H, f). The second premise follows from (iii) and the fact that
f ∈ εr ⇒ n′ ∈ ver(H, f) by (b), and for all f, ver(H, f) = ver(H′, f) by Lemma B.0.14.

Σ′ ≡ (β, σ), Σ′′: By (iii), we must have R′
2 ≡ Φ′′′,R′′′ such that:

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′
2 ≡ [Φα

2 ∪ ε0; ε′2; Φω
2 ]

f ∈ σ ⇒ f ∈ Φα
2 ∪ ε0

f ∈ ε′2 ⇒ n′ ∈ ver(H′, f)

Φ′
2, Φ′′′,R′′′; H′ ` (β, σ), Σ′′

We wish to show that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′ ≡ [Φα
1 ∪ ε0; ε′2 ∪ εr; Φω

3 ]
f ∈ σ ⇒ f ∈ α ∪ ε0

f ∈ ε′2 ∪ εr ⇒ n′ ∈ ver(H′, f)

Φ′, Φ′′′,R′′′; H′ ` (β, σ), Σ′′

The first and third premises follow from (iii), while the fourth premise follows by the
same argument as in the Σ′ ≡ (β, σ) case, above.

Part 3. follows directly from (iv).

case (TUpdate) :

case [no-update] :

Thus we must have
〈n; (β, σ); H; updateα′′,ω′′

〉 −→ 〈n; (β, σ); H; 0〉

Let Γ′ = Γ and Φ′ = Φ (and thus ε ∪ ∅ ⊆ Φε, Φ′α = Φα ∪ ∅, and Φ′ω = Φω) as required. For 1.,
Φ; Γ ` 0 : int ; · follows from (TInt) and value typing and n; Γ ` H is true by assumption. Parts
2. and 3. follow by assumption.

case (TIf) :

We know that:

(TIf)

Φ1; Γ ` e1 : int ; R
Φ2; Γ ` e2 : τ ; · Φ2; Γ ` e3 : τ ; · Φ1 � Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ ; R

We can reduce using [if-t], [if-f] or [cong].

case [if-t] :

This implies that e1 ≡ v hence R = ·. We have

〈n; (β, σ); H; if0 v then e2 else e3〉 −→ 〈n; (β, σ); H; e2〉

Let Γ′ = Γ and Φ′ = Φ (and thus ε ∪ ∅ ⊆ Φε, Φ′α = Φα ∪ ∅, and Φ′ω = Φω) as required. To prove
1., we have n; Γ ` H by assumption, and we have

(TSub)

Φ2; Γ ` e2 : τ ; · τ ≤ τ
Φ2 ≤ Φ

Φ; Γ ` e2 : τ ; ·

The first premise holds by assumption, the second by reflexivity of subtyping, and the third by
Lemma B.0.2.
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case [if-f] :

This is similar to [if-t].

case [cong] :

〈n; Σ; H; if0 e1 then e2 else e3〉 −→ε 〈n; Σ′; H′; if0 e′1 then e2 else e3〉 follows from 〈n; Σ; H; e1〉 −→ε

〈n; Σ′; H′; e′1〉. To apply induction, we must have Φ1,R; H ` Σ which follows by Lemma B.0.9 since
Φ,R; H ` Σ and Φ1 � Φ2 ↪→ Φ. Hence we have:

(i) Φ′
1; Γ′ ` e′1 : int ; R′ and

(ii) n; Γ′ ` H′

(iii) Φ′
1,R′; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ] where ε′1 ∪ ε0 ⊆ Φε

1. (Note that Φω
1 ≡ Φε

2 ∪ Φω
2 .)

Let Φ′
2 ≡ [Φα

1 ∪ ε′1 ∪ ε0; Φε
2; Φω

2 ]. Thus Φ′
1 � Φ′

2 ↪→ Φ′ so that Φ′ ≡ [Φα
1 ∪ ε0; ε′1 ∪ Φε

2; Φω
2 ] where

ε′1 ∪ ε0 ∪ Φε
2 ⊆ Φε

1 ∪ Φε
2 and Φ′ω = Φω as required.

To prove 1., we have n; Γ′ ` H′ by (ii), and can apply (TIf): We prove 1. by (ii) and as follows:

(TIf)

(TSub)

Φ2; Γ′ ` e2 : τ ; · τ ≤ τ
Φ2 ≤ Φ′

2

Φ′
2; Γ′ ` e2 : τ ; ·

(TSub)

Φ2; Γ′ ` e2 : τ ; · τ ≤ τ
Φ2 ≤ Φ′

2

Φ′
2; Γ′ ` e3 : τ ; ·

Φ′
1; Γ′ ` e′1 : int ; R′

1 Φ′
1 � Φ′

2 ↪→ Φ′

Φ′; Γ′ ` if0 e′1 then e2 else e3 : τ ; R′

Note that Φ2; Γ′ ` e2 : τ ; R follows from Φ2; Γ ` e2 : τ ; R by weakening (Lemma B.0.1) and
likewise for Φ2; Γ′ ` e3 : τ ; R .

Parts 2. and 3. follow by an argument similar to (TDeref)-[cong] and (TAssign)-[cong].

case (TTransact) :

We know that:

(TTransact)

Φ′′; Γ ` e : τ ; ·
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` tx e : τ ; ·
We can reduce using [tx-start]:

〈n; (β, σ); H; tx e〉 −→ 〈n; (n, ∅), (β, σ); H; intx e〉

Let Γ′ = Γ and Φ′ ≡ [Φα; ∅; Φω ] (and thus ∅∪ ∅ ⊆ Φε, Φ′α = Φα ∪∅, and Φ′ω = Φω , as required). To prove
1., we have n; Γ ` H by assumption, and the rest follows by (TIntrans):

(TIntrans)

Φ′′; Γ ` e : τ ; ·
Φ′α ⊆ Φ′′α Φ′ω ⊆ Φ′′ω

Φ′; Γ ` intx e : τ ; Φ′′, ·

The first premise is true by assumption, and the second by choice of Φ′.

We prove 2. as follows:

(TC2)

(TC1)

f ∈ ∅ ⇒ f ∈ Φ′′α

f ∈ Φ′′ε ⇒ n ∈ ver(H, f)

Φ′′, ·; H ` (n, ∅)
f ∈ σ ⇒ f ∈ Φα

f ∈ ∅ ⇒ n′ ∈ ver(H, f)

[Φα; ∅; Φω ], Φ′′, ·; H ` (n, ∅), (β, σ)

First premise of [TC1] is true vacuously, and the second is true by n; Γ ` H, which we have by assumption.
For [TC2], the first premise holds by inversion of Φ, ·; H ` (β, σ), which we have by assumption, and the
second holds vacuously.

Part 3. follows easily: we have traceOK ((β, σ)) by assumption, traceOK ((n, ∅)) is vacuously true, hence
traceOK ((n, ∅), (β, σ)) is true.

case (TIntrans) :

We know that:

(TIntrans)

Φ′′; Γ ` e : τ ; R
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` intx e : τ ; Φ′′,R
There are two possible reductions:
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case [tx-end] :

We have that e ≡ v and thus R ≡ ·; we reduce as follows:

traceOK (n′′, σ′)

〈n; ((β′, σ′), (β, σ)); H; intx v〉 −→ 〈n; (β, σ); H; v〉

Let Φ′ = Φ and Γ′ = Γ (and thus Φ′α = Φα ∪ ∅, ε′ ∪ ∅ ⊆ Φε, and Φ′ω = Φω as required). To prove
1., we know that n; Γ ` H follows by assumption and Φ; Γ ` v : τ ; · by value typing. To prove 2.,
we must show that Φ, ·; H ` (β, σ), but this is true by inversion on Φ, Φ′′, ·; H ` ((β′, σ′), (β, σ)).

For 3., traceOK ((β, σ)) follows from traceOK (((β′, σ′), (β, σ))) (which is true by assumption).

case [tx-cong-2] :

We know that
〈n; Σ; H; e〉 −→ε 〈n′; Σ′; H′; e′〉

〈n; Σ; H; intx e〉 −→∅ 〈n′; Σ′; H′; intx e′〉

follows from 〈n; Σ; H; e〉 −→η 〈n; Σ′; H′; e′〉 (because the reduction does not perform an update,
hence η ≡ ε0 and we apply [tx-cong-2]).

We have Φ′′,R; H ` Σ by inversion on Φ, Φ′′,R; H ` ((β, σ), Σ), hence by induction:

(i) Φ′′′; Γ′ ` e′ : τ ; R′ and

(ii) n; Γ′ ` H′

(iii) Φ′′′,R′; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′′′ such that Φ′′′α = Φ′′α ∪ ε0, ε′′′ ∪ ε0 ⊆ Φ′′ε, and Φ′′′ω = Φ′′ω .

Let Φ′ = Φ (hence Φ′α = Φ′α ∪ ∅ , ε′ ∪ ∅ ⊆ Φε, and Φ′ω = Φω as required) and Γ′ = Γ.

To prove 1., we have n; Γ′ ` H′ by (ii), and we can apply [TIntrans]:

(TIntrans)

Φ′′′; Γ′ ` e′ : τ ; R′

Φ′α ⊆ Φ′′′α Φ′ω ⊆ Φ′′′ω

Φ′; Γ′ ` intx e′ : τ ; Φ′′′,R′

The first premise follows from (i), and the second holds because Φα ⊆ Φ′′α and Φω ⊆ Φ′′ω by
assumption and we picked Φ′ = Φ (hence Φ′α ⊆ Φ′′′α Φ′ω ⊆ Φ′′′ω).

Part 2. follows directly from (iii). Part 3. follows directly from (iv).

case (TLet) :

We know that:

(TLet)

Φ1; Γ ` e1 : τ1 ; R Φ2; Γ, x : τ1 ` e2 : τ2 ; ·
Φ1 � Φ2 ↪→ Φ

Φ; Γ ` let x : τ1 = e1 in e2 : τ2 ; R

We can reduce using either [let] or [cong].

case [let] :

This implies that e1 ≡ v hence R ≡ ·. We have:

〈n; (β, σ); H; let x : τ = v in e〉 −→ 〈n; (β, σ); H; e[x 7→ v]〉

To prove 1., we have n; Γ ` H by assumption; let Γ′ = Γ and Φ′ = Φ; since ε2 ⊆ (ε1 ∪ ε2), we can
apply [TSub]:

(TSub)

Φ2; Γ, x : τ1 ` e2 : τ2 ; · τ2 ≤ τ2
Φ2 ≤ Φ

Φ; Γ, x : τ1 ` e2 : τ2 ; ·

The first premise holds by assumption, the second by reflexivity of subtyping, and the third by
Lemma B.0.2. By value typing we have Φ; Γ ` v : τ1 ; ·, so by substitution (Lemma B.0.17) we
have Φ; Γ ` e2[x 7→ v] : τ2 ; ·.
Parts 2. and 3. hold by assumption.

case [cong] :

Similar to (TIf)-[Cong].
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case (TApp) :

We know that:

(TApp)

Φ1; Γ ` e1 : τ1 −→Φf τ2 ; R1 Φ2; Γ ` e2 : τ1 ; R2

Φ1 � Φ2 � Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

e1 6≡ v ⇒R2 = ·
Φ; Γ ` e1 e2 : τ2 ; R1 ./ R2

We can reduce using either [call] or [cong].

case [call] :

We have that

〈n; (β, σ); (H′′, z 7→ (τ, λ(x).e, ν)); z v〉 −→{z} 〈n; (β, σ ∪ (z, ν)); (H′′, z 7→ (τ, λ(x).e, ν)); e[x 7→ v]〉

(where H ≡ (H′′, z 7→ (τ, λ(x).e, ν))), and

(TApp)

Φ1; Γ ` z : τ1 −→Φf τ2 ; · Φ2; Γ ` v : τ1 ; ·
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

z 6≡ v ⇒R2 = ·
Φ; Γ ` z v : τ2 ; ·

where by subtyping derivations (Lemma B.0.6) we have

(TSub)

(TGVar)
Γ(z) = τ ′1 −→

Φ′
f τ ′2

Φ∅; Γ ` z : τ ′1 −→
Φ′

f τ ′2 ; ·

τ1 ≤ τ ′1 τ ′2 ≤ τ2 Φ′
f ≤ Φf

τ ′1 −→
Φ′

f τ ′2 ≤ τ1 −→Φf τ2 Φ∅ ≤ Φ1

Φ1; Γ ` z : τ1 −→Φf τ2 ; ·

Define Φf ≡ [αf ; εf ; ωf ] and Φ′
f ≡ [α′f ; ε′f ; ω′f ].

Let Γ′ = Γ, R′ = · and choose Φ′ = [Φα
1 ∪ {z}; εf ; Φω

3 ]. Since z ∈ ε′f (by n; Γ ` H) and ε′f ⊆ εf (by

Φ′
f ≤ Φf ) we have εf ∪ {z} ⊆ (ε1 ∪ ε2 ∪ εf ). The choice of Φ′ is acceptable since Φ′α = Φα ∪ {z},

Φ′ε ∪{z} ⊆ Φε, and Φ′ω = Φω . For 1., we have n; Γ ` H′ by assumption; for the remainder we have
to prove Φ′; Γ ` e[x 7→ v] : τ2 ; ·. First, we must prove that Φ′

f ≤ Φ′. Note that since {z} ⊆ αf by

n; Γ ` H′, from Φ1 � Φ2 � Φ3 ↪→ Φ and choice of Φ′ we get Φ′α
3 ∪ {z} ⊆ αf . We have:

Φ′ ≡ [Φα
1 ∪ {z}; εf ; Φω

3 ] (by choice of Φ′)
Φf ≡ [αf ; εf ; ωf ]
Φ′

f ≡ [α′f ; ε′f ; ω′f ]

ε′f ⊆ εf (by Φ′
f ≤ Φf )

αf ⊆ α′f (by Φ′
f ≤ Φf )

ωf ⊆ ω′f (by Φ′
f ≤ Φf )

Φ′α
3 ∪ {z} ⊆ αf (by assumption and choice of Φ′)

Φ′α
3 = Φα

1 ∪ Φε
1 ∪ Φ′ε

2 (by Φ1 � Φ2 � Φ3 ↪→ Φ)
Φ′ω

3 ⊆ ωf (by assumption and choice of Φ′)

Thus we have the result by [TSub]

Φ′
f ; Γ ` e[x 7→ v] : τ ′2 ; · τ ′2 ≤ τ2 Φ′

f ≤ Φ′

Φ′; Γ ` e[x 7→ v] : τ2

By assumption, we have Φ2; Γ ` v : τ1 ; ·. By value typing and τ1 ≤ τ ′1 we have Φ′; Γ ` v : τ ′1 ; ·.
Finally by substitution we have Φ′; Γ ` e[x 7→ v] : τ2 ; ·.
For part 2., we need to prove Φ′, ·; H ` (β′, σ′) where σ′ = σ ∪ (z, ν) and n′′ = n′, hence:

(TC1)

f ∈ (σ ∪ (z, ν)) ⇒ f ∈ Φα ∪ {z}
f ∈ εf ⇒ n′ ∈ ver(H, f)

Φ′, ·; H ` (β′, σ′)

The first premise is true by assumption and the fact that {z} ⊆ {z}. The second premise is true by
assumption.

For part 3., we need to prove traceOK (σ ∪ (z, ν)); we have traceOK (σ) by assumption, hence need
to prove that n′ ∈ ν. Since by assumption we have that f ∈ ε1 ∪ ε2 ∪ εf ⇒ n′ ∈ ver(H, f) and
{z} ⊆ εf , we have n′ ∈ ν.
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case [cong] :

case E e :
〈n; Σ; H; e1 e2〉 −→ε 〈n; Σ′; H′; e′1 e2〉 follows from 〈n; Σ; H; e1〉 −→ε 〈n; Σ′; H′; e′1〉.
Since e1 6≡ v ⇒ R2 = · by assumption, by Lemma B.0.10 we have Φ1,R1; H ` Σ hence we
can apply induction:

(i) Φ′
1; Γ′ ` e′1 : τ1 −→Φf τ2 ; R′

1 and

(ii) n; Γ′ ` H′

(iii) Φ′
1,R′

1; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
1 ≡ [Φα

1 ∪ε0; ε′1; Φω
1 ] where ε′1∪ε0 ⊆ ε1 and Φω

1 ≡ Φε
2∪εf ∪Φω

3 .

Let
Φ′

2 ≡ [Φα
1 ∪ ε′1 ∪ ε0; Φε

2; εf ∪ Φω
3 ]

Φ′
3 ≡ [Φα

1 ∪ ε′1 ∪ ε0 ∪ Φε
2; εf ; Φω

3 ]

Thus Φ′ε
3 = εf , Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′, Φ′α
3 ⊆ Φα

f and Φ′ω
3 ⊆ Φω

f (since Φ′α
3 ∪ ε0 ⊆ Φα

3 and

Φ′ω
3 = Φω

3 ). We have Φ′ ≡ [Φα
1 ∪ ε0; ε′1 ∪ Φε

2 ∪ εf ; Φω
3 ]. The choice of Φ′ is acceptable since

Φ′α = Φα ∪ ε0, (ε′1 ∪ εf ∪ ε2) ∪ ε0 ⊆ (ε1 ∪ ε2 ∪ εf ) i.e., ε′ ∪ ε0 ⊆ Φε and Φ′ω = Φω as
required).
To prove 1., we have n; Γ′ ` H′ by (ii), and apply (TApp):

(TApp)

Φ′
1; Γ′ ` e′1 : τ1 −→Φf τ2 ; R′

1

(TSub)
Φ2; Γ′ ` e2 : τ1 ; R2 τ1 ≤ τ1

Φα
1 ∪ ε′1 ∪ ε0 ⊆ Φα

1 ∪ Φε
1

Φε
2 ⊆ Φε

2
εf ∪ Φω

3 ⊆ εf ∪ Φω
3

Φ2 ≤ Φ′
2

Φ′
2; Γ′ ` e2 : τ1 ; R2

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

e′1 6≡ v ⇒R2 = ·
Φ′; Γ′ ` e′1 e2 : τ2 ; R′

1 ./ R2

Note that Φ2; Γ′ ` e2 : τ1 ; R2 follows from Φ2; Γ ` e2 : τ1 ; R2 by weakening
(Lemma B.0.1). The last premise holds vacuously as R2 ≡ · by assumption.
To prove part 2., we must show that Φ′,R′; H′ ` Σ′. The proof is similar to the (TAssign)-
[cong] proof, case E := e but substituting εf for εr.
Part 3. follows directly from (iv).

case v E :
〈n; Σ; H; v e2〉 −→ε 〈n; Σ′; H′; v e′2〉 follows from 〈n; Σ; H; e2〉 −→ε 〈n; Σ′; H′; e′2〉.
For convenience, we make Φε

1 ≡ ∅; if Φε
1 6≡ ∅, we can always construct a typing derivation

of v that uses value typing to make Φε
1 ≡ ∅. Note that Φ1 � Φ2 � Φ3 ↪→ Φ would still

hold since Lemma B.0.7 allows us to decrease Φα
2 to satisfy Φα

2 = Φα
1 ∪ Φε

1; similarly, since
Φα

3 = Φα
1 ∪ Φε

1 ∪ Φε
2 we know that Φα

3 ⊆ Φα
f would still hold if Φα

3 was smaller as a result

of shrinking Φε
1 to be ∅.

Since e1 ≡ v, by inversion R1 ≡ · and by Lemma B.0.10 (which we can apply since Φε
1 ≡ ∅),

we have Φ2,R2; H ` Σ; hence by induction:

(i) Φ′
2; Γ′ ` e′2 : τ1 ; R′

2

(ii) n; Γ′ ` H′

(iii) Φ′
2,R′

2; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
2 ≡ [Φα

2 ∪ε0; ε′2; Φω
2 ] where (ε′2∪ε0) ⊆ Φε

2; note Φα
2 ≡ Φα

1 (since
Φε

1 ≡ ∅) and Φω
2 ≡ ε3 ∪ Φω

3 .

Let
Φ′

1 ≡ [Φα
1 ∪ ε0; ∅; ε′2 ∪ εf ∪ Φω

3 ]
Φ′

3 ≡ [Φα
1 ∪ ε0 ∪ ε′2; εf ; Φω

3 ]

Thus Φ′ε
3 = εf , Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′, Φ′α
3 ⊆ Φα

f and Φ′ω
3 ⊆ Φω

f (since Φ′α
3 ∪ ε0 ⊆ Φα

3 and

Φ′ω
3 = Φω

3 ). We have Φ′ ≡ [Φα
1 ∪ ε0; ε′2 ∪ εf ; Φω

3 ] and (ε′2 ∪ εf )∪ ε0 ⊆ (Φε
2 ∪ εf ). The choice

of Φ′ is acceptable since Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε and Φ′ω = Φω as required).
To prove 1., we have n; Γ′ ` H′ by (ii), and we can apply [TApp]:

(TApp)

Φ′
1; Γ′ ` v : τ1 −→Φf τ2 ; · Φ′

2; Γ′ ` e′2 : τ1 ; R′
2

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

v 6≡ v′ ⇒R′
2 = ·

Φ′; Γ′ ` v e′2 : τ2 ; · ./ R′
2
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(Note that · ./ R′
2 = R′

2.)
The first premise follows by value typing and weakening; the second by (i); the third—sixth
by choice of Φ′, Φ′

1, Φ′
2, Φ′

3; the last holds vacuously since R1 ≡ · by assumption.
To prove part 2., we must show that Φ′,R′; H′ ` Σ′. The proof is similar to the (TAssign)-
[cong] proof, case r := E but substituting εf for εr.
Part 3. follows directly from (iv).

case (TSub) :

We have

(TSub)

Φ′′; Γ ` e : τ ′′ ; R
Φ′′ ≡ [α; ε′′; ω] Φ ≡ [α; ε; ω]

τ ′′ ≤ τ ε′′ ⊆ ε

Φ; Γ ` e : τ ; R

since by flow effect weakening (Lemma B.0.7) we know that α and ω are unchanged in the use of (TSub).

