
Empirical Security & Privacy, 
for Humans
UPenn CIS 7000-010

Michael Hicks

Introduction



How would you answer this question?

In the last decade, has the security 
of computer systems, generally,

• improved, 
• declined, or 
• stayed the same?



A story of memory (un)safety





Violations of memory safety

• Spatial
• Buffer overflow (heap or stack, read or write)

• Temporal
• Use after free

• Use of uninitialized memory

• Other (maybe)
• Wild pointer deference (int to pointer, deref)

• Type confusion (bad cast, deref)





https://www.youtube.com/watch?v=3BqiTEwz1I0

Code Red SQL Slammer



What to do? Some options

1. Write C/C++ code without (or with fewer of) these bugs in it

2. Write code in a memory safe language

3. Leverage compiler and OS-level mitigations that
1. make the bugs more difficult to exploit, and/or

2. limit the damage/scope of an exploitation

1. Write C/C++ code without (or with fewer of) these bugs in it



1. Write C/C++ code without (or with fewer of) these bugs in it



1. Write C/C++ code without (or with fewer of) these bugs in it



1. Write C/C++ code without (or with fewer of) these bugs in it



How’s that going?



How’s that going?

https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html

Classic memory-safety vulnerabilities



What to do? Some options

1. Write C/C++ code without (or with fewer of) these bugs in it

2. Write code in a memory safe language

3. Leverage compiler and OS-level mitigations that
1. make the bugs more difficult to exploit, and/or

2. limit the damage/scope of an exploitation

2. Write code in a memory safe language



Memory safe:

• Rust

• Swift

• Go

• Haskell

• Python

• Etc.

Memory unsafe:

• C

• C++

• Assembly

2. Write code in a memory safe language



How’s that going?

the percentage of memory safety 
vulnerabilities in Android 
dropped from 76% to 24% over 6 
years as development shifted to 
memory safe languages



How’s that going?



How’s that going?



December 2023 June 2024



What to do? Some options

1. Write C/C++ code without (or with fewer of) these bugs in it

2. Write code in a memory safe language

3. Leverage compiler and OS-level mitigations that
1. make the bugs more difficult to exploit, and/or

2. limit the damage/scope of an exploitation

3. Leverage compiler and OS-level mitigations that
1. make the bugs more difficult to exploit, and/or
2. limit the damage/scope of an exploitation



Challenge exploitability:

• Stack canaries

• Address-space layout 
randomization (ASLR)

• “write xor execute” (W⊕X)

• Control-flow integrity (CFI)

• Etc.

Limit damage:

• Process-level isolation

• Within-process 
compartments (eg., RLbox)

• Externally enforced access 
control

3. Leverage compiler and OS-level mitigations that
1. make the bugs more difficult to exploit, and/or
2. limit the damage/scope of an exploitation



How’s that going?



How’s that going?



How’s that going?

Out of the 58 in-

the-wild 0-days for 

the year, 39, or 

67% were memory 

corruption 
vulnerabilities.



How’s that going?

Lots we don’t know 

• No estimate of the damage caused by the exploitation

• Data is lower bound – probably more exploited zero-

days than these (not known, not reported)

• Zero-days are not the only vector of attack





The exploitation of vulnerabilities has seen another year of 

growth as an initial access vector for breaches, reaching 20%. 

This value approaches that of credential abuse, which is still 

the most common vector. 



… “gain access to an 
online asset in a 
BeyondTrust AWS 
account. Access to 
that asset then 
allowed the threat 
actor to obtain an 
infrastructure API 
key …” which was 
used to operate the 
Remote Support 
infrastructure



“Snowflake blamed 
the data thefts on its 
customers for not 
using multi-factor 
authentication to 
secure their 
snowflake accounts, 
… did not require its 
customers to use”



“This might be the best 
executed supply chain 
attack we've seen 
described in the open, 
and it's a nightmare 
scenario: malicious, 
competent, authorized 
upstream in a widely 
used library"



The big picture

https://www.usenix.org/conference/usenixsecurity19/presentation/stamos 

https://www.usenix.org/conference/usenixsecurity19/presentation/stamos


The big picture

https://www.usenix.org/conference/usenixsecurity19/presentation/stamos 

https://www.usenix.org/conference/usenixsecurity19/presentation/stamos


So: What would you do?