We have 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H′; e′〉. To apply induction we must show that n; Γ ` H, which we have
by assumption, Φ′′; Γ ` e : τ ′′ ; R, which we also have by assumption, and Φ′′,R; H ` Σ, which follows
easily since ε′′ ⊆ ε.

Hence we have:

(i) Φ′′′; Γ′ ` e′ : τ ′′ ; R′ and

(ii) n; Γ′ ` H′

(iii) Φ′′′,R′; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ, Φ′′′ such that Φ′′′α = α ∪ ε0, Φ′′′ε ∪ ε0 ⊆ ε′′ Let Φ′ ≡ Φ′′′, and thus Φ′α = α ∪ ε0,
Φ′ε ∪ ε0 ⊆ ε since ε′′ ⊆ ε, and Φ′ω = ω as required. All results follow by induction.

Lemma B.0.16 (Progress). If n ` H, e : τ (such that Φ; Γ ` e : τ ; R and n; Γ ` H) and for all Σ such that
Φ,R; H ` Σ and traceOK (Σ), then either e is a value, or there exist n′, H′, Σ′, e′ such that 〈n; Σ; H; e〉 −→η

〈n′; Σ′; H′; e′〉.

Proof. Induction on the typing derivation n ` H, e : τ ; consider each possible rule for the conclusion of this
judgment:

case (TInt-TGvar-TLoc) :

These are all values.

case (TVar) :

Can’t occur, since local values are substituted for.

case (TRef) :

We must have that

(TRef)
Φ; Γ ` e′ : τ ; R

Φ; Γ ` ref e′ : ref ε τ ; R
There are two possible reductions, depending on the shape of e:

case e′ ≡ v :

By inversion on Φ; Γ ` v : τ ; · we know that R ≡ · hence by inversion on Φ,R; H ` Σ we
have Σ ≡ (β, σ). We have that 〈n; (β, σ); H; ref v〉 −→ n; (β, σ); H′; r where r /∈ dom(H) and
H′ = H, r 7→ (·, v, ∅) by (ref).

case e′ 6≡ v :

By induction, 〈n; Σ; H; e′〉 −→η 〈n′; Σ′; H′; e′′〉 and thus 〈n; Σ; H; (ref )[e′]〉 −→η 〈n′; Σ′; H′; (ref )[e′′]〉
by [cong].

case (TDeref) :

We know that

(TDeref)

Φ1; Γ ` e : ref εr τ ; R
Φε

2 = εr Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ ; R

Consider the shape of e:

153



case e′ ≡ v :

Since v is a value of type ref εr τ , we must have v ≡ z or v ≡ r.

case e′ ≡ z :
We have

(TDeref)

Φ1; Γ ` z : ref εr τ ; ·
Φε

2 = εr Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! z : τ ; ·

where by subtyping derivations (Lemma B.0.6) we have

(TSub)

(TGVar)
Γ(z) = ref ε′

r τ ′

Φ∅; Γ ` z : ref ε′
r τ ′ ; ·

τ ′ ≤ τ τ ≤ τ ′ ε′r ⊆ εr

ref ε′
r τ ′ ≤ ref εr τ Φ∅ ≤ Φ1

Φ1; Γ ` z : ref εr τ ; ·

By inversion on Φ, ·; H ` Σ we have Σ ≡ (β, σ). By n; Γ ` H we have z ∈ dom(H) (and

thus H ≡ H′′, z 7→ (ref ε′
r τ ′, v, ν))) since Γ(z) = ref ε′

r τ ′. Therefore, we can reduce via
[gvar-deref]:

〈n; (β, σ); (H′′, z 7→ (ref ε′
r τ ′, v, ν)); !z〉 −→{z} 〈n; (β, σ∪(z, ν)); (H′′, z 7→ (ref ε′

r τ ′, v, ν)); v〉

case e′ ≡ r :
Similar to the e′ ≡ z case above, but reduce using [deref].

case e′ 6≡ v :

Let E ≡ ! so that e ≡ E[e′]. To apply induction, we have Φ1,R; H ` Σ by Lemma B.0.9. Thus we
get 〈n; Σ; H; e′〉 −→η 〈n′; Σ′; H′; e′′〉, hence we have that 〈n; Σ; H; E[e′]〉 −→η 〈n′; Σ′; H′; E[e′′]〉 by
[cong].

case (TAssign) :

(TAssign)

Φ1; Γ ` e1 : ref εr τ ; R1 Φ2; Γ ` e2 : τ ; R2

Φε
3 = εr Φ1 � Φ2 � Φ3 ↪→ Φ

e1 6≡ v ⇒R2 = ·
Φ; Γ ` e1 := e2 : τ ; R1 ./ R2

Depending on the shape of e, we have:

case e1 ≡ v1, e2 ≡ v2 :

Since v1 is a value of type ref εr τ , we must have v1 ≡ z or v1 ≡ r. The results follow by reasoning
quite similar to [TDeref] above.

case e1 ≡ v1, e2 6≡ v :

Let E ≡ v1 := so that e ≡ E[e2]. Since e1 is a value, R1 ≡ · hence we have Φ2,R; H ` Σ by
Lemma B.0.10 and we can apply induction. We have 〈n; Σ; H; e2〉 −→η 〈n′; Σ′; H′; e′2〉, and thus
〈n; Σ; H; E[e2]〉 −→η 〈n′; Σ′; H′; E[e′2]〉 by [cong].

case e1 6≡ v :

Since e1 is a not value, R2 ≡ · hence we have Φ1,R; H ` Σ by Lemma B.0.10 and we can apply
induction. The rest follows by an argument similar to the above case.

case (TUpdate) :

By inversion on Φ; Γ ` updateα,ω : int ; R we have that R ≡ ·, hence by inversion on Φ, ·; H ` Σ we
have Σ ≡ (β, σ). If updateOK (upd , H, (α, ω), dir) = tt, then updateα,ω reduces via [update], otherwise
updateα,ω reduces via [no-update].

case (TIf) :

(TIf)

Φ1; Γ ` e1 : int ; R
Φ2; Γ ` e2 : τ ; · Φ2; Γ ` e3 : τ ; ·

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ ; R

Depending on the shape of e, we have:
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case e1 ≡ v :

This implies R ≡ · so by inversion on Φ, ·; H ` Σ we have Σ ≡ (β, σ). Since the type of v is int , we
know v must be an integer n. Thus we can reduce via either [if-t] or [if-f].

case e1 6≡ v :

Let E ≡ if0 then e2 else e3 so that e ≡ E[e1]. To apply induction, we have Φ1,R; H `
Σ by Lemma B.0.9. We have 〈n; Σ; H; e1〉 −→η 〈n′; Σ′; H′; e′1〉 and thus 〈n; Σ; H; E[e1]〉 −→η

〈n′; Σ′; H′; E[e′1]〉 by [cong].

case (TTransact) :

We know that:

(TTransact)

Φ′; Γ ` e : τ ; ·
Φα ⊆ Φ′α Φω ⊆ Φ′ω

Φ; Γ ` tx e : τ ; ·

By inversion on Φ, ·; H ` Σ we have Σ ≡ (β, σ). Thus we can reduce by [tx-start].

case (TIntrans) :

We know that:

(TIntrans)

Φ′; Γ ` e : τ ; R
Φα ⊆ Φ′α Φω ⊆ Φ′ω

Φ; Γ ` intx e : τ ; Φ′,R

Consider the shape of e:

case e ≡ v :

Thus

(TIntrans)

Φ′; Γ ` v : τ ; ·
Φα ⊆ Φ′α Φω ⊆ Φ′ω

Φ; Γ ` intx v : τ ; Φ′, ·

We have Φ, Φ′, ·; H ` Σ by assumption:

(TC2)

Φ′, ·; H ` Σ
Φ ≡ [α; ε; ω]

f ∈ σ ⇒ f ∈ α
f ∈ ε ⇒ n′ ∈ ver(H, f)

Φ, Φ′, ·; H ` ((β′, σ′), (β, σ))

By inversion we have Σ ≡ ((β′, σ′), (β, σ)); by assumption we have traceOK (n′′, σ′′) so we can
reduce via [tx-end].

case e 6≡ v :

We have Φ, Φ′,R; H ` Σ by assumption. By induction we have 〈n; Σ′; H; e′〉 −→η 〈n′; Σ′′; H′; e′′〉,
hence by [tx-cong-2]:

〈n; Σ′; H; intx e′〉 −→∅ 〈n′; Σ′′; H′; intx e′′〉

case (TLet) :

We know that:

(TLet)

Φ1; Γ ` e1 : τ1 ; R Φ2; Γ, x : τ1 ` e2 : τ2 ; ·
Φ1 � Φ2 ↪→ Φ

Φ; Γ ` let x : τ1 = e1 in e2 : τ2 ; R

Consider the shape of e:

case e1 ≡ v :

Thus Φ1; Γ ` v : τ ; · and by inversion on Φ, ·; H ` Σ we have Σ ≡ (β, σ).

We can reduce via [let].

case e1 6≡ v :

Let E ≡ let x : τ1 = in e2 so that e ≡ E[e1]. To apply induction, we have Φ1,R; H ` Σ by
Lemma B.0.9. We have 〈n; Σ; H; e1〉 −→η 〈n′; Σ′; H′; e′1〉 and so 〈n; Σ; H; E[e1]〉 −→η 〈n′; Σ′; H′; E[e′1]〉
by [cong].
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case (TApp) :

(TApp)

Φ1; Γ ` e1 : τ1 −→Φf τ2 ; R1 Φ2; Γ ` e2 : τ1 ; R2

Φ1 � Φ2 � Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

e1 6≡ v ⇒R2 = ·
Φ; Γ ` e1 e2 : τ2 ; R1 ./ R2

Depending on the shape of e, we have:

case e1 ≡ v1, e2 ≡ v2 :

Since v1 is a value of type τ1 −→Φ τ2, we must have v1 ≡ z, hence

(TApp)

Φ1; Γ ` z : τ1 −→Φf τ2 ; · Φ2; Γ ` v : τ1 ; ·
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

z 6≡ v ⇒R2 = ·
Φ; Γ ` z v : τ2 ; ·

where by subtyping derivations (Lemma B.0.6) we have

(TSub)

(TGVar)
Γ(z) = τ ′1 −→

Φ′
f τ ′2

Φ∅; Γ ` z : τ ′1 −→
Φ′

f τ ′2 ; ·

τ1 ≤ τ ′1 τ ′2 ≤ τ2 Φ′
f ≤f Φf

τ ′1 −→
Φ′

f τ ′2 ≤ τ1 −→Φf τ2
Φ∅ ≤ Φ1

Φ1; Γ ` z : τ1 −→Φf τ2 ; ·

By inversion on Φ, ·; H ` Σ we have Σ ≡ (β, σ). By n; Γ ` H we have z ∈ dom(H) and

H ≡ (H′′, z 7→ (τ ′1 −→
Φ′

f τ ′2, λ(x).e′′, ν)) since Γ(z) = τ ′1 −→
Φ′

f τ ′2. By [call], we have:

〈n; (β, σ); (H′′, z 7→ (τ ′1 −→
Φ′

f τ ′2, λ(x).e′′, ν)); z v〉 −→{z}

〈n; (β, σ ∪ (z, ν)); (H′′, z 7→ (τ ′1 −→
Φ′

f τ ′2, λ(x).e′′, ν)); e′′[x 7→ v]〉

case e1 6≡ v :

Let E ≡ e2 so that e ≡ E[e1]. Since e1 is a not value, R2 ≡ · hence we have Φ1,R; H ` Σ by
Lemma B.0.10 and we can apply induction and we have: 〈n; Σ; H; e1〉 −→η 〈n′; Σ′; H′; e′1〉, and thus
〈n; Σ; H; E[e1]〉 −→η 〈n′; Σ′; H′; E[e′1]〉 by [cong].

case e1 ≡ v1, e2 6≡ v :

Let E ≡ v1 so that e ≡ E[e2]. Since e1 is a value, R1 ≡ · hence we have Φ2,R; H ` Σ by
Lemma B.0.10 and we can apply induction. The rest follows similarly to the above case.

case (TSub) :

We know that:

(TSub)

Φ1; Γ ` e : τ ′ ; R τ ′ ≤ τ
Φ1 ≡ [α; ε1; ω] Φ ≡ [α; ε; ω] ε1 ⊆ ε

Φ; Γ ` e : τ ; R

If e is a value v we are done. Otherwise, since Φ1,R; H ` Σ follows from Φ,R; H ` Σ (by Φε
1 ⊆ Φε and

Φα
1 = Φα); we have 〈n; Σ; H; e〉 −→η 〈n′; Σ′; H′; e′〉 by induction.

Lemma B.0.17 (Substitution).
If Φ; Γ, x : τ ′ ` e : τ and Φ; Γ ` v : τ ′ then Φ; Γ ` e[x 7→ v] : τ .

Proof. Induction on the typing derivation of Φ; Γ ` e : τ .

case (TInt) :

Since e ≡ n and n[x 7→ v] ≡ n, the result follows by (TInt).
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case (TVar) :

e is a variable y. We have two cases:

case y = x :

We have τ = τ ′ and y[x 7→ v] ≡ v, hence we need to prove that Φ; Γ ` v : τ which is true by
assumption.

case y 6= x :

We have y[x 7→ v] ≡ y and need to prove that Φ; Γ ` y : τ . By assumption, Φ; Γ, x : τ ′ ` y : τ , and
thus (Γ, x : τ ′)(y) = τ ; but since x 6= y this implies Γ(y) = τ and we have to prove Φ; Γ ` y : τ
which follows by (Tvar).

case (TGvar),(TLoc), (TUpdate) :

Similar to (TInt).

case (TRef) :

We know that Φ; Γ, x : τ ′ ` ref e : ref ε τ and Φ; Γ ` v : τ ′, and need to prove that Φ; Γ ` (ref e)[x 7→ v] :
ref ε τ . By inversion on Φ; Γ, x : τ ′ ` ref e : ref ε τ we have Φ; Γ, x : τ ′ ` e : τ ; applying induction to this,
we have Φ; Γ ` e[x 7→ v] : τ . We can now apply [TRef]:

(TRef)
Φ; Γ ` e[x 7→ v] : τ

Φ; Γ ` ref (e[x 7→ v]) : ref ε τ

The desired result follows since ref (e[x 7→ v]) ≡ (ref e)[x 7→ v].

case (TDeref) :

We know that Φ; Γ, x : τ ′ ` ! e : τ and Φ; Γ ` v : τ ′ and need to prove that Φ; Γ ` (! e)[x 7→ v] : τ . By
inversion on Φ; Γ, x : τ ′ ` ! e : τ we have Φ1; Γ, x : τ ′ ` e : ref εr τ and Φ2 such that Φ1 � Φ2 ↪→ Φ
and Φ ≡ Φ1 � Φ2. By value typing we have Φ1; Γ ` v : τ ′. We can then apply induction, yielding
Φ1; Γ ` e[x 7→ v] : ref εr τ . Finally, we apply (TDeref)

(TDeref)

Φ1; Γ ` e[x 7→ v] : ref εr τ
Φε

2 = εr Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e[x 7→ v] : τ

Note that the second premise holds by inversion on Φ; Γ, x : τ ′ ` ! e : τ . The desired result follows since
! (e[x 7→ v]) ≡ (! e)[x 7→ v].

case (TSub) :

We know that Φ; Γ, x : τ ′ ` e : τ and Φ; Γ ` v : τ ′ and need to prove that Φ; Γ ` e[x 7→ v] : τ . By inversion
on Φ; Γ, x : τ ′ ` e : τ we have Φ′; Γ, x : τ ′ ` e : τ ′. By value typing we have Φ′; Γ, x : τ ′ ` v : τ ′. We can
then apply induction, yielding Φ′; Γ ` e[x 7→ v] : τ ′. Finally, we apply (TSub)

(TSub)
Φ′; Γ ` e[x 7→ v] : τ ′ τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e[x 7→ v] : τ

and get the desired result.

case (TTransact),(TIntrans) :

Similar to (TSub).

case (TApp) :

We know that

(TApp)

Φ1; Γ, x : τ ′ ` e1 : τ1 −→Φf τ2 Φ2; Γ, x : τ ′ ` e2 : τ1
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ; Γ, x : τ ′ ` e1 e2 : τ2

where Φ; Γ ` v : τ ′, and need to prove that Φ; Γ ` (e1 e2)[x 7→ v] : τ2. Call the first two premises above (1)
and (2), and note that we have (3) Φ; Γ ` v : τ ′ ⇒ Φ1; Γ ` v : τ ′ and (4) Φ; Γ ` v : τ ′ ⇒ Φ2; Γ ` v : τ ′ by
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the value typing lemma. By (1), (3) and induction we have Φ1; Γ ` e1[x 7→ v] : τ1 −→Φf τ2. Similarly, by
(2), (4) and induction we have Φ2; Γ ` e2[x 7→ v] : τ1. We can now apply (TApp):

(TApp)

Φ1; Γ ` e1[x 7→ v] : τ1 −→Φf τ2 Φ2; Γ ` e2[x 7→ v] : τ1
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ; Γ ` e1[x 7→ v] e2[x 7→ v] : τ2

Since e1[x 7→ v] e2[x 7→ v] ≡ (e1 e2)[x 7→ v] we get the desired result.

case (TAssign-TIf-TLet) :

Similar to (TApp).

Theorem B.0.18 (Single-step Soundness). If Φ; Γ ` e : τ where JΦ; Γ ` e : τK = R; and n; Γ ` H; and
Φ,R; H ` Σ; and traceOK (Σ), then either e is a value, or there exist n′, H′, Σ′, Φ′, e′, and η such that
〈n; Σ; H; e〉 −→η 〈n′; Σ′; H′; e′〉 and Φ′; Γ′ ` e′ : τ where JΦ′; Γ′ ` e′ : τK = R′; and n′; Γ′ ` H′; and
Φ′,R′; H′ ` Σ′; and traceOK (Σ′) for some Φ′, Γ′,R′.

Proof. From progress (Lemma D.0.37), we know that if n ` H, e : τ then either e is a value, or there exist
n′, H′, Σ′, Φ′, e′, η such that 〈n; Σ; H; e〉 −→η 〈n′; Σ′; H′; e′〉. If e is a value we are done. If e is not a value, then
there are two cases. If η = µ then the result follows from update preservation (Lemma B.0.13). If η = ε0, then the
result follows from preservation (Lemma D.0.36).
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Appendix C
Relaxed Updates Proofs
Lemma C.0.19 (Weakening). If Φ; Γ ` e : τ and Γ′ ⊇ Γ then Φ; Γ′ ` e : τ .

Proof. By induction on the typing derivation of Φ; Γ ` e : τ .

Lemma C.0.20 (Subtyping reflexivity). τ ≤ τ for all τ .

Proof. Straightforward, from the definition of subtyping in Figure 5.2.

Lemma C.0.21 (Subtyping transitivity). For all τ, τ ′, τ ′′, if τ ≤ τ ′ and τ ′ ≤ τ ′′ then τ ≤ τ ′′.

Proof. By simultaneous induction on τ ≤ τ ′ and τ ′ ≤ τ ′′, similar to Lemma B.0.4

Lemma C.0.22 (Value typing). If Φ; Γ ` v : τ then Φ′; Γ ` v : τ for all Φ′.

Proof. By induction on the typing derivation of Φ; Γ ` v : τ .

Lemma C.0.23 (Subtyping Derivations). If Φ; Γ ` e : τ then we can construct a proof derivation of this judgment
that ends in one use of (TSub) whose premise uses a rule other than (TSub).

Proof. By induction on Φ; Γ ` e : τ .

case (TSub) :

We have

TSub Φ′; Γ ` e : τ ′ τ ′ ≤ τ
SCtxt

Φ′ε ⊆ Φε Φα ⊆ Φ′α Φω ⊆ Φ′ω

Φ′δi ⊆ Φδi Φδo ⊆ Φ′δo

Φ′ ≤ Φ

Φ; Γ ` e : τ

By induction, we have

TSub Φ′′; Γ ` e : τ ′′ τ ′′ ≤ τ ′
SCtxt

Φ′′ε ⊆ Φ′ε Φ′α ⊆ Φ′′α Φ′ω ⊆ Φ′′ω

Φ′′δi ⊆ Φ′δi Φ′δo ⊆ Φ′′δo

Φ′′ ≤ Φ′

Φ′; Γ ` e : τ ′

where the derivation Φ′′; Γ ` e : τ ′′ does not conclude with (TSub). By the transitivity of subtyping
(Lemma C.0.21), we have τ ′′ ≤ τ ; the rest of the premises follow by transitivity of ⊆, and finally we get the
desired result by (TSub):

TSub Φ′′; Γ ` e : τ ′′ τ ′′ ≤ τ
SCtxt

Φ′′ε ⊆ Φε Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ′′δi ⊆ Φδi Φδo ⊆ Φ′′δo

Φ′′ ≤ Φ

Φ; Γ ` e : τ

case all others :

Since we have that the last rule in Φ; Γ ` e : τ is not (TSub), we have the desired result by applying (TSub)
(where τ ≤ τ follows from the reflexivity of subtyping, Lemma C.0.20):

TSub Φ; Γ ` e : τ τ ≤ τ Φ ≤ Φ

Φ; Γ ` e : τ

Lemma C.0.24 (Flow effect weakening). If Φ; Γ ` e : τ where Φ ≡ [α; ε; ω; δi; δo], then Φ′; Γ ` e : τ where
Φ′ ≡ [α′; ε; ω′; δi; δo], Φ′α ⊆ Φα, Φ′ω ⊆ Φω, and all uses of [TSub] applying Φ′ ≤ Φ require Φ′ω = Φω, Φ′α = Φα,
Φ′δi = Φδi , and Φ′δo = Φδo .
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Proof. By induction on Φ; Γ ` e : τ .

case (TGvar),(TInt),(TVar) :

Trivial.

case (TCheckin) :

We have

(TCheckin)
α ∪ δo ⊆ α′′ ω ⊆ ω′′

[α; ∅; ω; ∅; δo]; Γ ` checkinα′′,ω′′
:int

Since α′ ⊆ α, and ω′ ⊆ ω,

we can apply (TCheckin):

(TCheckin)
α′ ∪ δo ⊆ α′′ ω′ ⊆ ω′′

[α′; ∅; ω′; ∅; δo]; Γ ` checkinα′′,ω′′
:int

case (TTransact) :

We have

TTransact

Φ′′; Γ ` e : τ
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` tx(Φ′′α∪Φ′′δi ,Φ′′ω∪Φ′′ε) e : τ

Let Φ′ = [α′; ε; ω′; δi
′; δo]. Since Φ′α ⊆ Φα, and Φ′ω ⊆ Φω ,

we can apply (TTransact):

TTransact

Φ′′; Γ ` e : τ
Φ′α ⊆ Φ′′α Φ′ω ⊆ Φ′′ω

Φ′; Γ ` tx(Φ′′α∪Φ′′δi ,Φ′′ω∪Φ′′ε) e : τ

case (TIntrans) :

Similar to (TTransact).

case (TSub) :

We have

TSub Φ′; Γ ` e : τ ′ τ ′ ≤ τ

Φ′ε ⊆ Φε Φω ⊆ Φ′ω Φα ⊆ Φ′α

Φ′δi ⊆ Φδi Φδo ⊆ Φ′δo

Φ′ ≤ Φ

Φ; Γ ` e : τ

Let Φ′′ = [Φα; Φ′ε; Φω ; Φδi ; Φδo ]. Thus we have:

TSub Φ′′; Γ ` e : τ ′ τ ′ ≤ τ

Φ′′ε ⊆ Φε Φω = Φ′′ω Φα = Φ′′α

Φδi = Φ′δi Φδo = Φ′′δo

Φ′′ ≤ Φ

Φ; Γ ` e : τ

where the first premise follows by induction (which we can apply because Φ′′ω ⊆ Φ′ω and Φ′′α ⊆ Φ′α by
assumption); the first premise of Φ′′ ≤ Φ is by assumption, and the latter two premises are by definition of
Φ′′.

case (TRef) :

We know that

TRef Φ; Γ ` e : τ

Φ; Γ ` ref e : ref ε τ

and have Φ′; Γ ` e : τ by induction, hence we get the result by (TRef).
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case (TDeref) :

We know that

TDeref

Φ1; Γ ` e : ref ε τ

Φε
2 = ε Φ

δi
2 = Φδo

2 ∪ ε
Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ

We have Φ′ ≡ [α′; Φε
1∪Φε

2; ω′; δi
′; δo

′] where α′ ⊆ Φα, and ω′ ⊆ Φω . Choose Φ′
1 ≡ [α′; Φε

1; Φε
2∪ω′; δi; Φ

ε
2∪δo]

and Φ′
2 ≡ [α′ ∪Φε

1; Φε
2; ω′; Φε

2 ∪ δo; δo], hence Φ′
1 −→ Φ′

2, Φ′ε
2 = Φε

2 = ε, Φ
′δi
2 = Φ′δo

2 ∪ ε, and Φ′ ≡ Φ′
1 � Φ′

2.
We want to prove that Φ′; Γ ` ! e : τ . Since α′ ⊆ α, and Φε

2 ∪ ω′ ⊆ Φε
2 ∪ ω we can apply induction to get

Φ′
1; Γ ` e : ref ε τ and we get the result by applying (TDeref):

TDeref

Φ′
1; Γ ` e : ref ε τ

Φ′ε
2 = ε Φ

δi
2 = Φδo

2 ∪ ε
Φ′

1 � Φ′
2 ↪→ Φ′

Φ′; Γ ` ! e : τ

case (TApp) :

We know that

TApp

Φ1; Γ ` e1 : τ1 −→Φf τ2 Φ2; Γ ` e2 : τ1
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ; Γ ` e1 e2 : τ2

We have Φ′ ≡ [α′; Φε
1 ∪ Φε

2 ∪ Φε
3; ω′; δi; δo1] where α′ ⊆ Φα and ω′ ⊆ Φω . Choose Φ′

1 ≡ [α′; Φε
1; Φε

2 ∪ Φε
3 ∪

ω′; δi; δo1], Φ′
2 ≡ [α′ ∪ Φε

1; Φε
2; Φε

3 ∪ ω′; δo1; δo2], Φ′
3 ≡ [α′ ∪ Φε

1 ∪ Φε
2; Φε

3; ω′; δo2; δo], hence Φ′ε
3 = Φε

3 = εf

, Φ
δi
3 = Φδo

3 ∪ Φε
f , Φδo

3 ⊆ Φδo
f , and Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′. We want to prove that Φ′; Γ ` e1 e2 : τ2. Since

α′ ⊆ α and Φε
2 ∪Φε

3 ∪ ω′ ⊆ Φε
2 ∪Φε

3 ∪ ω′ we can apply induction to get Φ′
1; Γ ` e1 : τ1 −→Φf τ2. Similarly,

since α′ ∪Φε
1 ⊆ α∪Φε

1 and Φε
3 ∪ω′ ⊆ Φε

3 ∪ω, we can apply induction to get Φ′
2; Γ ` e2 : τ1. We get the get

the result by applying (TApp):

TApp

Φ′
1; Γ ` e1 : τ1 −→Φ′

f τ2 Φ′
2; Γ ` e2 : τ1

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

Φ
′δi
3 = Φ′δo

3 ∪ Φε
f Φ′δo

3 ⊆ Φδo
f

Φ′; Γ ` e1 e2 : τ2

case (TAssign), (TIf), (TLet) :

Similar to (TApp).

Lemma C.0.25 (Left subexpression version consistency). If Φ,R; H ` Σ and Φ1 � Φ2 ↪→ Φ then Φ1,R; H ` Σ.

Proof. We know:

TC1

f ∈ σ ⇒ f ∈ α
f ∈ (ε ∩ δi) ⇒ n′ ∈ ver(H, f)

κα ⊇ (α ∪ δi)
κω ⊇ (ω ∪ ε)

[α; ε; ω; δi; δo], ·; H ` (n′, σ, κ)

We need to prove:

TC1

f ∈ σ ⇒ f ∈ α1

f ∈ (ε1 ∩ δi1) ⇒ n′ ∈ ver(H, f)
κα ⊇ (α1 ∪ δi1)
κω ⊇ (ω1 ∪ ε1)

[α1; ε1; ω1; δi1; δo1], ·; H ` (n′, σ, κ)

The first premise follows since α1 ≡ α. The second follows because δi1 ≡ δi and ε1 ⊆ ε. The third follows
because α1 ≡ α and δi1 ≡ δi. The fourth follows because ω ∪ ε ≡ ω ∪ ε1 ∪ ε2 ≡ (ω ∪ ε2) ∪ ε1 ≡ ω1 ∪ ε1.
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Lemma C.0.26 (Subexpression version consistency). If Φ,R1 ./ R2; H ` Σ and Φ1 � Φ2 ↪→ Φ then

(i) R2 ≡ · implies Φ1,R1; H ` Σ

(ii) R1 ≡ · and Φε
1 ≡ ∅ implies Φ2,R2; H ` Σ

Proof. Similar to Lemma C.0.25.

Lemma C.0.27 (Stack Shapes). If 〈n; Σ; H; e〉 −→ε0 〈n; Σ′; H′; e′〉 then top(Σ) = (n′, σ, κ) and top(Σ′) =
(n′′, σ′, κ′) where n′ = n′′, σ ⊆ σ′ and κ = κ′.

Proof. By induction on 〈n; Σ; H; e〉 −→ε0 〈n; Σ′; H′; e′〉.

Lemma C.0.28 (Update preserves heap safety). If n; Γ ` H and updateOK (upd , H, (α, ω), dir) then n+1;U [Γ]upd `
U [H]updn+1.

Proof. Same proof as Lemma B.0.12.

The following lemma states that if we start with a well-typed program and a version-consistent trace and
we take an update step, then afterward we will still have a well-typed program whose trace is version-consistent.

Lemma C.0.29 (Update preservation).
Suppose we have the following:

1. n ` H, e : τ (such that Φ; Γ ` e : τ ; R and n; Γ ` H for some Γ, Φ)

2. Φ,R; H ` Σ

3. traceOK (Σ)

4. 〈n; Σ; H; e〉 −→ µ 〈n + 1;Σ′; H′; e〉

where H′ ≡ U [H]updn+1, Γ′ ≡ U [Γ]upd , µ = (upd , dir), Σ′ ≡ U [Σ]upd,dir
n , and top(Σ′) = (n′′, σ′, κ′). Then for some

Φ′ such that Φ′α = Φα, Φ′ω = Φω, Φ′δi = Φδi , Φ′δo = Φδo , and Φ′ε ⊆ Φε and some Γ′ ⊇ Γ we have that:

1. n + 1 ` H′, e : τ where Φ′; Γ′ ` e : τ ; R and n + 1; Γ′ ` H′

2. Φ′,R; H′ ` Σ′

3. traceOK (Σ′)

4. (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ω ⇒ ver(H, f) ⊆ ver(H′, f))

Proof. Since U [Γ]upd ⊇ Γ, Φ;U [Γ]upd ` e : τ ; R follows by weakening (Lemma C.0.19). Proceed by simultaneous
induction on the typing derivation of e (n ` H, e : τ) and on the evaluation derivation 〈n; Σ; H; e〉 −→ µ 〈n +
1;Σ′; H′; e〉. Consider the last rule used in the evaluation derivation:

case [update] :

We have
〈n; (n′, σ, κ); H; e〉 −→(upd,dir) 〈n′′;U

ˆ
(n′, σ, κ)

˜upd,dir

n′′ ;U [H]upd
n′′ ; e〉

where n′′ ≡ n + 1. Let Φ′ = Φ and (n′′, σ′, κ′) ≡ U [(n′, σ, κ)]upd,dir
n+1 .

To prove 1., we get n′′; Γ′ ` H′ by Lemma C.0.28 and Φ; Γ′ ` e′ : τ ; R by weakening.

To prove 2., we must show Φ, ·; H′ ` (n′′, σ′, κ′). By assumption, we have

TC1

f ∈ σ ⇒ f ∈ α
f ∈ ε ∩ δi ⇒ n′ ∈ ver(H, f)

κα ⊇ (α ∪ δi)
κω ⊇ (ω ∪ ε)

[α; ε; ω; δi; δo], ·; H ` (n′, σ, κ)

We need to prove

TC1

f ∈ σ ⇒ f ∈ α
f ∈ ε ∩ δi ⇒ n′′′ ∈ ver(H′, f)

κα ⊇ (α ∪ δi)
κω ⊇ (ω ∪ ε)

[α; ε; ω; δi; δo], ·; H ` (n′′, σ′, κ′)

We have the first, third and fourth premises by assumption. For the second premise, we need to prove
f ∈ ε ∩ δi ⇒ n′′′ ⊆ ver(H′, f).

Consider each possible update type:
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case dir = bck :

From the definition of U [(n′, σ, κ)]upd,bck
n+1 , we know that n′′′ = n+1; from the definition of U [H]upd

n+1

we know that n + 1 ∈ ver(H′, f) for all f, hence n′′′ ∈ ver(H′, f) for all f.

case dir = fwd :

From the definition of U [(n′, σ, κ)]upd,bck
n+1 , we know that n′′′ = n′. Since κω ⊇ (ω ∪ ε), from

updateOK (upd , H, (κα, κω), dir) we know that ∀f ∈ (ω ∪ ε), f 6∈ dom(upd .UB), hence ver(H′, f) =
ver(H′, f). Hence f ∈ ε ∩ δi ⇒ n′ ∈ ver(H, f) (assumption) implies f ∈ ε ∩ δi ⇒ n′′′ ∈ ver(H′, f).

To prove 3., we must show traceOK (n′′, σ′, κ′). Consider each possible update type:

case dir = bck :

From the definition of U [(n′, σ, κ)]upd,bck
n+1 , we know that n′′′ = n + 1. Consider (f, ν) ∈ σ; it must

be the case that f 6∈ dom(updchg ). This is because dir = bck implies κα ∩ dom(updchg ) = ∅ and by
assumption (from [TC1] above) f ∈ α and κα ⊇ α. Therefore, since f 6∈ dom(updchg ), its σ′ entry
is (f, ν ∪ {n′′′}), which is the required result.

case dir = fwd :

Since U [(n′, σ, κ)]upd,fwd
n+1 = (n′, σ, κ), the result is true by assumption.

To prove 4., we must show n′′′ ≡ n + 1 ∨ (f ∈ ω ⇒ ver(H, f) ⊆ ver(H′, f)). Consider each possible update
type:

case dir = bck :

From the definition of U [(n′, σ, κ)]upd,bck
n+1 , we know that n′′′ = n + 1 so we are done.

case dir = fwd :

We have U [(n′, σ, κ)]upd,fwd
n+1 = (n′, σ, κ), and from updateOK (upd , H, (κα, κω), dir) and we know

that f ∈ κω ⇒ f 6∈ dom(updchg ) and by assumption (from [TC1] above) we know κω ⊇ ω.

From the definition of U [H]upd
n we know that U [(f 7→ (τ, b, ν), H)]updn+1 = f 7→ (τ, b, ν ∪ {n + 1}) if

f 6∈ dom(updchg ). This implies that for f ∈ ω, ver(H, f) = ν and ver(H′, f) = ν ∪ {n + 1}, and
therefore ver(H, f) ⊆ ver(H′, f).

case [tx-cong-1] :

We have that 〈n; ((n′, σ, κ), Σ); H; intx e〉 −→µ 〈n′′;U [(n′, σ, κ)]µ
n′′ , Σ

′; H′; intx e′〉 follows from 〈n; Σ; H; E[e]〉 −→η

〈n′′; Σ′; H′; E[e′]〉 by [tx-cong-1], where µ ≡ (upd , dir) and n′′ ≡ n+1. Let (n′′, σ′, κ′) ≡ U [(n′, σ, κ)]upd,dir
n+1 .

By assumption and subtyping derivations (Lemma C.0.23) we have

TSub
TIntrans

Φe; Γ ` e : τ ′ ; R
α ⊆ Φα

e ω ⊆ Φω
e

[α; ∅; ω; δi; δo]; Γ ` intx e : τ ′ ; Φe,R τ ′ ≤ τ [α; ∅; ω; δi; δo] ≤ [α; ε; ω; δi; δo]

[α; ε; ω; δi; δo]; Γ ` intx e : τ ; Φe,R

and by flow effect weakening (Lemma C.0.24) we know that α, ω, δi and δo are unchanged in the use of
(TSub). We have Φe ≡ [αe; εe; ωe; δie; δoe], so that ωe ⊇ ω and αe ⊇ α. To apply induction, we must show
that Φe,R; H ` Σ (which follows by inversion on Φ, Φe,R; H ` ((n′, σ, κ), Σ); Φe; Γ ` e : τ ′ ; R (which
follows by assumption); and n; Γ ` H (by assumption).

By induction we have:

(i) Φ′
e; Γ

′ ` e′ : τ ′ ; R and

(ii) n + 1; Γ′ ` H′

(iii) Φ′
e,R; H′ ` Σ′

(iv) traceOK (Σ′)

(v) (dir = bck) ⇒ n′′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ωe ⇒ ver(H, f) ⊆ ver(H′, f))

where Φ′
e ≡ [αe; ε′e; ωe; δie; δoe], ε′e ⊆ εe.

Let Φ′ = [α; ∅; ω; δi; δo] (hence Φ′α = Φα, Φ′ω = Φω , ∅ ⊆ Φε, Φ′δi = Φδi , and Φ′δo = Φδo as required). To
prove 1., we can show

TSub
TIntrans

Φ′
e; Γ

′ ` e′ : τ ; R
α ⊆ Φ′α

e ω ⊆ Φ′ω
e

Φ′; Γ ` intx e′ : τ ; Φ′
e,R τ ′ ≤ τ Φ′ ≤ Φ′

Φ′; Γ ` intx e′ : τ ; Φ′
e,R
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The first premise of [TIntrans] follows by (i), and the second –fifth by assumption (from [α; ∅; ω; δi; δo]; Γ `
intx e : τ ′ ; Φe,R).

To prove 2., we need to show that

TC2

Φ′
e,R; H′ ` Σ′

f ∈ σ′ ⇒ f ∈ α
f ∈ (∅ ∩ δi) ⇒ n′′′ ∈ ver(H′, f)

κα ⊇ (α ∪ δi)
κω ⊇ (ω ∪ ∅)

[α; ∅; ω; δi; δo], Φ′
e,R; H′ ` ((n′′′, σ′, κ′), Σ′)

We have the first premise by (iii), the second by assumption (since dom(σ) = dom(σ′) from the definition

of U [(n′, σ, κ)]upd,dir
n+1 ), the third holds vacuously, and the fourth and fifth follow by assumption (note that

κ′ = κ).

To prove 3., we must show traceOK ((n′′′, σ′, κ′), Σ′), which reduces to proving traceOK ((n′′, σ′, κ′) since
we have traceOK (Σ′) from (iv). We have traceOK (n′, σ, κ) by assumption. Consider each possible update
type:

case dir = bck :

From the definition of U [(n′, σ, κ)]upd,bck
n+1 , we know that n′′′ = n + 1. Consider (f, ν) ∈ σ; it must

be the case that f 6∈ dom(updchg ). This is because dir = bck implies αe ∩ dom(updchg ) = ∅ and by
assumption we have α ⊆ αe (from (TIntrans)), f ∈ α (from the first premise of [TC1] above), and
κα ⊇ (α ∪ δi) (from the fourth premise of [TC1] above). Therefore, since f 6∈ dom(updchg ), its σ′

entry is (f, ν ∪ {n′}), which is the required result.

case dir = fwd :

Since U [(n′, σ, κ)]upd,fwd
n+1 = (n′, σ, κ), the result is true by assumption.

Part 4. follows directly from (v) and the fact that ωe ⊇ ω.

case [cong] :

We have that 〈n; Σ; H; E[e]〉 −→ µ 〈n′′; Σ′; H′; E[e′]〉 follows from 〈n; Σ; H; e〉 −→ µ 〈n′′; Σ′; H′; e′〉 by
[cong], where µ ≡ (upd , dir). Consider the shape of E:

case :

The result follows directly by induction.

case E e2 :

By assumption, we have Φ; Γ ` (E e2)[e1] : τ ; R. By subtyping derivations (Lemma C.0.23) we
know we can construct a proof derivation of this ending in (TSub):

TSub

TApp

Φ1; Γ ` E[e1] : τ1 −→Φf τ ′2 ; R1 Φ2; Γ ` e2 : τ1 ; ·
Φ1 � Φ2 � Φ3 ↪→ Φs

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

E [e1] 6≡ v ⇒R2 = ·
Φs; Γ ` (E e2)[e1] : τ ′2 ; R1

τ ′2 ≤ τ2
SCtxt

Φ ≡ [α; ε; ω; δi; δo]
Φs ≡ [α; ε1 ∪ ε2 ∪ εf ; ω; δi; δo]

(ε1 ∪ ε2 ∪ εf ) ⊆ ε

Φs ≤ Φ

Φ; Γ ` (E e2)[e1] : τ2 ; R1

and by flow effect weakening (Lemma C.0.24) we know that α, ω , δi and δo are unchanged in the
use of (TSub).

By inversion on 〈n; Σ; H; (E e2)[e1]〉 −→ µ 〈n′′; Σ′; H′; (E e2)[e1]〉 we have 〈n; Σ; H; e1〉 −→ µ

〈n′′; Σ′; H′; e1〉, and then applying [cong] we have 〈n; Σ; H; (E)[e1]〉 −→ µ 〈n′′; Σ′; H′; (E)[e′1]〉
From Φ,R1; H ` Σ we know that:

f ∈ σ ⇒ f ∈ α
f ∈ ε ∩ δi ⇒ n′ ∈ ver(H, f)
κα ⊇ (α ∪ δi)
κω ⊇ (ω ∪ ε)
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where (n′, σ, κ) is the top of Σ. Since Φ ≡ [α; ε; ω; δi; δo] and Φs ≡ [α; εs; ω; δi; δo] and εs =
ε1 ∪ ε2 ∪ ε3 (where ε3 = εf ), we have α ≡ α1 hence:

f ∈ σ ⇒ f ∈ α1

f ∈ ε1 ∩ δi ⇒ n′ ∈ ver(H, f)
κα ⊇ (α1 ∪ δi1)
κω ⊇ (ω1 ∪ ε1)

but since Φ1 ≡ [α; ε1; ω1; δi1; δo1], we have Φ1,R1; H ` Σ. Hence we can apply induction on
Φ1; Γ ` E[e1] : τ1 −→Φf τ ′2 ; R1, yielding:

(i) Φ′
1; Γ′ ` E[e′1] : τ1 −→Φf τ2 ; R1 and

(ii) n + 1; Γ′ ` H′

(iii) Φ′
1,R1; H′ ` Σ′

(iv) traceOK (Σ′)

(v) (dir = bck) ⇒ n′′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ω1 ⇒ ver(H, f) ⊆ ver(H′, f))

where Φ′
1 ≡ [α; ε′1; ω1; δi; δo1] and ε′1 ⊆ ε1. Choose Φ′

2 = [α ∪ ε′1; ε2; ω2; δi2; δo2] and Φ′
3 =

[α ∪ ε′1 ∪ ε2; εf ; ω; δi3; δo] and thus Φ′
1�Φ′

2�Φ′
3 ↪→ Φ′

s and Φ′ε
3 = Φε

f . Let Φ′ = [α; ε′1 ∪ ε2 ∪ εf ; ω; δi; δo],

where ε′1 ∪ ε2 ∪ εf ⊆ ε, as required.

To prove 1., we have n + 1; Γ′ ` H′ by (ii), and apply (TApp):

TApp

Φ′
1; Γ′ ` E[e′1] : τ1 −→Φf τ ′2 ; R1 Φ′

2; Γ′ ` e2 : τ1 ; ·
Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′
s

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

Φ
′δi
3 = Φ′δo

3 ∪ Φε
f Φ′δo

3 ⊆ Φδo
f

E[e′1] 6≡ v ⇒R2 = ·
Φ′

s; Γ
′ ` (E e2)[e′1] : τ ′2 ; R1

The first premise follows by (i), the second because we have Φ2; Γ′ ` e2 : τ1 by weakening (since
Γ′ ⊇ Γ) and then Φ′

2; Γ′ ` e2 : τ1 by flow effect weakening (Lemma C.0.24) (which we can apply

because Φ′ω
2 = Φω

2 , Φ′ε
2 = Φε

2, Φ′α
2 = α1 ∪ ε′1, Φα

2 = α1 ∪ ε1 hence Φ′α
2 ⊆ Φα

2 , Φ
′δi
2 = Φ

δi
2 , and

Φ′δo
2 = Φδo

2 ) , the third— eighth by choice of Φ′
2, Φ′

3 and Φ′
s, and the last as R2 ≡ · by assumption.

We can now apply (TSub):

TSub

Φ′; Γ ` (E e2)[e′1] : τ ′2 ; R1

τ ′2 ≤ τ2 Φ′ ≤ Φ′

Φ′; Γ ` (E e2)[e′1] : τ2 ; R′
1

To prove part 2., we must show that Φ′,R1; H′ ` Σ′.

By inversion on Φ,R1; H ` Σ we have Σ ≡ (n′, σ, κ) or Σ ≡ ((n′, σ, κ), Σ′′). We have two cases:

Σ ≡ (n′, σ, κ): Hence Σ′ ≡ U [(n′, σ, κ)]upd,dir
n′′ ≡ (n′′, σ′, κ′). By (iii) we must have R1 ≡ · such that

TC1

f ∈ σ′ ⇒ f ∈ α1

f ∈ (ε′1 ∩ δi1) ⇒ n′′′ ∈ ver(H′, f)
κα′ ⊇ (α1 ∪ δi1)
κω ′ ⊇ (ω1 ∪ ε′1)

[α; ε′1; ω1; δi1; δo1], ·; H′ ` (n′′, σ′, κ′)

To achieve the desired result we need to prove:

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ ((ε′1 ∪ ε2 ∪ εf ) ∩ δi1) ⇒ n′′′ ∈ ver(H′, f)

κα′ ⊇ (α ∪ δi1)
κω ′ ⊇ (ω ∪ ε′1 ∪ ε2 ∪ εf )

[α; ε′1 ∪ ε2 ∪ εf ; ω; δi; δo], ·; H′ ` (n′′, σ′, κ′)

Note that α ≡ α1. The first premise is by assumption (since dom(σ) = dom(σ′) from the

definition of U [(n′, σ, κ)]upd,dir
n+1 ). For the second premise, we need to show that for all f ∈

((ε2 ∪ εf ) ∩ δi1) ⇒ n′′′ ∈ ver(H′, f) ; for those f ∈ (ε′1 ∩ δi1) the result is by assumption.
Consider each possible update type:

165



case dir = bck :
From the definition of U [(n′, σ, κ)]upd,bck

n+1 , we know that n′′′ = n+1; from the definition

of U [H]upd
n+1 we know that n + 1 ∈ ver(H′, f) for all f, hence n′′′ ∈ ver(H′, f) for all f.

case dir = fwd :
From (v) we have that f ∈ ω1 ⇒ ver(H, f) ⊆ ver(H′, f). Since (ε2∪εf ) ⊆ ω1 (by Φ′

1 �

Φ′
2�Φ′

3 ↪→ Φ′), we have ((ε2∪εf )∩δi1) ⊆ ω1 hence f ∈ ((ε2∪εf )∩δi1) ⇒ ver(H, f) ⊆
ver(H′, f). By inversion on Φ,R1; H ` Σ we have f ∈ (ε1 ∪ ε2 ∪ εf ) ⇒ n′ ∈ ver(H, f),

and thus f ∈ (ε2∪εf )∩δi1) ⇒ n′ ∈ ver(H′, f). We have U [(n′, σ, κ)]upd,fwd
n+1 = (n′, σ, κ)

hence n′′′ = n′, so finally we have f ∈ ((ε2 ∪ εf )) ∩ δi1) ⇒ n′′′ ∈ ver(H′, f).

The third and fourth premises follow by assumption since κ′ = κ and ε′1 ⊆ ε1.

Σ ≡ ((n′, σ, κ), Σ′′) Hence Σ′ ≡ U [(n′, σ, κ)]upd,dir
n′′ ≡ ((n′′′, σ′, κ′), Σ′′′)

By (iii), we must have R1 ≡ Φ′′,R′′ such that

TC2

Φ′′,R′′; H′ ` Σ′′

Φ′
1 ≡ [α; ε′1; ω1; δi1; δo1]

f ∈ σ′ ⇒ f ∈ α1

f ∈ (ε′1 ∩ δi1) ⇒ n′′′ ∈ ver(H′, f)
κα′ ⊇ (α1 ∪ δi1)
κω ′ ⊇ (ω1 ∪ ε′1)

Φ′
1, Φ′′,R′′; H′ ` ((n′′′, σ′, κ′), Σ′′′)

We wish to show that

TC2

Φ′′,R′′; H′ ` Σ′′

Φ′ ≡ [α; ε′1 ∪ ε2 ∪ εf ; ω; δi; δo]
f ∈ σ′ ⇒ f ∈ α

f ∈ ((ε′1 ∪ ε2 ∪ εf ) ∩ δi1) ⇒ n′′′ ∈ ver(H′, f)
κα′ ⊇ (α ∪ δi1)

κω ′ ⊇ (ω ∪ ε′1 ∪ ε2 ∪ εf )

Φ′, Φ′′,R′′; H′ ` ((n′′′, σ′, κ′), Σ′′′)

Φ′′,R′′; H′ ` Σ′′ follows by assumption while the rest of the premises follow by the same
argument as in the Σ ≡ (n′, σ, κ) case, above.

Part 3. follows directly from (iv).

Part 4. follows directly from (v) and the fact that ω1 ⊇ ω (because ω1 ≡ ε2 ∪ εf ∪ ω).

case v E :

By assumption, we have Φ; Γ ` (v E)[e2] : τ ; R. By subtyping derivations (Lemma C.0.23) we
have:

TSub

TApp

Φ1; Γ ` v : τ1 −→Φf τ ′2 ; · Φ2; Γ ` E[e2] : τ1 ; R2

Φ1 � Φ2 � Φ3 ↪→ Φs

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

v 6≡ v′ ⇒R2 = ·
Φs; Γ ` (v E)[e2] : τ ′2 ; R2

τ ′2 ≤ τ2
SCtxt

Φ ≡ [α; ε; ω; δi; δo]
Φs ≡ [α; ε1 ∪ ε2 ∪ εf ; ω; δi; δo]

(ε1 ∪ ε2 ∪ εf ) ⊆ ε

Φs ≤ Φ

Φ; Γ ` (v E)[e2] : τ2 ; R2

and by flow effect weakening (Lemma C.0.24) we know that α, ω, δi and δo are unchanged in the
use of (TSub).

By inversion on 〈n; Σ; H; (v E)[e2]〉 −→ µ 〈n′′; Σ′; H′; (v E)[e′2]〉 we have 〈n; Σ; H; e2〉 −→ µ

〈n′′; Σ′; H′; e′2〉, and then applying [cong] we have 〈n; Σ; H; (E)[e2]〉 −→ µ 〈n′′; Σ′; H′; (E)[e′2]〉
From Φ,R2; H ` Σ we know that:

f ∈ σ ⇒ f ∈ α
f ∈ ε ∩ δi ⇒ n′ ∈ ver(H, f)
κα ⊇ (α ∪ δi)
κω ⊇ (ω ∪ ε)
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where (n′, σ, κ) is the top of Σ. We have Φ ≡ [α; ε; ω; δi; δo], Φs ≡ [αs; εs; ωs; δis; δos], εs ⊆ ε,
εs = ε1 ∪ ε2 ∪ ε3 (where ε3 = εf ), Φ2 ≡ [α2; ε2; ω2; δi2; δo2], α2 ≡ α1 ∪ ε1 = α (since ε1 = ∅; if it’s
not ∅ we can construct a derivation for v that has ε1 = ∅ as argued in preservation (Lemma C.0.31),
(TApp)-[Cong], case v E). Similarly, we have α2 = α1 = α and δi2 = δi1 = δi. We have

f ∈ σ ⇒ f ∈ α2

f ∈ ε2 ∩ δi2 ⇒ n′ ∈ ver(H, f)
κα ⊇ (α2 ∪ δi2)
κω ⊇ (ω2 ∪ ε2)

hence Φ2,R2; H ` Σ and we can apply induction on Φ2; Γ ` E[e2] : τ1 −→Φf τ ′2 ; R2, yielding:

(i) Φ′
2; Γ′ ` E[e2] : τ1 ; R2 and

(ii) n + 1; Γ′ ` H′

(iii) Φ′
2,R2; H′ ` Σ′

(iv) traceOK (Σ′)

(v) (dir = bck) ⇒ n′′ ≡ n + 1 ∧ (dir = fwd) ⇒ (f ∈ ω2 ⇒ ver(H, f) ⊆ ver(H′, f))

where Φ′
2 ≡ [α2; ε′2; ω2; δi2; δo2] and ε′2 ⊆ ε2. Choose Φ′

1 = [α; ∅; ω2 ∪ ε′2; δi1; δo1] and Φ′
3 =

[α ∪ ε′2; εf ; ω; δi3; δo] and thus Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′ and Φ′ε

3 = Φε
f .

Let Φ′ ≡ [α; ε′2 ∪ εf ; ω; δi; δo] and thus ε′2 ∪ εf ⊆ ε as required.

To prove 1., we have n + 1; Γ′ ` H′ by (ii), and apply (TApp):

TApp

Φ′
1; Γ′ ` v : τ1 −→Φf τ ′2 ; · Φ′

2; Γ′ ` E[e2] : τ1 ; R2

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

Φ
′δi
3 = Φ′δo

3 ∪ εf Φ′δo
3 ⊆ Φδo

f

v 6≡ v′ ⇒R2 = ·
Φ′; Γ′ ` (v E)[e2] : τ ′2 ; R2

The first premise follows by value typing, the second by (i), the third– eighth by choice of Φ′
1 and

Φ′
3, and the last holds vacuously. We can now apply (TSub):

TSub

Φ′; Γ ` (v E)[e2] : τ ′2 ; R2

τ ′2 ≤ τ2 Φ′ ≤ Φ′

Φ′; Γ ` (v E)[e2] : τ2 ; R2

To prove part 2., we must show that Φ′,R2; H′ ` Σ′.

By inversion on Φ,R2; H ` Σ we have Σ ≡ (n′, σ, κ) or Σ ≡ ((n′, σ, κ), Σ′′). We have two cases:

Σ ≡ (n′, σ, κ): By (iii) we must have R2 ≡ · such that

TC1

f ∈ σ′ ⇒ f ∈ α2

f ∈ ε′2 ∩ δi2 ⇒ n′′′ ∈ ver(H′, f)
κα′ ⊇ (α2 ∪ δi2)
κω ′ ⊇ (ω2 ∪ ε′2)

[α; ε′2; ω2; δi2; δo2], ·; H′ ` (n′′, σ′, κ′)

To achieve the desired result we need to prove:

TC1

f ∈ σ′ ⇒ f ∈ α
f ∈ (ε′2 ∪ εf ) ∩ δi ⇒ n′′′ ∈ ver(H′, f)

κα′ ⊇ (α ∪ δi)
κω ′ ⊇ (ω ∪ ε′2 ∪ εf )

[α; ε′2 ∪ εf ; ω; δi; δo], ·; H′ ` (n′′, σ′, κ′)

Note that α2 = α1 = α. The first premise follows by assumption (since dom(σ) = dom(σ′)

from the definition of U [(n′, σ, κ)]upd,dir
n+1 ). The third and fourth premise follow by assumption

since δi = δi2, α = α2, ε1 = ∅ and ω2 = ω ∪ εf . For the second premise, we need to show
that for all f ∈ (εf ∩ δi) ⇒ n′′ ∈ ver(H′, f) (for those f ∈ ε′2 ∩ δi the result is by assumption).
Consider each possible update type:
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case dir = bck :
From the definition of U [(n′, σ, κ)]upd,bck

n+1 , we know that n′′′ = n+1; from the definition

of U [H]upd
n+1 we know that n + 1 ∈ ver(H′, f) for all f, hence n′′′ ∈ ver(H′, f) for all f.

case dir = fwd :
From (v) we have that f ∈ ω2 ⇒ ver(H, f) ⊆ ver(H′, f). Then εf ⊆ ω2 (by Φ′

1 � Φ′
2 �

Φ′
3 ↪→ Φ′) implies f ∈ εf ⇒ ver(H, f) ⊆ ver(H′, f). By inversion on Φ,R2; H ` Σ we

have f ∈ ((ε2 ∪ εf ) ∩ δi) ⇒ n′ ∈ ver(H, f), and thus f ∈ εf ⇒ n′ ∈ ver(H′, f). We

have U [(n′, σ, κ)]upd,fwd
n+1 = (n′, σ, κ) hence n′′′ = n′, so finally we have f ∈ (εf ∩ δi) ⇒

n′′′ ∈ ver(H′, f).

The fourth and fifth premises follow by assumption since κ′ = κ and ε′2 ⊆ ε2.

Σ ≡ (n′′, σ, κ), Σ′′ By (iii), we must have R2 ≡ Φ′′,R′′ such that

TC2

Φ′′,R′′; H′ ` Σ′′

Φ′
2 ≡ [α; ε′2; ω2; δi2; δo2]

f ∈ σ′ ⇒ f ∈ α2

f ∈ ε′2 ∩ δi2 ⇒ n′′′ ∈ ver(H′, f)
κα′ ⊇ (α2 ∪ δi2)
κω ′ ⊇ (ω2 ∪ ε′2)

Φ′
2, Φ′′,R′′; H′ ` ((n′′′, σ′, κ′), Σ′′′)

We wish to show that

TC2

Φ′′,R′′; H′ ` Σ′′

Φ′ ≡ [α; ε′2 ∪ εf ; ω; δi; δo]
f ∈ σ′ ⇒ f ∈ α

f ∈ (ε′2 ∪ εf ) ∩ δi ⇒ n′′′ ∈ ver(H′, f)
κα′ ⊇ (α ∪ δi)

κω ′ ⊇ (ω ∪ ε′2 ∪ εf )

Φ′, Φ′′,R′′; H′ ` ((n′′′, σ′, κ′), Σ′′′)

Φ′′,R′′; H′ ` Σ′′ follows by assumption while the third and fourth premises follow by the
same argument as in the Σ ≡ (n′, σ, κ) case, above.

Part 3. follows directly from (iv).

Part 4. follows directly from (v) and the fact that ω2 ⊇ ω.

case all others :

Similar to cases above.

This lemma says that if take an evaluation step that is not an update, the version set of any z remains
unchanged.

Lemma C.0.30 (Non-update step version preservation). If 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H′; e′〉 then for all z ∈
dom(H′), ver(H′, z) = ver(H, z).

Proof. By inspection of the evaluation rules.

The following lemma states that if we start with a well-typed program and a version-consistent trace and we
can take an evaluation step, then afterward we will still have a well-typed program whose trace is version-consistent.

Lemma C.0.31 (Preservation).
Suppose we have the following:

1. n ` H, e : τ (such that Φ; Γ ` e : τ ; R and n; Γ ` H for some Γ and Φ)

2. Φ,R; H ` Σ

3. traceOK (Σ)

4. 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H′; e′〉

Then for some Γ′ ⊇ Γ and Φ′ ≡ [Φα ∪ ε0; ε′; Φω ; Φδi ; Φδo ] such that ε′ ∪ ε0 ⊆ Φε, we have:

1. n ` H′, e′ : τ where Φ′; Γ′ ` e′ : τ ; R′ and n; Γ′ ` H′
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2. Φ′,R′; H′ ` Σ′

3. traceOK (Σ′)

Proof. Induction on the typing derivation n ` H, e : τ . By inversion, we have that Φ; Γ ` e : τ ; R; consider each
possible rule for the conclusion of this judgment:

case (TInt-TVar-TGvar-TLoc) :

These expressions do not reduce, so the result is vacuously true.

case (TRef) :

We have that:

(TRef)
Φ; Γ ` e : τ ; R

Φ; Γ ` ref e : ref ε τ ; R

There are two possible reductions:

case [ref] :

We have that e ≡ v, R = ·, and 〈n; (n′, σ, κ); H; ref v〉 −→∅ 〈n; (n′, σ, κ); H′; r〉 where r /∈ dom(H)
and H′ = H, r 7→ (·, v, ∅).
Let Γ′ = Γ, r : ref ε τ and Φ′ = Φ (which is acceptable since Φ′α = Φα ∪ ∅, ε′ ∪ ∅ ⊆ Φα, Φ′ω = Φω ,
Φ′δi = Φδi , Φ′δo = Φδo , and R′ = ·. We have part 1. as follows:

(TSub)

(TLoc)
Γ′(r) = ref ε τ

Φ∅; Γ
′ ` r : ref ε τ ; · ref ε τ ≤ ref ε τ Φ∅ ≤ Φ

Φ; Γ′ ` r : ref ε τ ; ·

Heap well-formedness n; Γ′ ` H, r 7→ (·, v, ∅) holds since Φ∅; Γ
′ ` v : τ follows by value typing

(Lemma C.0.22) from Φ; Γ′ ` v : τ , which we have by assumption and weakening; we have n; Γ′ ` H
by weakening.

To prove 2., we must show Φ, ·; H′ ` (n′, σ, κ). This follows by assumption since H′ only contains
an additional location (i.e., not a global variable) and nothing else has changed. Part 3. follows by
assumption since Σ′ = Σ.

case [cong] :

We have that 〈n; Σ; H; ref E[e′′]〉 −→ε 〈n; Σ′; H′; ref E[e′′′]〉 from 〈n; Σ; H; e′′〉 −→ε 〈n; Σ′; H′; e′′′〉.
By [cong], we have 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H′; e′〉 where e ≡ E[e′′] and e′ ≡ E[e′′′].

By induction we have:

(i) Φ′; Γ′ ` e′ : τ ; R′ and

(ii) n; Γ′ ` H′

(iii) Φ′,R′; H′ ` Σ′

(iv) traceOK (Σ′)

where Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε, Φ′ω = Φω , Φ′δi = Φδi , and Φ′δo = Φδo . We prove 1. using (ii),
and applying [TRef] using (i):

(TRef)
Φ′; Γ′ ` e′ : τ ; R′

Φ′; Γ′ ` ref e′ : ref ε τ ; R′

Part 2. follows directly from (iii), and part 3. follows directly from (iv).

case (TDeref) :

We know that

(TDeref)

Φ1; Γ ` e : ref εr τ ; R
Φε

2 = εr Φ
δi
2 = Φδo

2 ∪ εr

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ ; R

We can reduce using either [gvar-deref], [deref], or [cong].
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case [gvar-deref] :

Thus we have e ≡ z such that

〈n; (n′, σ, κ); (H′′, z 7→ (τ ′, v, ν)); ! z〉 −→{z} 〈n; (n′, σ ∪ (z, ν), κ); (H′′, z 7→ (τ ′, v, ν)); v〉

(where H ≡ (H′′, z 7→ (τ ′, v, ν))), by subtyping derivations (Lemma C.0.23) we have

(TSub)

(TGVar)
Γ(z) = ref ε′

r τ ′

Φ∅; Γ ` z : ref ε′
r τ ′ ; ·

τ ′ ≤ τ τ ≤ τ ′ ε′r ⊆ εr

ref ε′
r τ ′ ≤ ref εr τ Φ∅ ≤ Φ1

Φ1; Γ ` z : ref εr τ ; ·

and

(TDeref)

Φ1; Γ ` z : ref εr τ ; ·
Φε

2 = εr Φ
δi
2 = Φδo

2 ∪ εr

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! z : τ ; ·

(where R = ·) and Φ ≡ [Φα
1 ; Φε

1 ∪ εr; Φω
2 ; Φ

δi
1 ; Φδo

2 ]. We have Φ
δi
1 = Φδo

1 = Φ
δi
2 and Φ

δi
2 = Φδo

2 ∪ εr.

Let Γ′ = Γ, Φ′ = [Φα
1 ∪ {z}; ∅; Φω

2 ; Φ
δi
1 ; Φδo

2 ] and R′ = R = ·. Since z ∈ εr (by n; Γ ` H) we have

∅ ∪ {z} ⊆ (Φε
1 ∪ εr) hence ε′ ∪ {z} ⊆ Φε. By the same argument we have {z} ⊆ Φ

δi
1 . The choice of

Φ′ is acceptable since Φ′α = Φα ∪ {z}, ε′ ∪ {z} ⊆ Φε, Φ′ω = Φω , Φ′δi = Φδi and Φ′δo = Φδo .

To prove 1., we need to show that Φ′; Γ ` v : τ ; · (the rest of the premises follow by assumption

of n ` H, ! z : τ). H(z) = (τ ′, v, ν) and Γ(z) = ref ε′
r τ ′ implies Φ′; Γ ` v : τ ′ ; · by n; Γ ` H. The

result follows by (TSub):

(TSub)
Φ′; Γ ` v : τ ′ ; · τ ′ ≤ τ Φ′ ≤ Φ′

Φ′; Γ ` v : τ ; ·

For part 2., we know Φ, ·; H ` (n′, σ, κ):

(TC1)

f ∈ σ ⇒ f ∈ Φα
1

f ∈ ((Φε
1 ∪ εr) ∩ Φ

δi
1 ) ⇒ n′ ∈ ver(H, f)

κα ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ⊇ (Φω
2 ∪ Φε

1 ∪ εr)

[Φα
1 ; Φε

1 ∪ εr; Φω
2 ; Φ

δi
1 ; Φδo

2 ], ·; H ` (n′, σ, κ)

and need to prove Φ′, ·; H ` (n′, σ ∪ (z, ν), κ), hence:

(TC1)

f ∈ (σ ∪ (z, ν)) ⇒ f ∈ Φα
1 ∪ {z}

f ∈ (∅ ∩ Φ
δi
1 ) ⇒ n′ ∈ ver(H, f)

κα ⊇ (Φα
1 ∪ {z} ∪ Φ

δi
1 )

κω ⊇ (Φω
2 ∪ ∅)

[Φα
1 ∪ {z}; ∅; Φω

2 ; Φ
δi
1 ; Φδo

2 ], ·; H ` (n′, σ ∪ (z, ν), κ)

The first premise is true by assumption for all f ∈ σ, and for (z, ν) since z ∈ Φα
1 ∪ {z}. The second

premise is vacuously true. The third premise is true by assumption and the fact that {z} ⊆ Φ
δi
1 .

The fourth premise is true by assumption.

For part 3., we need to prove traceOK (n′, σ ∪ (z, ν)); we have traceOK (n′, σ, κ) by assumption,
hence need to prove that n′ ∈ ν. Since by assumption of version consistency we have that f ∈
Φε

1 ∪ εr ⇒ n′ ∈ ver(H, f) and ver(H, f) = ver(H′, f) = ν (by Lemma C.0.30), and {z} ⊆ εr (by
n; Γ ` H), we have n′ ∈ ν.

case [deref] :

Follows the same argument as the [gvar-deref] case above for part 1.; parts 2 and 3 follow by
assumption since the trace has not changed.

case [cong] :

Here 〈n; Σ; H; ! e〉 −→ε 〈n; Σ′; H′; ! e′〉 follows from 〈n; Σ; H, e〉 −→ε 〈n; Σ′; H′, e′〉. To apply in-
duction, we must have Φ1,R; H ` Σ which follows by Lemma C.0.25 since Φ,R; H ` Σ and
Φ1 � Φ2 ↪→ Φ.

Hence we have:
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(i) Φ′
1; Γ′ ` e′ : ref εr τ ; R′

(ii) n; Γ′ ` H′

(iii) Φ′
1,R′; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ; Φ

δi
1 ; Φδo

1 ]. where ε′1 ∪ ε0 ⊆ Φε
1. Let Φ′

2 = [Φα
1 ∪

ε0; εr; Φω
2 ; Φ

δi
2 ; Φδo

2 ] hence Φ′ε
2 = εr and Φ′

1 � Φ′
2 ↪→ Φ′, where Φ′ ≡ [Φα

1 ∪ ε0; ε′1 ∪ εr; Φω
2 ; Φ

δi
1 ; Φδo

2 ]

and (ε′1 ∪ εr) ∪ ε0 ⊆ (ε1 ∪ εr) hence Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε, Φ′ω = Φω , Φ′δi = Φδi , and
Φ′δo = Φδo as required.

We prove 1. by (ii) and by applying [TDeref]:

(TDeref)

Φ′
1; Γ′ ` e′ : ref εr τ ; R′

Φ′ε
2 = εr Φ

′δi
2 = Φ′δo

2 ∪ εr

Φ′
1 � Φ′

2 ↪→ Φ′

Φ′; Γ′ ` ! e′ : τ ; R′

The first premise follows from (i) and the second and third premises follows by definition of Φ′ and
Φ′

2.

To prove part 2., we must show that Φ′,R′; H′ ` Σ′. We have two cases:

Σ′ ≡ (n′, σ, κ): By (iii) we must have R′ ≡ · such that

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (ε′1 ∩ Φ
δi
1 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ′ ⊇ (Φω
1 ∪ ε′1)

[Φα
1 ∪ ε0; ε′1; Φω

1 ; Φ
δi
1 ; Φδo

1 ], ·; H′ ` (n′, σ, κ)

To achieve the desired result we need to prove:

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ((ε′1 ∪ εr) ∩ Φ
δi
1 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1

κω ′ ⊇ (Φω
2 ∪ ε′1 ∪ εr)

[Φα
1 ∪ ε0; ε′1 ∪ εr; Φω

2 ; Φ
δi
1 ; Φδo

2 ], ·; H′ ` (n′, σ, κ)

The first premise follows directly from (iii). To prove the second premise, we observe that
by Lemma C.0.27, top(Σ) = (n′, σ′, κ′) where σ′ ⊆ σ, and by inversion on Φ;R; H ` Σ
we know f ∈ ε1 ∪ εr ⇒ n′ ∈ ver(H, f). Then the second premise follows because for all f,
ver(H, f) = ver(H′, f) by Lemma C.0.30. The third premise follows directly by assumption.
The fourth premise follows by assumption and the fact that Φω

1 ≡ Φω ∪ εr.

Σ′ ≡ (n′, σ, κ), Σ′′: By (iii), we must have R′ ≡ Φ′′′,R′′′ such that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ; Φ

δi
1 ; Φδo

1 ]
f ∈ σ ⇒ f ∈ Φα

1 ∪ ε0

f ∈ (ε′1 ∩ Φ
δi
1 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ′ ⊇ (Φω
1 ∪ ε′1)

Φ′
1, Φ′′′,R′′′; H′ ` (n′, σ, κ), Σ′′

We wish to show that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′ ≡ [Φα
1 ∪ ε0; ε′1 ∪ εr; Φω

2 ; Φ
δi
2 ; Φδo

2 ]
f ∈ σ ⇒ f ∈ Φα

1 ∪ ε0

f ∈ ((ε′1 ∪ εr) ∩ Φ
δi
1 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ′ ⊇ (Φω ∪ ε′1 ∪ εr)

Φ′, Φ′′′,R′′′; H′ ` (n′, σ, κ), Σ′′

The first and third premises follow from (iii), while the fourth, fifth and sixth premises follows
by the same argument as in the Σ′ ≡ (n′, σ, κ) case, above.
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Part 3. follows directly from (iv).

case (TAssign) :

We know that:

(TAssign)

Φ1; Γ ` e1 : ref εr τ ; R1 Φ2; Γ ` e2 : τ ; R2

Φε
3 = εr Φ

δi
3 = Φδo

3 ∪ εr

Φ1 � Φ2 � Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ ; R1 ./ R2

From R1 ./ R2 it follows that either R1 ≡ · or R2 ≡ ·.

We can reduce using [gvar-assign], [assign], or [cong].

case [gvar-assign] :

This implies that e ≡ z := v with

〈n; (n′, σ, κ); (H′′, z 7→ (τ, v′, ν)); z := v〉 −→{z} 〈n; (n′, σ ∪ (z, ν), κ); (H′′, z 7→ (τ, v, ν)); v〉

where H ≡ (H′′, z 7→ (τ, v′, ν)). R1 ≡ · and R2 ≡ · (thus R1 ./ R2 ≡ ·).
Let Γ′ = Γ, R′ = ·, and Φ′ = [Φα ∪ {z}; ∅; Φω ; Φ

δi
1 ; Φδo

2 ]. Since z ∈ εr (by n; Γ ` H) we have
∅ ⊆ (ε1 ∪ ε2 ∪ εr), hence ∅∪ {z} ⊆ (ε1 ∪ ε2 ∪ εr) which means ε′ ∪{z} ⊆ Φε. By the same argument

we have {z} ⊆ Φ
δi
1 . The choice of Φ′ is acceptable since Φ′α = Φα ∪ {z}, ε′ ∪ {z} ⊆ Φε, Φ′ω = Φω ,

Φ′δi = Φδi and Φ′δo = Φδo .

We prove 1. as follows. Since Φ2; Γ ` v : τ ; ·, by value typing (Lemma C.0.22) we have
Φ′; Γ ` v : τ ; ·. n; Γ ` H′ follows from n; Γ ` H and Φ′; Γ ` v : τ ; · (since Φε = ∅).
Parts 2. and 3. are similar to the (TDeref) case.

case [assign] :

Part 1. is similar to (gvar-assign); we have parts 2. and 3. by assumption.

case [cong] :

Consider the shape of E:

case E := e :
〈n; Σ; H; e1 := e2〉 −→ε 〈n; Σ′; H′; e′1 := e2〉 follows from 〈n; Σ; H; e1〉 −→ε 〈n; Σ′; H′; e′1〉.
Since e1 6≡ v ⇒R2 = · by assumption, we have R ≡ R1. To apply induction we must show
Φ1,R∞; H ` Σ This follows by an argument similar to Lemma C.0.25, because Φα

1 ≡ Φα ,

Φ
δi
1 ≡ Φδi , and Φω

1 = Φω ∪ Φε
2 ∪ εr hence κα ⊇ (Φα ∪ Φδi ) implies κα ⊇ (Φα

1 ∪ Φ
δi
1 ) and

κω ⊇ (Φω ∪ Φε
1 ∪ Φε

2 ∪ εr) implies κω ⊇ (Φω
1 ∪ Φε

1).
Hence by induction we have

(i) Φ′
1; Γ′ ` e′1 : ref εr τ ; R′

1 and

(ii) n; Γ′ ` H′

(iii) Φ′
1,R′

1; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ; Φ

δi
1 ; Φδo

1 ] where ε′1 ∪ ε0 ⊆ ε1 and Φω
1 ≡

Φε
2 ∪ εr ∪ Φω

3 .

Let
Φ′

2 ≡ [Φα
1 ∪ ε′1 ∪ ε0; Φε

2; εr ∪ Φω
3 ; Φ

δi
2 ; Φδo

2 ]

Φ′
3 ≡ [Φα

1 ∪ ε′1 ∪ ε0 ∪ Φε
2; εr; Φω

3 ; Φ
δi
3 ; Φδo

3 ]

Thus Φ′ε
3 = εr and Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′ such that Φ′ ≡ [Φα
1 ∪ ε0; ε′1 ∪Φε

2 ∪ εr; Φω
3 ; Φ

δi
1 ; Φδo

3 ]
The choice of Φ′ is acceptable since Φ′α = Φα ∪ ε0, (ε′1 ∪ εr ∪ ε2) ∪ ε0 ⊆ (ε1 ∪ εr ∪ ε2) i.e.,
ε′ ∪ ε0 ⊆ Φε, Φ′ω = Φω , Φ′δi = Φδi , and Φ′δo = Φδo as required).
To prove 1., we have n; Γ′ ` H′ by (ii), and apply (TAssign):

(TAssign)

Φ′
1; Γ′ ` e′1 : ref εr τ ; R′

1

(TSub)
Φ2; Γ′ ` e2 : τ ; R2 τ ≤ τ

Φα
1 ∪ ε′1 ∪ ε0 ⊆ Φα

1 ∪ Φε
1

Φε
2 ⊆ Φε

2
εr ∪ Φω

3 ⊆ εr ∪ Φω
3

Φ
′δi
2 = Φ

δi
2 Φ′δo

2 = Φδo
2

Φ2 ≤ Φ′
2

Φ′
2; Γ′ ` e2 : τ ; R2

Φ′ε
3 = εr Φ

′δi
3 = Φ′δo

3 ∪ εr

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′; Γ′ ` e1 := e2 : τ ; R′
1 ./ R2

Note that Φ2; Γ′ ` e2 : τ follows from Φ2; Γ ` e2 : τ by weakening (Lemma C.0.19).
To prove part 2., we must show that Φ′,R′

1; H′ ` Σ′ (since R′
1 ./ R2 = R′

1). By inversion
on Φ,R; H ` Σ we have Σ ≡ (n′, σ, κ) or Σ ≡ (n′, σ, κ), Σ′′. We have two cases:

172



Σ′ ≡ (n′, σ, κ): By (iii) we must have R′
1 ≡ · such that

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ (ε′1 ∩ Φ
δi
1 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ′ ⊇ (Φω
1 ∪ ε′1)

[Φα
1 ∪ ε0; ε′1; Φω

1 ; Φ
δi
1 ; Φδo

1 ], ·; H′ ` (n′, σ, κ)

To achieve the desired result we need to prove:

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ((ε′1 ∪ Φε
2 ∪ εr) ∩ Φ

δi
1 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ′ ⊇ (ω ∪ ε′1 ∪ Φε
2 ∪ εr)

[Φα
1 ∪ ε0; ε′1 ∪ Φε

2 ∪ εr; Φω
3 ; Φ

δi
1 ; Φδo

3 ], ·; H′ ` (n′, σ, κ)

The first premise follows directly from (iii). To prove the second premise, we ob-
serve that by Lemma C.0.27, top(Σ) = (n′, σ′, κ′) where σ′ ⊆ σ, and by inversion on
Φ;R; H ` Σ we know (a) f ∈ σ′ ⇒ f ∈ Φα

1 , and (b) f ∈ Φε
1 ∪Φε

2 ∪ εr ⇒ n′ ∈ ver(H, f).
The second premise follows from (iii) and the fact that f ∈ (εr ∪Φε

2) ⇒ n′ ∈ ver(H, f)
by (b), and for all f, ver(H, f) = ver(H′, f) by Lemma C.0.30. The third premise
follows directly by assumption. The fourth premise follows by assumption and the fact
that Φω

1 ≡ ω ∪ Φε
2 ∪ εr.

Σ′ ≡ (n′, σ, κ), Σ′′: By (iii), we must have R′
1 ≡ Φ′′′,R′′′ such that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ; Φ

δi
1 ; Φδo

1 ]
f ∈ σ ⇒ f ∈ Φα

1 ∪ ε0

f ∈ (ε′1 ∩ Φ
δi
1 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ′ ⊇ (Φω
1 ∪ ε′1)

Φ′
1, Φ′′′,R′′′; H′ ` (n′, σ, κ), Σ′′

We wish to show that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′ ≡ [Φα
1 ∪ ε0; ε′1 ∪ Φε

2 ∪ εr; Φω
3 ; Φ

δi
1 ; Φδo

3 ]
f ∈ σ ⇒ f ∈ Φα

1 ∪ ε0

f ∈ ((ε′1 ∪ Φε
2 ∪ εr) ∩ Φ

δi
1 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ′ ⊇ (ω ∪ ε′1 ∪ Φε
2 ∪ εr)

Φ′, Φ′′′,R′′′; H′ ` (n′, σ, κ), Σ′′

The first and third premises follow from (iii), while the fourth, fifth and sixth premises
follows by the same argument as in the Σ′ ≡ (n′, σ, κ) case, above.

Part 3. follows directly from (iv).

case r := E :
〈n; Σ; H; r := e2〉 −→ε 〈n; Σ′; H′; r := e′2〉 follows from 〈n; Σ; H; e2〉 −→ε 〈n; Σ′; H′; e′2〉.
Since e1 ≡ r, by inversion R1 ≡ ·. and we have R ≡ R2. To apply induction we must show
Φ2,R∈; H ` Σ. This follows by an argument similar to (TDeref)-[cong], because

Φα
2 ≡ Φα

1 ≡ Φα, Φ
δi
2 ≡ Φ

δi
1 ≡ Φδi , and Φω

2 = Φω
3 ∪ εr hence κα ⊇ (Φα ∪ Φδi ) implies

κα ⊇ (Φα
2 ∪ Φ

δi
2 ) and κω ⊇ (Φω ∪ Φε) implies κω ⊇ (Φω

2 ∪ Φε
2).

(i) Φ′
2; Γ′ ` e′2 : τ ; R′

2

(ii) n; Γ′ ` H′

(iii) Φ′
2,R′

2; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
2 ≡ [Φα

2 ∪ ε0; ε′2; Φω
2 ; Φ

δi
2 ; Φδo

2 ] where (ε′2 ∪ ε0) ⊆ Φε
2; note

Φα
2 ≡ Φα

1 (since Φε
1 ≡ ∅) and Φω

2 ≡ ε3 ∪ Φω
3 .

Let
Φ′

1 ≡ [Φα
1 ∪ ε0; ∅; ε′2 ∪ εr ∪ Φω

3 ; Φ
δi
2 ; Φδo

2 ]

Φ′
3 ≡ [Φα

1 ∪ ε0 ∪ ε′2; εr; Φω
3 ; Φ

δi
3 ; Φδo

3 ]
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Thus Φ′ε
3 = εr and Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′ such that Φ′ ≡ [Φα
1 ∪ ε0; ε′2 ∪ εr; Φω

3 ; Φ
δi
1 ; Φδo

3 ] and
(ε′2 ∪ εr)∪ ε0 ⊆ (Φε

2 ∪ εr). The choice of Φ′ is acceptable since Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε,
Φ′ω = Φω , Φ′δi = Φδi and Φ′δo = Φδo as required.
To prove 1., we have n; Γ′ ` H′ by (ii), and we can apply [TAssign]:

(TAssign)

Φ′
1; Γ′ ` r : ref εr τ ; · Φ′

2; Γ′ ` e′2 : τ ; R′
2

Φ′εr
3 = εr Φ

′δi
3 = Φ′δo

3 ∪ εr

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′; Γ′ ` r := e′2 : τ ; · ./ R′
2

Note that we have Φ′
1; Γ′ ` r : ref εr τ ; · from Φ1; Γ ` r : ref εr τ ; · by value typing and

weakening
To prove part 2., we must show that Φ′,R′

2; H′ ` Σ′ (since R1 ./ R2 = R′
2). By inversion

on Φ,R; H ` Σ we have Σ ≡ (n′, σ, κ) or Σ ≡ (n′, σ, κ), Σ′′. We have two cases:

Σ′ ≡ (n′, σ, κ): By (iii) we must have R′
2 ≡ · such that

(TC1)

f ∈ σ ⇒ f ∈ Φα
2 ∪ ε0

f ∈ (ε′2 ∩ Φ
δi
2 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
2 ∪ Φ

δi
2 )

κω ′ ⊇ (Φω
2 ∪ ε′2)

[Φα
2 ∪ ε0; ε′2; Φω

2 ; Φ
δi
2 ; Φδo

2 ], ·; H′ ` (n′, σ, κ)

To achieve the desired result we need to prove:

(TC1)

f ∈ σ ⇒ f ∈ Φα
1 ∪ ε0

f ∈ ((εr ∪ ε′2) ∩ Φ
δi
2 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ′ ⊇ (Φω ∪ ε′2 ∪ εr)

[Φα
1 ∪ ε0; ε′2 ∪ εr; Φω

3 ; Φ
δi
1 ; Φδo

3 ], ·; H′ ` (n′, σ, κ)

The first premise follows from (iii) since Φα
1 = Φα

2 .
To prove the second premise, we observe that by Lemma C.0.27, top(Σ) = (n′, σ′, κ)
where σ′ ⊆ σ, and by inversion on Φ;R; H ` Σ we know f ∈ ε1 ∪ εr ⇒ n′ ∈ ver(H, f).
The second premise follows because we have f ∈ ((ε1 ∪ εr) ∩ δi) ⇒ n′ ∈ ver(H, f) by
assumption and for all f, ver(H, f) = ver(H′, f) by Lemma C.0.30.

The third premise follows directly by assumption since Φα
1 = Φα

2 and Φ
δi
1 = Φ

δi
2 . The

fourth premise follows by assumption and the fact that Φω
2 ≡ Φω ∪ εr.

Σ′ ≡ (n′, σ, κ), Σ′′: By (iii), we must have R′
2 ≡ Φ′′′,R′′′ such that:

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′
2 ≡ [Φα

2 ∪ ε0; ε′2; Φω
2 ; Φ

δi
2 ; Φδo

2 ]
f ∈ σ ⇒ f ∈ Φα

2 ∪ ε0

f ∈ (ε′2 ∩ Φ
δi
2 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
2 ∪ Φ

δi
2 )

κω ′ ⊇ (Φω
2 ∪ ε′2)

Φ′
2, Φ′′′,R′′′; H′ ` (n′, σ, κ), Σ′′

We wish to show that

(TC2)

Φ′′′,R′′′; H′ ` Σ′′

Φ′ ≡ [Φα
1 ∪ ε0; ε′2 ∪ εr; Φω

3 ; Φ
δi
1 ; Φδo

3 ]
f ∈ σ ⇒ f ∈ α ∪ ε0

f ∈ ((ε′2 ∪ εr) ∩ Φ
δi
2 ) ⇒ n′ ∈ ver(H′, f)

κα′ ⊇ (Φα
1 ∪ Φ

δi
1 )

κω ′ ⊇ (Φω ∪ ε′2 ∪ εr)

Φ′, Φ′′′,R′′′; H′ ` (n′, σ, κ), Σ′′

The first and third premises follow from (iii), while the fourth, fifth and sixth premises
follow by the same argument as in the Σ′ ≡ (n′, σ, κ) case, above.

Part 3. follows directly from (iv).
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case (TCheckin) :

We know that:

(TCheckin)
α ∪ δo ⊆ α′ ω ⊆ ω′

[α; ∅; ω; ∅; δo]; Γ ` checkinα′,ω′
:int ; ·

case [checkin] :

Thus we must have:

〈n; (n′, σ, κ); H; checkin(α′,ω′)〉 −→∅ 〈n; (n′, σ′, (α′, ω′)); H; 1〉

Let Γ′ = Γ and Φ′ = Φ (and thus ε′ ∪ ∅ ⊆ Φε, Φ′α = Φα ∪ ∅, Φ′ω = Φω , Φ′δi = Φδi , and Φ′δo = Φδo

) as required. For 1., Φ′; Γ ` 1 : int ; · follows from (TInt) and value typing and n; Γ ` H is true by
assumption. For part 2., we know

(TC1)

f ∈ σ ⇒ f ∈ α
f ∈ (∅ ∩ ∅) ⇒ n′ ∈ ver(H, f)

κα ⊇ (α ∪ ∅)
κω ⊇ (ω ∪ ∅)

[α; ∅; ω; ∅; δo], ·; H ` (n′, σ, κ′)

and need to prove:

(TC1)

f ∈ σ ⇒ f ∈ α
f ∈ (∅ ∩ ∅) ⇒ n′ ∈ ver(H, f)

κα′ ⊇ (α ∪ ∅)
κω ′ ⊇ (ω ∪ ∅)

[α; ∅; ω; ∅; δo], ·; H ` (n′, σ, κ)

The first premise is true by assumption. The second is vacuously true. The third and fourth premises follow
since we know that κα′ ⊇ α ∪ δo and κω ′ ⊇ ω by assumption.

Part 3. follows by assumption.

case (TIf) :

We know that:

(TIf)

Φ1; Γ ` e1 : int ; R
Φ2; Γ ` e2 : τ ; · Φ2; Γ ` e3 : τ ; · Φ1 � Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ ; R

We can reduce using [if-t], [if-f] or [cong].

case [if-t] :

This implies that e1 ≡ v hence R = ·. We have

〈n; (n′, σ, κ); H; if0 v then e2 else e3〉 −→ 〈n; (n′, σ, κ); H; e2〉

We have Φ2 = Φ (because Φε
1 ≡ ∅; if Φε

1 6≡ ∅ we can rewrite the derivation using value typing to
make it so). Let Γ′ = Γ and Φ′ = Φ (and thus ε∪∅ ⊆ Φε, Φ′α = Φα∪∅, Φ′ω = Φω , and Φ′δi = Φδi ,
Φ′δo = Φδo as required). To prove 1., we have n; Γ ` H and Φ; Γ ` e2 : τ ; · by assumption.

Parts 2. and 3. also follow by assumption.

case [if-f] :

This is similar to [if-t].

case [cong] :

〈n; Σ; H; if0 e1 then e2 else e3〉 −→ε 〈n; Σ′; H′; if0 e′1 then e2 else e3〉 follows from 〈n; Σ; H; e1〉 −→ε

〈n; Σ′; H′; e′1〉. To apply induction, we must have Φ1,R; H ` Σ which follows by Lemma C.0.25
since Φ,R; H ` Σ and Φ1 � Φ2 ↪→ Φ.

(i) Φ′
1; Γ′ ` e′1 : int ; R′ and

(ii) n; Γ′ ` H′

(iii) Φ′
1,R′; H′ ` Σ′

(iv) traceOK (Σ′)
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for some Γ′ ⊇ Γ and some Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ; Φ

δi
1 ; Φδo

1 ] where ε′1 ∪ ε0 ⊆ Φε
1. (Note that

Φω
1 ≡ Φε

2 ∪ Φω
2 .)

Let Φ′
2 ≡ [Φα

1 ∪ ε′1 ∪ ε0; Φε
2; Φω

2 ; Φ
δi
2 ; Φδo

2 ]. Thus Φ′
1 � Φ′

2 ↪→ Φ′ so that Φ′ ≡ [Φα
1 ∪ ε0; ε′1 ∪

Φε
2; Φω

2 ; Φ
δi
1 ; Φδo

2 ] where ε′1∪ε0∪Φε
2 ⊆ Φε

1∪Φε
2, Φ′ω = Φω , Φ′δi = Φδi , and Φ′δo = Φδo as required.

To prove 1., we have n; Γ′ ` H′ by (ii), and can apply (TIf): We prove 1. by (ii) and as follows:

(TIf)

(TSub)

Φ2; Γ′ ` e2 : τ ; · τ ≤ τ
Φ2 ≤ Φ′

2

Φ′
2; Γ′ ` e2 : τ ; ·

(TSub)

Φ2; Γ′ ` e2 : τ ; · τ ≤ τ
Φ2 ≤ Φ′

2

Φ′
2; Γ′ ` e3 : τ ; ·

Φ′
1; Γ′ ` e′1 : int ; R′

1 Φ′
1 � Φ′

2 ↪→ Φ′

Φ′; Γ′ ` if0 e′1 then e2 else e3 : τ ; R′

Note that Φ2; Γ′ ` e2 : τ ; R follows from Φ2; Γ ` e2 : τ ; R by weakening (Lemma C.0.19) and
likewise for Φ2; Γ′ ` e3 : τ ; R .

Parts 2. and 3. follow by an argument similar to (TDeref)-[cong] and (TAssign)-[cong].

case (TTransact) :

We know that:

(TTransact)

Φ′′; Γ ` e : τ ; ·
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` tx(Φ′′α∪Φ′′δi ,Φ′′ω∪Φ′′ε) e : τ ; ·

We can reduce using [tx-start]:

〈n; (n′, σ, κ); H; txκ′
e〉 −→∅ 〈n; (n′, σ, κ), (n, ∅, (Φ′′α ∪ Φ′′δi , Φ′′ω ∪ Φ′′ε)); H; intx e〉

where κ′ ≡ (Φ′′α ∪ Φ′′δi , Φ′′ω ∪ Φ′′ε). Let Γ′ = Γ and Φ′ ≡ [Φα; ∅; Φω ; Φδi ; Φδo ] (and thus ε′ ∪ ∅ ⊆ Φε,
Φ′α = Φα ∪ ∅, Φ′ω = Φω , Φ′δi = Φδi , and Φ′δo = Φδo as required). To prove 1., we have n; Γ ` H by
assumption, and the rest follows by (TIntrans):

(TIntrans)

Φ′′; Γ ` e : τ ; ·
Φ′α ⊆ Φ′′α Φ′ω ⊆ Φ′′ω

Φ′; Γ ` intx e : τ ; Φ′′, ·

The first premise is true by assumption, and the rest are true by choice of Φ′.

We prove 2. as follows:

(TC1)

f ∈ ∅ ⇒ f ∈ Φ′′α

f ∈ (Φ′′ε ∩ Φ′′δi ) ⇒ n ∈ ver(H, f)
Φ′′α ∪ Φ′′δi ⊇ Φ′′α ∪ Φ′′δi

Φ′′ω ∪ Φ′′ε ⊇ Φ′′ω ∪ Φ′′ε

Φ′′, ·; H ` (n, ∅, (Φ′′α ∪ Φ′′δi , Φ′′ω ∪ Φ′′ε))

The first premise is true vacuously, the second is true by n; Γ ` H (which we have by assumption), and the
third and fourth trivially hold.

(TC2)

Φ′′, ·; H ` (n, ∅, κ′)
f ∈ σ ⇒ f ∈ Φα

f ∈ (∅ ∩ Φδi ) ⇒ n′ ∈ ver(H, f)
κα ⊇ (Φα ∪ Φδi )
κω ⊇ (Φω ∪ ∅)

[Φα; ∅; Φω ; Φδi ; Φδo ], Φ′′, ·; H ` (n′, σ, κ), (n, ∅, κ′)

We have proved the first premise above, the second premise holds vacuously, and the rest hold by inversion
of Φ, ·; H ` (n′, σ, κ).

Part 3. follows easily: we have traceOK ((n′, σ, κ)) by assumption, traceOK ((n, ∅, κ′)) is vacuously true,
hence traceOK ((n′, σ, κ), (n, ∅, κ′)) is true.
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case (TIntrans) :

We know that:

(TIntrans)

Φ′′; Γ ` e : τ ; R
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` intx e : τ ; Φ′′,R
There are two possible reductions:

case [tx-end] :

We have that e ≡ v and thus R ≡ ·; we reduce as follows:

traceOK (n′′, σ′′, κ′′)

〈n; (n′, σ, κ), (n′′, σ′′, κ′′); H; intx v〉 −→∅ 〈n; (n′, σ, κ); H; v〉

Let Φ′ = Φ and Γ′ = Γ (and thus Φ′α = Φα∪∅, ε′∪∅ ⊆ Φε, Φ′ω = Φω , Φ′δi = Φδi , and Φ′δo = Φδo

as required). To prove 1., we know that n; Γ ` H follows by assumption and Φ; Γ ` v : τ ; · by
value typing. To prove 2., we must show that Φ, ·; H ` (n′, σ, κ), but this is true by inversion on
Φ, Φ′′, ·; H ` (n′, σ, κ), (n′′, σ′′, κ′′).

For 3., traceOK ((n′, σ, κ)) follows from traceOK ((n′, σ, κ), (n′′, σ′′, κ′′)) (which is true by assump-
tion).

case [tx-cong-2] :

We know that
〈n; Σ; H; e〉 −→ε 〈n′; Σ′; H′; e′〉

〈n; Σ; H; intx e〉 −→∅ 〈n′; Σ′; H′; intx e′〉

follows from 〈n; Σ; H; e〉 −→η 〈n; Σ′; H′; e′〉 (because the reduction does not perform an update,
hence η ≡ ε0 and we apply [tx-cong-2]).

We have Φ′′,R; H ` Σ by inversion on Φ, Φ′′,R; H ` ((n′, σ, κ), Σ), hence by induction:

(i) Φ′′′; Γ′ ` e′ : τ ; R′ and

(ii) n; Γ′ ` H′

(iii) Φ′′′,R′; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′′′ such that Φ′′′α = Φ′′α∪ε0, ε′′′∪ε0 ⊆ Φ′′ε, Φ′′′ω = Φ′′ω , Φ′′′δi = Φ′δi ,
and Φ′′′δo = Φ′δo .

Let Φ′ = Φ (hence Φ′α = Φ′α ∪∅ , ε′ ∪∅ ⊆ Φε, Φ′ω = Φω , Φ′δi = Φδi , and Φ′δo = Φδo as required)
and Γ′ = Γ.

To prove 1., we have n; Γ′ ` H′ by (ii), and we can apply [TIntrans]:

(TIntrans)

Φ′′′; Γ′ ` e′ : τ ; R′

Φ′α ⊆ Φ′′′α Φ′ω ⊆ Φ′′′ω

Φ′; Γ′ ` intx e′ : τ ; Φ′′′,R′

The first premise follows from (i), while the rest follow by assumption and choice of Φ′.

Part 2. follows directly from (iii) and Φ, Φ′′, ·; H ` (n′, σ, κ), (n′′, σ′′, κ′′) (which we have by as-
sumption). Part 3. follows directly from (iv).

case (TLet) :

We know that:

(TLet)

Φ1; Γ ` e1 : τ1 ; R Φ2; Γ, x : τ1 ` e2 : τ2 ; ·
Φ1 � Φ2 ↪→ Φ

Φ; Γ ` let x : τ1 = e1 in e2 : τ2 ; R

We can reduce using either [let] or [cong].

case [let] :

This implies that e1 ≡ v hence R ≡ ·. We have:

〈n; (n′, σ, κ); H; let x : τ = v in e〉 −→ 〈n; (n′, σ, κ); H; e[x 7→ v]〉

We have Φ2 = Φ (because Φε
1 ≡ ∅; if Φε

1 6≡ ∅ we can rewrite the derivation using value typing to
make it so). Let Γ′ = Γ and Φ′ = Φ (and thus ε∪∅ ⊆ Φε, Φ′α = Φα∪∅, Φ′ω = Φω , and Φ′δi = Φδi ,
Φ′δo = Φδo ) as required. To prove 1., we have n; Γ ` H and Φ; Γ, x : τ1 ` e2 : τ2 ; · by assumption.

By value typing we have Φ; Γ ` v : τ1 ; ·, so by substitution (Lemma C.0.33) we have Φ; Γ `
e2[x 7→ v] : τ2 ; ·.
Parts 2. and 3. hold by assumption.
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case [cong] :

Similar to (TIf)-[Cong].

case (TApp) :

We know that:

(TApp)

Φ1; Γ ` e1 : τ1 −→Φf τ2 ; R1 Φ2; Γ ` e2 : τ1 ; R2

Φ1 � Φ2 � Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ; Γ ` e1 e2 : τ2 ; R1 ./ R2

We can reduce using either [call] or [cong].

case [call] :

We have that

〈n; (n′, σ, κ); (H′′, z 7→ (τ, λ(x).e, ν)); z v〉 −→{z} 〈n; (n′, σ∪(z, ν), κ); (H′′, z 7→ (τ, λ(x).e, ν)); e[x 7→ v]〉

(where H ≡ (H′′, z 7→ (τ, λ(x).e, ν))), and

(TApp)

Φ1; Γ ` z : τ1 −→Φf τ2 ; · Φ2; Γ ` v : τ1 ; ·
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ; Γ ` z v : τ2 ; ·

where by subtyping derivations (Lemma C.0.23) we have

(TSub)

(TGVar)
Γ(z) = τ ′1 −→

Φ′
f τ ′2

Φ∅; Γ ` z : τ ′1 −→
Φ′

f τ ′2 ; ·

τ1 ≤ τ ′1 τ ′2 ≤ τ2 Φ′
f ≤ Φf

τ ′1 −→
Φ′

f τ ′2 ≤ τ1 −→Φf τ2 Φ∅ ≤ Φ1

Φ1; Γ ` z : τ1 −→Φf τ2 ; ·

Define Φf ≡ [αf ; εf ; ωf ; δif ; δof ] and Φ′
f ≡ [α′f ; ε′f ; ω′f ; δif ; δof ].

Let Γ′ = Γ, R′ = · and choose Φ′ = [Φα
1 ∪ {z}; εf ; Φω

3 ; Φ
δi
1 ; Φδo

3 ]. Since z ∈ ε′f (by n; Γ ` H) and

ε′f ⊆ εf (by Φ′
f ≤ Φf ) we have εf ∪{z} ⊆ (ε1 ∪ ε2 ∪ εf ). By the same argument we have {z} ⊆ Φ

δi
1 .

The choice of Φ′ is acceptable since Φ′α = Φα ∪ {z}, Φ′ε ∪ {z} ⊆ Φε, Φ′ω = Φω , Φ′δi = Φδi ,
and Φ′δo = Φδo . For 1., we have n; Γ ` H′ by assumption; for the remainder we have to prove
Φ′; Γ ` e[x 7→ v] : τ2 ; ·. First, we must prove that Φ′

f ≤ Φ′. Note that since {z} ⊆ αf by

n; Γ ` H′, from Φ1 � Φ2 � Φ3 ↪→ Φ and choice of Φ′ we get Φ′α
3 ∪ {z} ⊆ αf . We have:

Φ′ ≡ [Φα
1 ∪ {z}; εf ; Φω

3 ; Φ
δi
1 ; Φδo

3 ] (by choice of Φ′)
Φf ≡ [αf ; εf ; ωf ; δif ; δof ]
Φ′

f ≡ [α′f ; ε′f ; ω′f ; δi
′
f ; δo

′
f ]

ε′f ⊆ εf (by Φ′
f ≤ Φf )

αf ⊆ α′f (by Φ′
f ≤ Φf )

ωf ⊆ ω′f (by Φ′
f ≤ Φf )

δi
′
f ⊆ δif (by Φ′

f ≤ Φf )

δof ⊆ δo
′
f (by Φ′

f ≤ Φf )

Φ′α
3 ∪ {z} ⊆ αf (by assumption and choice of Φ′)

Φ′α
3 = Φα

1 ∪ Φε
1 ∪ Φ′ε

2 (by Φ1 � Φ2 � Φ3 ↪→ Φ)
Φ′ω

3 ⊆ ωf (by assumption and choice of Φ′)

Φ′δo
3 ⊆ δof (by assumption and choice of Φ′)

Thus we have the result by [TSub]

Φ′
f ; Γ ` e[x 7→ v] : τ ′2 ; · τ ′2 ≤ τ2 Φ′

f ≤ Φ′
1

Φ′
1; Γ ` e[x 7→ v] : τ2
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By assumption, we have Φ2; Γ ` v : τ1 ; ·. By value typing and τ1 ≤ τ ′1 we have Φ′; Γ ` v : τ ′1 ; ·.
Finally by substitution we have Φ′; Γ ` e[x 7→ v] : τ2 ; ·.
For part 2., we need to prove Φ′, ·; H ` (n′′, σ′, κ′) where σ′ = σ ∪ (z, ν) and n′′ = n′, hence:

(TC1)

f ∈ (σ ∪ (z, ν)) ⇒ f ∈ Φα ∪ {z}
f ∈ (εf ∩ Φδi ) ⇒ n′ ∈ ver(H, f)

κα ⊇ (Φα ∪ {z} ∪ δi)
κω ⊇ (Φω ∪ εf )

Φ′, ·; H ` (n′′, σ′, κ′)

The first premise is true by assumption and the fact that {z} ⊆ {z}. The second premise is true by
assumption.

For part 3., we need to prove traceOK (σ ∪ (z, ν)); we have traceOK (σ) by assumption, hence need
to prove that n′ ∈ ν. Since by assumption we have that f ∈ ε1 ∪ ε2 ∪ εf ⇒ n′ ∈ ver(H, f) and
{z} ⊆ εf , we have n′ ∈ ν.

case [cong] :

case E e :
〈n; Σ; H; e1 e2〉 −→ε 〈n; Σ′; H′; e′1 e2〉 follows from 〈n; Σ; H; e1〉 −→ε 〈n; Σ′; H′; e′1〉.
Since e1 6≡ v ⇒ R2 = · by assumption, by Lemma C.0.26 we have Φ1,R1; H ` Σ hence we
can apply induction:

(i) Φ′
1; Γ′ ` e′1 : τ1 −→Φf τ2 ; R′

1 and

(ii) n; Γ′ ` H′

(iii) Φ′
1,R′

1; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
1 ≡ [Φα

1 ∪ ε0; ε′1; Φω
1 ; Φ

δi
1 ; Φδo

1 ] where ε′1 ∪ ε0 ⊆ ε1 and Φω
1 ≡

Φε
2 ∪ εf ∪ Φω

3 .

Let
Φ′

2 ≡ [Φα
1 ∪ ε′1 ∪ ε0; Φε

2; εf ∪ Φω
3 ; Φ

δi
2 ; Φδo

2 ]

Φ′
3 ≡ [Φα

1 ∪ ε′1 ∪ ε0 ∪ Φε
2; εf ; Φω

3 ; Φ
δi
3 ; Φδo

3 ]

Thus Φ′ε
3 = εf , Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′, Φ′α
3 ⊆ Φα

f and Φ′ω
3 ⊆ Φω

f (since Φ′α
3 ∪ ε0 ⊆ Φα

3

and Φ′ω
3 = Φω

3 ). We have Φ′ ≡ [Φα
1 ∪ ε0; ε′1 ∪ Φε

2 ∪ εf ; Φω
3 ; Φ

δi
1 ; Φδo

3 ]. The choice of Φ′ is
acceptable since Φ′α = Φα ∪ ε0, (ε′1 ∪ εf ∪ ε2) ∪ ε0 ⊆ (ε1 ∪ ε2 ∪ εf ) i.e., ε′ ∪ ε0 ⊆ Φε,

Φ′ω = Φω , Φ′ω = Φω , Φ′δi = Φδi , and Φ′δo = Φδo as required).
To prove 1., we have n; Γ′ ` H′ by (ii), and apply (TApp):

(TApp)

Φ′
1; Γ′ ` e′1 : τ1 −→Φf τ2 ; R′

1

(TSub)
Φ2; Γ′ ` e2 : τ1 ; R2 τ1 ≤ τ1

Φα
1 ∪ ε′1 ∪ ε0 ⊆ Φα

1 ∪ Φε
1

Φε
2 ⊆ Φε

2
εf ∪ Φω

3 ⊆ εf ∪ Φω
3

Φ
δi
2 = Φ

δi
2

Φδo
2 = Φδo

2

Φ2 ≤ Φ′
2

Φ′
2; Γ′ ` e2 : τ1 ; R2

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

Φ
′δi
3 = Φ′δo

3 ∪ Φε
f Φ′δo

3 ⊆ Φδo
f

Φ′; Γ′ ` e′1 e2 : τ2 ; R′
1 ./ R2

Note that Φ2; Γ′ ` e2 : τ1 ; R2 follows from Φ2; Γ ` e2 : τ1 ; R2 by weakening
(Lemma C.0.19). The last premise holds vacuously as R2 ≡ · by assumption.
To prove part 2., we must show that Φ′,R′; H′ ` Σ′. The proof is similar to the (TAssign)-
[cong] proof, case E := e but substituting εf for εr.
Part 3. follows directly from (iv).

case v E :
〈n; Σ; H; v e2〉 −→ε 〈n; Σ′; H′; v e′2〉 follows from 〈n; Σ; H; e2〉 −→ε 〈n; Σ′; H′; e′2〉.
For convenience, we make Φε

1 ≡ ∅; if Φε
1 6≡ ∅, we can always construct a typing derivation

of v that uses value typing to make Φε
1 ≡ ∅. Note that Φ1 � Φ2 � Φ3 ↪→ Φ would still

hold since Lemma C.0.24 allows us to decrease Φα
2 to satisfy Φα

2 = Φα
1 ∪Φε

1; similarly, since
Φα

3 = Φα
1 ∪ Φε

1 ∪ Φε
2 we know that Φα

3 ⊆ Φα
f would still hold if Φα

3 was smaller as a result

of shrinking Φε
1 to be ∅.

Since e1 ≡ v, by inversion R1 ≡ · and by Lemma C.0.26 (which we can apply since Φε
1 ≡ ∅),

we have Φ2,R2; H ` Σ; hence by induction:
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(i) Φ′
2; Γ′ ` e′2 : τ1 ; R′

2

(ii) n; Γ′ ` H′

(iii) Φ′
2,R′

2; H′ ` Σ′

(iv) traceOK (Σ′)

for some Γ′ ⊇ Γ and some Φ′
2 ≡ [Φα

2 ∪ ε0; ε′2; Φω
2 ; Φ

δi
2 ; Φδo

2 ] where (ε′2 ∪ ε0) ⊆ Φε
2; note

Φα
2 ≡ Φα

1 (since Φε
1 ≡ ∅) and Φω

2 ≡ ε3 ∪ Φω
3 .

Let
Φ′

1 ≡ [Φα
1 ∪ ε0; ∅; ε′2 ∪ εf ∪ Φω

3 ; Φ
δi
1 ; Φδo

1 ]

Φ′
3 ≡ [Φα

1 ∪ ε0 ∪ ε′2; εf ; Φω
3 ; Φ

δi
3 ; Φδo

3 ]

Thus Φ′ε
3 = εf , Φ′

1 � Φ′
2 � Φ′

3 ↪→ Φ′, Φ′α
3 ⊆ Φα

f and Φ′ω
3 ⊆ Φω

f (since Φ′α
3 ∪ ε0 ⊆ Φα

3 and

Φ′ω
3 = Φω

3 ). We have Φ′ ≡ [Φα
1 ∪ ε0; ε′2 ∪ εf ; Φω

3 ; Φ
δi
1 ; Φδo

3 ] and (ε′2 ∪ εf ) ∪ ε0 ⊆ (Φε
2 ∪ εf ).

The choice of Φ′ is acceptable since Φ′α = Φα ∪ ε0, ε′ ∪ ε0 ⊆ Φε, Φ′ω = Φω , Φ′δi = Φδi ,
and Φ′δo = Φδo as required).
To prove 1., we have n; Γ′ ` H′ by (ii), and we can apply [TApp]:

(TApp)

Φ′
1; Γ′ ` v : τ1 −→Φf τ2 ; · Φ′

2; Γ′ ` e′2 : τ1 ; R′
2

Φ′
1 � Φ′

2 � Φ′
3 ↪→ Φ′

Φ′ε
3 = Φε

f Φ′α
3 ⊆ Φα

f Φ′ω
3 ⊆ Φω

f

Φ
′δi
3 = Φ′δo

3 ∪ Φε
f Φ′δo

3 ⊆ Φδo
f

Φ′; Γ′ ` e1 e′2 : τ2 ; · ./ R′
2

(Note that · ./ R′
2 = R′

2.)
The first premise follows by value typing and weakening; the second by (i); the third– eighth
by choice of Φ′, Φ′

1, Φ′
2, Φ′

3.
To prove part 2., we must show that Φ′,R′; H′ ` Σ′. The proof is similar to the (TAssign)-
[cong] proof, case r := E but substituting εf for εr.
Part 3. follows directly from (iv).

case (TSub) :

We have

(TSub)

Φ′′; Γ ` e : τ ′′ ; R
Φ′′ ≡ [α; ε′′; ω; δi; δo] Φ ≡ [α; ε; ω; δi; δo]

τ ′′ ≤ τ ε′′ ⊆ ε

Φ; Γ ` e : τ ; R

since by flow effect weakening (Lemma C.0.24) we know that α and ω are unchanged in the use of (TSub).

We have 〈n; Σ; H; e〉 −→ε 〈n; Σ′; H′; e′〉. To apply induction we must show that n; Γ ` H, which we have
by assumption, Φ′′; Γ ` e : τ ′′ ; R, which we also have by assumption, and Φ′′,R; H ` Σ. We prove
Φ′′,R; H ` Σ below. We know

(TC1)

f ∈ σ ⇒ f ∈ α
f ∈ (ε ∩ δi) ⇒ n ∈ ver(H, f)

κα ⊇ (α ∪ δi)
κω ⊇ (ω ∪ ε)

[α; ε; ω; δi; δo], ·; H ` (n, σ, κ)

and need to show

(TC1)

f ∈ σ ⇒ f ∈ α
f ∈ (ε′′ ∩ δi) ⇒ n ∈ ver(H, f)

κα ⊇ (α ∪ δi)
κω ⊇ (ω ∪ ε′′)

[α; ε′′; ω; δi; δo], ·; H ` (n, σ, κ)

The first premise is true by assumption. The second follows easily by assumption and the fact that ε′′ ⊆ ε.
The third premise follows by assumption. The fourth premise similarly follows by assumption and by ε′′ ⊆ ε.

Hence we have:

(i) Φ′′′; Γ′ ` e′ : τ ′′ ; R′ and

(ii) n; Γ′ ` H′

(iii) Φ′′′,R′; H′ ` Σ′

(iv) traceOK (Σ′)
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for some Γ′ ⊇ Γ, Φ′′′ such that Φ′′′α = α ∪ ε0, Φ′′′ε ∪ ε0 ⊆ ε′′, Φ′′′δi = Φ′′δi , and Φ′′′δo = Φ′′δo .

Let Φ′ ≡ Φ′′′, and thus Φ′α = α ∪ ε0, Φ′ε ∪ ε0 ⊆ ε since ε′′ ⊆ ε, Φ′ω = ω, and Φ′δi = Φδi , and Φ′δo = Φδo

as required. All results follow by induction.

Lemma C.0.32 (Progress). If n ` H, e : τ (such that Φ; Γ ` e : τ ; R and n; Γ ` H) and for all Σ such that
Φ,R; H ` Σ and traceOK (Σ), then either e is a value, or there exist n′, H′, Σ′, e′ such that 〈n; Σ; H; e〉 −→η

〈n′; Σ′; H′; e′〉.

Proof. Induction on the typing derivation n ` H, e : τ ; consider each possible rule for the conclusion of this
judgment:

case (TInt-TGvar-TLoc) :

These are all values.

case (TVar) :

Can’t occur, since local values are substituted for.

case (TRef) :

We must have that

(TRef)
Φ; Γ ` e′ : τ ; R

Φ; Γ ` ref e′ : ref ε τ ; R

There are two possible reductions, depending on the shape of e:

case e′ ≡ v :

By inversion on Φ; Γ ` v : τ ; · we know that R ≡ · hence by inversion on Φ,R; H ` Σ we have
Σ ≡ (n′, σ, κ). We have that 〈n; (n′, σ, κ); H; ref v〉 −→ n; (n′, σ, κ); H′; r where r /∈ dom(H) and
H′ = H, r 7→ (·, v, ∅) by (ref).

case e′ 6≡ v :

By induction, 〈n; Σ; H; e′〉 −→η 〈n′; Σ′; H′; e′′〉 and thus 〈n; Σ; H; (ref )[e′]〉 −→η 〈n′; Σ′; H′; (ref )[e′′]〉
by [cong].

case (TDeref) :

We know that

(TDeref)

Φ1; Γ ` e : ref εr τ ; R
Φε

2 = εr Φ
δi
2 = Φδo

2 ∪ εr

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e : τ ; R

Consider the shape of e:

case e′ ≡ v :

Since v is a value of type ref εr τ , we must have v ≡ z or v ≡ r.

case e′ ≡ z :
We have

(TDeref)

Φ1; Γ ` z : ref εr τ ; ·
Φε

2 = εr Φ
δi
2 = Φδo

2 ∪ εr

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! z : τ ; ·

where by subtyping derivations (Lemma C.0.23) we have

(TSub)

(TGVar)
Γ(z) = ref ε′

r τ ′

Φ∅; Γ ` z : ref ε′
r τ ′ ; ·

τ ′ ≤ τ τ ≤ τ ′ ε′r ⊆ εr

ref ε′
r τ ′ ≤ ref εr τ Φ∅ ≤ Φ1

Φ1; Γ ` z : ref εr τ ; ·

By inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ, κ). By C; Γ ` H we have z ∈ dom(H)

(and thus H ≡ H′′, z 7→ (ref ε′
r τ ′, v, ν))) since Γ(z) = ref ε′

r τ ′. Therefore, we can reduce
via [gvar-deref]:

〈n; (n′, σ, κ); (H′′, z 7→ (τ ′, v, ν)); ! z〉 −→{z} 〈n; (n′, σ ∪ (z, ν), κ); (H′′, z 7→ (τ ′, v, ν)); v〉
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case e′ ≡ r :
Similar to the e′ ≡ z case above, but reduce using [deref].

case e′ 6≡ v :

Let E ≡ ! so that e ≡ E[e′]. To apply induction, we have Φ1,R; H ` Σ by Lemma C.0.25. Thus
we get 〈n; Σ; H; e′〉 −→η 〈n′; Σ′; H′; e′′〉, hence we have that 〈n; Σ; H; E[e′]〉 −→η 〈n′; Σ′; H′; E[e′′]〉
by [cong].

case (TAssign) :

(TAssign)

Φ1; Γ ` e1 : ref εr τ ; R1 Φ2; Γ ` e2 : τ ; R2

Φε
3 = εr Φ

δi
3 = Φδo

3 ∪ εr

Φ1 � Φ2 � Φ3 ↪→ Φ

Φ; Γ ` e1 := e2 : τ ; R1 ./ R2

Depending on the shape of e, we have:

case e1 ≡ v1, e2 ≡ v2 :

Since v1 is a value of type ref εr τ , we must have v1 ≡ z or v1 ≡ r. The results follow by reasoning
quite similar to [TDeref] above.

case e1 ≡ v1, e2 6≡ v :

Let E ≡ v1 := so that e ≡ E[e2]. Since e1 is a value, R1 ≡ · hence we have Φ2,R; H ` Σ by
Lemma C.0.26 and we can apply induction. We have 〈n; Σ; H; e2〉 −→η 〈n′; Σ′; H′; e′2〉, and thus
〈n; Σ; H; E[e2]〉 −→η 〈n′; Σ′; H′; E[e′2]〉 by [cong].

case e1 6≡ v :

Since e1 is a not value, R2 ≡ · hence we have Φ1,R; H ` Σ by Lemma C.0.26 and we can apply
induction. The rest follows by an argument similar to the above case.

case (TCheckin) :

(TCheckin)
α ∪ δo ⊆ α′ ω ⊆ ω′

[α; ∅; ω; ∅; δo]; Γ ` checkinα′,ω′
:int ; ·

By inversion on Φ; Γ ` checkinα′,ω′
: int ; R we have that R ≡ ·, hence by inversion on Φ,R; H ` Σ we

have Σ ≡ (n′, σ, κ) and can reduce via [checkin].

case (TIf) :

(TIf)

Φ1; Γ ` e1 : int ; R
Φ2; Γ ` e2 : τ ; · Φ2; Γ ` e3 : τ ; ·

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` if0 e1 then e2 else e3 : τ ; R

Depending on the shape of e, we have:

case e1 ≡ v :

This implies R ≡ · so by inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ, κ). Since the type of v is int ,
we know v must be an integer n. Thus we can reduce via either [if-t] or [if-f].

case e1 6≡ v :

Let E ≡ if0 then e2 else e3 so that e ≡ E[e1]. To apply induction, we have Φ1,R; H `
Σ by Lemma C.0.25. We have 〈n; Σ; H; e1〉 −→η 〈n′; Σ′; H′; e′1〉 and thus 〈n; Σ; H; E[e1]〉 −→η

〈n′; Σ′; H′; E[e′1]〉 by [cong].

case (TTransact) :

We know that:

(TTransact)

Φ′′; Γ ` e : τ ; ·
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` tx(Φ′′α∪Φ′′δi ,Φ′′ω∪Φ′′ε) e : τ ; ·

By inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ, κ). Thus we can reduce by [tx-start].
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case (TIntrans) :

We know that:

(TIntrans)

Φ′′; Γ ` e : τ ; R
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` intx e : τ ; Φ′′,R

Consider the shape of e:

case e ≡ v :

Thus

(TIntrans)

Φ′′; Γ ` v : τ ; ·
Φα ⊆ Φ′′α Φω ⊆ Φ′′ω

Φ; Γ ` intx v : τ ; Φ′′, ·

We have Φ, Φ′′, ·; H ` Σ by assumption:

(TC2)

Φ′′, ·; H ` (n′′, σ′′, κ′′)
f ∈ σ ⇒ f ∈ Φα

f ∈ (∅ ∩ Φδi ) ⇒ n′ ∈ ver(H, f)
κα ⊇ (Φα ∪ Φδi )
κω ⊇ (Φω ∪ ∅)

[Φα; ∅; Φω ; Φδi ; Φδo ], Φ′′, ·; H ` (n′, σ, κ), (n′′, ∅′′, κ′′)

By inversion we have Σ ≡ ((n′, σ, κ), (n′′, σ′′, κ′′)); by assumption we have traceOK (n′′, σ′′, κ′′) so
we can reduce via [tx-end].

case e 6≡ v :

We have Φ, Φ′,R; H ` Σ by assumption. By induction we have 〈n; Σ′; H; e′〉 −→η 〈n′; Σ′′; H′; e′′〉,
hence by [tx-cong-2]:

〈n; Σ′; H; intx e′〉 −→∅ 〈n′; Σ′′; H′; intx e′′〉

case (TLet) :

We know that:

(TLet)

Φ1; Γ ` e1 : τ1 ; R Φ2; Γ, x : τ1 ` e2 : τ2 ; ·
Φ1 � Φ2 ↪→ Φ

Φ; Γ ` let x : τ1 = e1 in e2 : τ2 ; R

Consider the shape of e:

case e1 ≡ v :

Thus Φ1; Γ ` v : τ ; · and by inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ, κ).

We can reduce via [let].

case e1 6≡ v :

Let E ≡ let x : τ1 = in e2 so that e ≡ E[e1]. To apply induction, we have Φ1,R; H `
Σ by Lemma C.0.25. We have 〈n; Σ; H; e1〉 −→η 〈n′; Σ′; H′; e′1〉 and so 〈n; Σ; H; E[e1]〉 −→η

〈n′; Σ′; H′; E[e′1]〉 by [cong].

case (TApp) :

(TApp)

Φ1; Γ ` e1 : τ1 −→Φf τ2 ; R1 Φ2; Γ ` e2 : τ1 ; R2

Φ1 � Φ2 � Φ3 ↪→ Φ
Φε

3 = Φε
f Φα

3 ⊆ Φα
f Φω

3 ⊆ Φω
f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ; Γ ` e1 e2 : τ2 ; R1 ./ R2

Depending on the shape of e, we have:

case e1 ≡ v1, e2 ≡ v2 :

Since v1 is a value of type τ1 −→Φ τ2, we must have v1 ≡ z, hence

(TApp)

Φ1; Γ ` z : τ1 −→Φf τ2 ; · Φ2; Γ ` v : τ1 ; ·
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ; Γ ` z v : τ2 ; ·
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where by subtyping derivations (Lemma C.0.23) we have

(TSub)

(TGVar)
Γ(z) = τ ′1 −→

Φ′
f τ ′2

Φ∅; Γ ` z : τ ′1 −→
Φ′

f τ ′2 ; ·

τ1 ≤ τ ′1 τ ′2 ≤ τ2 Φ′
f ≤f Φf

τ ′1 −→
Φ′

f τ ′2 ≤ τ1 −→Φf τ2
Φ∅ ≤ Φ1

Φ1; Γ ` z : τ1 −→Φf τ2 ; ·

By inversion on Φ, ·; H ` Σ we have Σ ≡ (n′, σ, κ). By C; Γ ` H we have z ∈ dom(H) and

H ≡ (H′′, z 7→ (τ ′1 −→
Φ′

f τ ′2, λ(x).e′′, ν)) since Γ(z) = τ ′1 −→
Φ′

f τ ′2. By [call], we have:

〈n; (n′, σ, κ); (H′′, z 7→ (τ ′1 −→
Φ′

f τ ′2, λ(x).e′′, ν)); z v〉 −→{z}

〈n; (n′, σ ∪ (z, ν), κ); (H′′, z 7→ (τ ′1 −→
Φ′

f τ ′2, λ(x).e′′, ν)); e′′[x 7→ v]〉

case e1 6≡ v :

Let E ≡ e2 so that e ≡ E[e1]. Since e1 is a not value, R2 ≡ · hence we have Φ1,R; H ` Σ by
Lemma C.0.26 and we can apply induction and we have: 〈n; Σ; H; e1〉 −→η 〈n′; Σ′; H′; e′1〉, and thus
〈n; Σ; H; E[e1]〉 −→η 〈n′; Σ′; H′; E[e′1]〉 by [cong].

case e1 ≡ v1, e2 6≡ v :

Let E ≡ v1 so that e ≡ E[e2]. Since e1 is a value, R1 ≡ · hence we have Φ2,R; H ` Σ by
Lemma C.0.26 and we can apply induction. The rest follows similarly to the above case.

case (TSub) :

We know that:

(TSub)

Φ1; Γ ` e : τ ′ ; R τ ′ ≤ τ
Φ1 ≡ [α; ε1; ω; δi; δo] Φ ≡ [α; ε; ω; δi; δo] ε1 ⊆ ε

Φ; Γ ` e : τ ; R
If e is a value v we are done. Otherwise, since Φ1,R; H ` Σ follows from Φ,R; H ` Σ (by Φε

1 ⊆ Φε and
Φα

1 = Φα); we have 〈n; Σ; H; e〉 −→η 〈n′; Σ′; H′; e′〉 by induction.

Lemma C.0.33 (Substitution).
If Φ; Γ, x : τ ′ ` e : τ and Φ; Γ ` v : τ ′ then Φ; Γ ` e[x 7→ v] : τ .

Proof. Induction on the typing derivation of Φ; Γ ` e : τ .

case (TInt) :

Since e ≡ n and n[x 7→ v] ≡ n, the result follows by (TInt).

case (TVar) :

e is a variable y. We have two cases:

case y = x :

We have τ = τ ′ and y[x 7→ v] ≡ v, hence we need to prove that Φ; Γ ` v : τ which is true by
assumption.

case y 6= x :

We have y[x 7→ v] ≡ y and need to prove that Φ; Γ ` y : τ . By assumption, Φ; Γ, x : τ ′ ` y : τ , and
thus (Γ, x : τ ′)(y) = τ ; but since x 6= y this implies Γ(y) = τ and we have to prove Φ; Γ ` y : τ
which follows by (Tvar).

case (TGvar),(TLoc), (TCheckin) :

Similar to (TInt).

case (TRef) :

We know that Φ; Γ, x : τ ′ ` ref e : ref ε τ and Φ; Γ ` v : τ ′, and need to prove that Φ; Γ ` (ref e)[x 7→ v] :
ref ε τ . By inversion on Φ; Γ, x : τ ′ ` ref e : ref ε τ we have Φ; Γ, x : τ ′ ` e : τ ; applying induction to this,
we have Φ; Γ ` e[x 7→ v] : τ . We can now apply [TRef]:

(TRef)
Φ; Γ ` e[x 7→ v] : τ

Φ; Γ ` ref (e[x 7→ v]) : ref ε τ

The desired result follows since ref (e[x 7→ v]) ≡ (ref e)[x 7→ v].
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case (TDeref) :

We know that Φ; Γ, x : τ ′ ` ! e : τ and Φ; Γ ` v : τ ′ and need to prove that Φ; Γ ` (! e)[x 7→ v] : τ . By
inversion on Φ; Γ, x : τ ′ ` ! e : τ we have Φ1; Γ, x : τ ′ ` e : ref εr τ and Φ2 such that Φ1 � Φ2 ↪→ Φ
and Φ ≡ Φ1 � Φ2. By value typing we have Φ1; Γ ` v : τ ′. We can then apply induction, yielding
Φ1; Γ ` e[x 7→ v] : ref εr τ . Finally, we apply (TDeref)

(TDeref)

Φ1; Γ ` e[x 7→ v] : ref εr τ

Φε
2 = εr Φ

δi
2 = Φδo

2 ∪ εr

Φ1 � Φ2 ↪→ Φ

Φ; Γ ` ! e[x 7→ v] : τ

Note that the second premise holds by inversion on Φ; Γ, x : τ ′ ` ! e : τ . The desired result follows since
! (e[x 7→ v]) ≡ (! e)[x 7→ v].

case (TSub) :

We know that Φ; Γ, x : τ ′ ` e : τ and Φ; Γ ` v : τ ′ and need to prove that Φ; Γ ` e[x 7→ v] : τ . By inversion
on Φ; Γ, x : τ ′ ` e : τ we have Φ′; Γ, x : τ ′ ` e : τ ′. By value typing we have Φ′; Γ, x : τ ′ ` v : τ ′. We can
then apply induction, yielding Φ′; Γ ` e[x 7→ v] : τ ′. Finally, we apply (TSub)

(TSub)
Φ′; Γ ` e[x 7→ v] : τ ′ τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ ` e[x 7→ v] : τ

and get the desired result.

case (TTransact),(TIntrans) :

Similar to (TSub).

case (TApp) :

We know that

(TApp)

Φ1; Γ, x : τ ′ ` e1 : τ1 −→Φf τ2 Φ2; Γ, x : τ ′ ` e2 : τ1
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ; Γ, x : τ ′ ` e1 e2 : τ2

where Φ; Γ ` v : τ ′, and need to prove that Φ; Γ ` (e1 e2)[x 7→ v] : τ2. Call the first two premises above (1)
and (2), and note that we have (3) Φ; Γ ` v : τ ′ ⇒ Φ1; Γ ` v : τ ′ and (4) Φ; Γ ` v : τ ′ ⇒ Φ2; Γ ` v : τ ′ by
the value typing lemma. By (1), (3) and induction we have Φ1; Γ ` e1[x 7→ v] : τ1 −→Φf τ2. Similarly, by
(2), (4) and induction we have Φ2; Γ ` e2[x 7→ v] : τ1. We can now apply (TApp):

(TApp)

Φ1; Γ ` e1[x 7→ v] : τ1 −→Φf τ2 Φ2; Γ ` e2[x 7→ v] : τ1
Φ1 � Φ2 � Φ3 ↪→ Φ

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ; Γ ` e1[x 7→ v] e2[x 7→ v] : τ2

Since e1[x 7→ v] e2[x 7→ v] ≡ (e1 e2)[x 7→ v] we get the desired result.

case (TAssign-TIf-TLet) :

Similar to (TApp).
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Appendix D
Multi-threading Proofs
Lemma D.0.34 (Fork derivations). If Φ; Γ ` E[forkα,ω e] : τ ; R then Φ; Γ ` E[0] : τ ; R.

Proof. By induction on E:

case E = :

By assumption, we have Φ; Γ ` forkα,ω e : int ; ·. We have Φ; Γ ` 0 : int ; · by (TInt).

case E = v E′ :

By assumption, we have Φ; Γ ` v E′[forkα′′,ω′′
e] : τ ; R. By subtyping derivations (Lemma B.0.6) we

know we can construct a proof derivation of this ending in (TSub):

TSub

TApp

Φ1; Γ ` v : τ1 −→Φf τ ′2 ; · Φ2; Γ ` E′[forkα′′,ω′′
e] : τ1 ; R

Φ1 � Φ2 � Φ3 ↪→ Φ′

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ′; Γ ` v E′[forkα′′,ω′′
e] : τ ′2 ; R

τ ′2 ≤ τ Φ′ ≡ [α; ε′; ω] Φ ≡ [α; ε; ω] ε′ ⊆ ε

Φ; Γ ` v E′[forkα′′,ω′′
e] : τ ; R

By induction we have Φ2; Γ ` E′[0] : τ1 ; R. We can now apply (TApp):

TSub

TApp

Φ1; Γ ` v : τ1 −→Φf τ ′2 ; · Φ2; Γ ` E′[0] : τ1 ; R
Φ1 � Φ2 � Φ3 ↪→ Φ′

Φε
3 = Φε

f Φα
3 ⊆ Φα

f Φω
3 ⊆ Φω

f

Φ
δi
3 = Φδo

3 ∪ Φε
f Φδo

3 ⊆ Φδo
f

Φ′; Γ ` v E′[0] : τ ′2 ; R
τ ′2 ≤ τ Φ′ ≡ [α; ε′; ω] Φ ≡ [α; ε; ω] ε′ ⊆ ε

Φ; Γ ` v E′[0] : τ ; R

case all others :

By induction, similar to above cases.

Preservation is very similar to the single-threaded version (Lemma C.0.31). n; Γ ` H is unchanged since it’s
independent of the numbers of threads. We require Φi; Γ ` ei : τ ; Ri ∧ Φi,Ri; H ` Σi ∧ traceOK (Σi) ⇒ Φ′

i; Γ `
e′i : τ ; R′

i ∧Φ′
i,R′

i; H
′ ` Σ′

i ∧ traceOK (Σ′
i) for each thread i, which we can prove by invoking the single-threaded

proof and paying attention to MT-specific issues like (TFork) and (TReturn) that create and destroy a thread,
respectively.

Lemma D.0.35 (Multithreaded VC non-interference).
Let T = (Σ1, e1).(Σ2, e2) . . . (Σ|T |, e|T |). Suppose we have the following:

1. n ` H, T

2. ∀i ∈ 1..|T |. Φi,Ri; H ` Σi

and thread j takes a non-update evaluation step: 〈n; Σj ; H; e〉 −→ε 〈n′; Σ′
j ; H

′; e′〉 Then for some Γ′ ⊇ Γ and for

all threads i ∈ 1..|T |′ such that i 6= j we have:

1. Φi; Γ
′ ` ei : τ ; Ri

2. Φi,Ri; H
′ ` Σi

3. traceOK (Σ′
i)
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Proof. Part 1. is true by weakening since Γ′ ⊇ Γ.
We only need to prove 2. Proceed by induction on the typing derivation Φj ; Γ ` e : τ ; Rj , only considering

rules that change the heap:

case (TRef) :

We have that:

(TRef)
Φj ; Γ ` ej : τ ; R

Φj ; Γ ` ref ej : ref ε τ ; R

There are two possible reductions:

case [ref] :

We have that ej ≡ v, R = ·, and 〈n; (n′, σj , κj); H; ref v〉 −→∅ 〈n; (n′, σj , κj); H
′; r〉 where r /∈

dom(H), H′ = H, r 7→ (·, v, ∅), and Γ′ = Γ, r : ref ε τ .

To prove 2., we must show Φi,Ri; H
′ ` Σi. This follows by assumption since H′ only contains an

additional location (i.e., not a global variable) and no heap element has undergone a version change.

case [cong] :

We have 〈n; Σj ; H; ref E[e′′]〉 −→ε 〈n; Σ′
j ; H

′; ref E[e′′′]〉 from 〈n; Σj ; H; e′′〉 −→ε 〈n; Σ′
j ; H

′; e′′′〉.
By [cong], we have 〈n; Σj ; H; e〉 −→ε 〈n; Σ′

j ; H
′; e′〉 where e ≡ E[e′′] and e′ ≡ E[e′′′].

The result follows directly by induction.

case (TAssign) :

We know that:

(TAssign)

Φj1; Γ ` e1 : ref εr τ ; Rj1 Φj2; Γ ` e2 : τ ; Rj2

Φε
3 = εr Φ

δi
3 = Φδo

3 ∪ εr

Φj1 � Φj2 � Φ3 ↪→ Φj

Φj ; Γ ` e1 := e2 : τ ; Rj1 ./ Rj2

From Rj1 ./ Rj2 it follows that either Rj1 ≡ · or Rj2 ≡ ·.

We can reduce using [gvar-assign], [assign], or [cong].

case [gvar-assign] :

This implies that e ≡ z := v with

〈n; (n′, σj , κj); (H
′′, z 7→ (τ, v′, ν)); z := v〉 −→{z} 〈n; (n′j , σj ∪ (z, ν), κj); (H

′′, z 7→ (τ, v, ν)); v〉

where H ≡ (H′′, z 7→ (τ, v′, ν)). Rj1 ≡ · and Rj2 ≡ · (thus Rj1 ./ Rj2 ≡ ·), Γ′ = Γ, R′
j = ·.

Consider the case Φi ≡ (n′, σi, κi). We know

(TC1)

f ∈ σi ⇒ f ∈ αi

f ∈ (εi ∩ δii) ⇒ ni ∈ ver((H′′, z 7→ (τ, v, ν)), f)
κα

i ⊇ (αi ∪ δii)
κω

i ⊇ (ωi ∪ εi)

[αi; εi; ωi], ·; H ` (ni, σi, κi)

and need to prove:

(TC1)

f ∈ σi ⇒ f ∈ αi

f ∈ (εi ∩ δii) ⇒ ni ∈ ver((H′′, z 7→ (τ, v′, ν)), f)
κα

i ⊇ (αi ∪ δii)
κω

i ⊇ (ωi ∪ εi)

[αi; εi; ωi], ·; H ` (ni, σi, κi)

All premises follow by assumption (no heap element has changed version). If Φi ≡ (n′i, σi∪(z, ν), κi),
the result follows by the same argument.

case [assign] :

The proof follows by the same argument as in case (TDeref)-[deref].

case [cong] :

In both cases (E := e, r := E) the result follows by induction.
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Lemma D.0.36 (Preservation).
Let T = (Σ1, e1).(Σ2, e2) . . . (Σ|T |, e|T |). Suppose we have the following:

1. n ` H, T

2. ∀i ∈ 1..|T |. Φi,Ri; H ` Σi

3. ∀i ∈ 1..|T |. traceOK (Σi)

4. 〈n; T ; H〉 −→(ε,j) 〈n′; T ′; H′〉

where j is the thread taking a transition and ε is the evaluation effect. Then, for T ′ = (Σ′
1, e′1).(Σ′

2, e′2) . . . (Σ′
|T |, e

′
|T |)

we have that:

1. n′ ` H′, T ′ (such that n′; Γ′ ` H′ and ∀i ∈ 1..|T |′. Φ′
i; Γ

′ ` e′i : τ ; R′
i for some n′, Γ′ ⊇ Γ and some Φ′

i
such that

• Φ′
i = Φi, if i 6= j

• Φ′
i ≡ [Φα

i ∪ ε0; ε′i; Φ
ω
i ; Φ

δi
i ; Φδo

i ], ε′i ∪ ε0 ⊆ Φε
i , if i = j

2. ∀i ∈ 1..|T |′. Φ′
i,R′

i; H
′ ` Σ′

i

3. ∀i ∈ 1..|T |′. traceOK (Σ′
i)

Proof. By case analysis on the rule used to take an evaluation step:

case (fork) :

We have
〈n; H; T1.(Σj , E[forkκ e]).T2〉 ⇒(∅,j) 〈n; H; T1.(Σj , E[0]).((n, ∅, κ), e).T2〉

and we know that

TFork

Φm; Γ ` e : τ ; ·
Φm ≡ [αm; εm; ωm] κm ≡ (αm ∪ δim, εm)

Φj ; Γ ` forkκm e : int ; ·

Thus n′ = n and H′ = H; let Γ′ = Γ. We have n; Γ ` H by assumption, so n′; Γ′ ` H′ is immediate. Let
j be the index of the thread whose context is E[forkκ e], and m the index of the newly created thread. We
get 1. and 2. for all threads i ∈ 1..|T |, i 6= j, m by assumption (since H′ = H) and choosing Φ′

i = Φi. For
thread j, we have Φj ; Γ ` E[forkκ e] : int ; · and need to prove Φ′

j ; Γ ` E[0] : int ; ·. Let Φ′
j = Φj ; then

Φ′
j ; Γ ` E[0] : int ; · follows by Lemma D.0.34. Part 2., Φ′

j , ·; H′ ` Σ′
j follows by assumption since Φ′

j = Φj

and Σ′
j = Σj . Part 3. similarly follows by assumption since Σ′

j = Σj .

For the newly created thread m, we need to prove Φm; Γ ` e : τ ; · which follows by assumption (from
(TFork)), and 2., Φm, ·; H′ ` Σm, which we prove by [VC1]:

(TC1)

f ∈ σm ⇒ f ∈ αm

f ∈ (εm ∩ δim) ⇒ nm ∈ ver(H, f)
κα

m ⊇ (αm ∪ δim)
κω

m ⊇ (ωm ∪ εm)

[αm; εm; ωm], ·; H ` (nm, σm, κm)

Since (n, ∅, κ) is the new thread context (from [fork]), by inversion on Φm; Γ ` e : τ ; · we have Σm ≡
(nm, σm, κm) hence (nm, σm, κ) ≡ (n, ∅, (αm∪δim, εm)). The first premise is vacuously true since σm ≡ ∅.
The second premise follows directly from n; Γ ` H (which states ∀z 7→ (τ, b, ν) ∈ H. n ∈ ν) since nm ≡ n.
The third and fourth premises follow directly since κm ≡ (αm ∪ δim, εm) For part 3 we need to prove
traceOK (nm, σm, κ) which is vacuously true since σm ≡ ∅.

case (return) :

We have
〈n; H; T1.((n′′, σ′′, κ′′), v).T2〉 ⇒∅ 〈n; H; T1.T2〉

hence n′ = n and H′ = H. Let Γ′ = Γ; then 1., 2., and 3. follow by assumption for all threads.
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case (update) :

We know that

〈n; Σ1; H; e1〉 −→(upd,dir) 〈n + 1;U [Σ1]upd,dir
n+1 ;U [H]updn+1; e1〉

〈n; Σ2; H; e2〉 −→(upd,dir) 〈n + 1;U [Σ2]upd,dir
n+1 ;U [H]updn+1; e2〉

. . .
〈n; Σ|T |; H; e|T |〉 −→(upd,dir) 〈n + 1;U

ˆ
Σ|T |

˜upd,dir

n+1
;U [H]updn+1; e|T |〉

〈n; H; (Σ1, e1).(Σ2, e2) . . . (Σ|T |, e|T |)〉 ⇒(upd,dir)

〈n + 1;U [H]updn+1; (U [Σ1]upd,dir
n+1 , e1).(U [Σ2]upd,dir

n+1 , e2) . . . (U
ˆ
Σ|T |

˜upd,dir

n+1
, e|T |)〉

We have n′ = n + 1. Let Γ′ = U [Γ]upd ; we have H′ = U [H]updn+1.

n + 1; Γ′ ` H′ follows directly from Lemma B.0.12. For each thread i, we have

〈n; Σi; H; ei〉 −→(upd,dir) 〈n + 1;U [Σi]
upd,dir
n+1 ;U [H]updn+1; e〉

hence Φ′
i; Γ

′ ` e′i : τ ; Ri, Φ′
i,Ri; H

′ ` Σ′
i, and traceOK (Σ′

i) for each i follow from single-threaded update
preservation (Lemma B.0.13).

case (mt-cong) :

Let j be the thread that takes a step. We have

〈n; Σj ; H; e〉 −→η 〈n′; Σ′
j ; H

′; e′〉

〈n; H; T1.(Σj , E[e]).T2〉 ⇒(η,j) 〈n′; H′; T1.(Σ′
j , E[e′]).T2〉

hence n′; Γ′ ` H′, Φ′
j ; Γ ` e′j : τ ; R′

j , Φ′
j ,R′

j ; H
′ ` Σ′

j , and traceOK (Σ′
j) follow from single-threaded

preservation (Lemma D.0.36). For all threads i ∈ 1..|T |, i 6= j we have Φ′
i = Φi, Ri = R′

i, and Σ′
i = Σi

since they don’t take any steps. Hence we have Φ′
i; Γ

′ ` e′i : τ ; R′
i by assumption and weakening,

Φ′
i,R′

i; H
′ ` Σ′

i by assumption, and the observation that the only way j could have changed the heap was
via [gvar-assign], [assign], or [ref], but this does not affect Φ′

i,R′
i; H

′ ` Σ′
i (by Lemma D.0.35). Finally,

we have traceOK (Σ′
i) by assumption, since Σ′

i = Σi.

Progress is also similar to the single-threaded version; we pick a thread, and prove that it can take a step.

Lemma D.0.37 (Progress). Let T = (Σ1, e1).(Σ2, e2) . . . (Σ|T |, e|T |). Suppose we have the following:

1. n ` H, T

2. ∀i ∈ 1..|T |. Φi,Ri; H ` Σi

3. ∀i ∈ 1..|T |. traceOK (Σi)

Then for all Σi such that Φi,Ri; H ` Σi, and traceOK (Σi), either ei is a value, or there exist n′, H′, T ′ such that
n; H; T −→(ε,j) n′; H′; T ′.

Proof. Case analysis on the structure of the entire program. Assume |T | > 0 and consider ei, for some i such that
1 ≤ i ≤ |T |.

case ei ≡ v :

The thread context is (Σi, v). By assumption, we have Φi; Γ ` ei : τ ; Ri which in our case means
Φi; Γ ` v : τ ; · so R ≡ ·, hence by inversion on Φi,Ri; H ` Σi we have Σi ≡ (n′′, σ′′, κ′′) and we can
reduce via [return]:

〈n; H; T1.((n′′, σ′′, κ′′), v).T2〉 ⇒∅ 〈n; H; T1.T2〉

case ei 6≡ v :

We have
〈n; Σi; H; ei〉 −→ η 〈n′; Σ′

i; H
′; e′i〉 η ∈ {upd , ε}

from single-threaded progress (Lemma D.0.37). Proceed by case analysis on α:
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case ε :

case ei ≡ E[forkω e] :
We can reduce using [fork]:

〈n; H; T1.(Σi, E[forkκ e]).T2〉 ⇒(∅,i) 〈n; H; T1.(Σi, E[0]).((n, ∅, κ), e).T2〉

case ei 6≡ E[forkω e] :
We can apply [mt-cong]:

〈n; Σi; H; e〉 −→η 〈n′; Σ′
i; H

′; e′〉
〈n; H; T1.(Σi, E[e]).T2〉 ⇒(η,i) 〈n′; H′; T1.(Σ′

i, E[e′]).T2〉

190



Bibliography

[1] Ksplice: Rebootless Linux kernel security updates. http://web.mit.edu/

ksplice/.

[2] Sun Microsystems. Java HotSpot VM. http://www.javasoft.com/

products/hotspot.

[3] Sun Microsystems. JVM Tool Interface. http://java.sun.com/j2se/1.5.

0/docs/guide/jvmti.

[4] Mart́ın Abadi and Cédric Fournet. Access control based on execution history.
In Proceedings of the 10th Annual Network and Distributed System Security
Symposium, pages 107–121, 2003.

[5] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Check-
ing and Inferring Local Non-Aliasing. In Proceedings of the 2003 ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
pages 129–140, San Diego, California, June 2003.

[6] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. Opus:
online patches and updates for security. In Proceedings of the 14th conference
on USENIX Security Symposium, pages 287–302, Berkeley, CA, USA, 2005.
USENIX Association.

[7] Jesper Andersson, Marcus Comstedt, and Tobias Ritzau. Run-time support for
dynamic java architectures. In Proceedings of ECOOP Workshop on Object-
Oriented Architectures, 1998.

[8] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. Con-
current programming in ERLANG (2nd ed.). Prentice Hall International (UK)
Ltd., 1996.

[9] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. In SPIN ’01: Proceedings of the 8th inter-
national SPIN workshop on Model checking of software, pages 103–122, New
York, NY, USA, 2001. Springer-Verlag New York, Inc.

[10] Andrew Baumann, Jonathan Appavoo, Dilma Da Silva, Orran Krieger, and
Robert W. Wisniewski. Improving Operating System Availability With Dy-
namic Update. In Proc. Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OASIS), pages 21–27, October
2004.

191



[11] Andrew Baumann, Jonathan Appavoo, Robert W. Wisniewski, Dilma Da
Silva, Orran Krieger, and Gernot Heiser. Reboots are for hardware: Chal-
lenges and solutions to updating an operating system on the fly. In USENIX
Annual Technical Conference, pages 337–350, 2007.

[12] Andrew Baumann, Gernot Heiser, Jonathan Appavoo, Dilma Da Silva, Orran
Krieger, Robert W. Wisniewski, and Jeremy Kerr. Providing dynamic update
in an operating system. In USENIX Annual Technical Conference, General
Track, pages 279–291, 2005.

[13] David Berlind. Taking a closer look at Windows Vista. http:

//news.cnet.com/Taking-a-closer-look-at-Windows-Vista/1606-2\
3-6200749.html.

[14] D. Binkley. Using semantic differencing to reduce the cost of regression testing.
In Proceedings of the International Conference on Software Maintenance 1992,
pages 41–50, 1992.

[15] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Unrestricted
transactional memory: Supporting I/O and system calls within transactions.
Technical Report TR-CIS-06-09, Department of Computer and Information
Science University of Pennsylvania, May 2006.

[16] Daniel Pierre Bovet and Marco Cassetti. Understanding the Linux Kernel.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2000.

[17] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue Moh,
and Steven Richman. Lazy modular upgrades in persistent object stores. In
Proceedings of the 9th Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 403–417, 2003.

[18] Eric A. Brewer. Lessons from giant-scale services. IEEE Internet Computing,
5(4):46–55, 2001.

[19] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Peter K. Szwed, and Mar-
tin Schulz. Application-level checkpointing for shared memory programs. In
ASPLOS, pages 235–247, 2004.

[20] Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patching.
Journal of High Performance Computing Applications, 14(4):317–329, 2000.

[21] Cristiano Calcagno. Stratified Operational Semantics for Safety and Correct-
ness of The Region Calculus. In POPL’01, pages 155–165, 2001.

[22] Craig Chambers, David Ungar, and Elgin Lee. An efficient implementation of
self - a dynamically-typed object-oriented language based on prototypes. In
OOPSLA, pages 49–70, 1989.

192



[23] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang, and Pen-Chung Yew.
Live updating operating systems using virtualization. In VEE ’06: Proceedings
of the 2nd international conference on Virtual execution environments, pages
35–44, New York, NY, USA, 2006. ACM Press.

[24] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. POLUS:
A POwerful Live Updating System. In ICSE, pages 271–281, 2007.

[25] Brian Chin, Shane Markstrum, and Todd D. Millstein. Semantic type quali-
fiers. In PLDI, pages 85–95, 2005.
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