• If you were a CISO, or a VP of Security Engineering, how would you 
spend your money?

• If you were the head of a government agency like CISA, tasked with 
improving the state of cybersecurity, what would you recommend?

• If you were the head of NSF’s Secure and Trustworthy Cyberspace 
program, what would you fund?



Empirical Security & Privacy, 
for Humans
UPenn CIS 7000-010



Goals for the course

• Learn the research state of the art



• Economic view of cybersecurity

• End users and cybersecurity

• Cybersecurity as a scientific 
pursuit

• Cybersecurity investment as risk 
assessment

• Cybersecurity game theory

• Cyberattack economics

• Cybersecurity public health

• Developers’ and operators’ 
actions, and security

• Ethics in computer security 
experimentation

• Network-based security 
measurement

• Privacy



Goals for the course

• Learn the research state of the art

• Learn relevant research methods

• Learn how to learn – how to dive into a field, understand its results, 
and see gaps and opportunities

• Do something interesting: New result, reproduction, or a deep dive



https://canvas.upenn.edu/
courses/1880676



Approach

• Read papers, (sometimes) present them, critique them, discuss

• Learn from experts in the field

• Do a (group) project

• We will have Zoom enabled during the class, for remote lectures and 
for those who (occasionally) can’t make it



Read papers: Question, understand, improve



Class prep

• Read the paper(s) 
for that class. Submit 
a 1-2 paragraph 
review



Guest lectures (so far)

Alex Gantman
VP, Security Engineering, 

Qualcomm, August 28

Cormac Herley
VP, Security Engineering, 
Qualcomm, September 4

Adam Shostack
Founder & CEO, Shostack 
& Associates, October 7



Present papers: Distill, reveal, dive deep

• Will do this for the second half of the class

• We will vote on a pool of papers to present, and you can select the 1 
you want

• Grading criteria: Understanding, thoughtfulness, 
background/perspective, clarity, materials quality, delivery, non-
regurgitation, answering questions



Projects

• Something substantial: New study, reproduction, literature review, …

• Timeline
• Pitches in class @ 9/25

• Proposal @ 10/9

• Final paper @ finals week



About me

• Ph.D., CIS @ UPenn 2001

• Remained a Philly sports fan (go Eagles!)



About me

• 2002-2022 – TTk faculty, UMD

• 2006-2015 – Adjunct, IDA/CCS 
(NSA-funded research lab)

• 2008, 2015 – Visiting Researcher, 
Microsoft Research

• 2018-2021 – CTO, Correct 
Computation, Inc (startup)

• 2022-present – Senior Principal 
Scientist, AWS

• 2009-2012 – Member, DARPA 
Information Science and 
Technology Board

• 2011-2013 – Director, Maryland 
Cybersecurity Center

• 2015-2018 – Chair, ACM Special 
Interest Group on Programming 
Languages

• 2017-2021 – Assoc. Chair, 
Undergrad Education, UMD CS

Employment Selected leadership positions



About me

• Research @ UMD: Software Security, Programming Languages, 
Software Engineering, Usability, Cryptography, Quantum 
Computing, Networks, Databases

• Startup: Building tools for secure software development
• Binary analysis
• Migration to memory-safe C

• AWS
• Cedar authorization 

language
• Fuzzing/automated 

test generation
• Formal/mechanized 

proofs of security



Reading for next time Plus: “How to Read a Paper?”


	Slide 1: Empirical Security & Privacy, for Humans
	Slide 2: How would you answer this question?
	Slide 3: A story of memory (un)safety
	Slide 4
	Slide 5: Violations of memory safety
	Slide 6
	Slide 7
	Slide 8: What to do? Some options
	Slide 9
	Slide 10
	Slide 11
	Slide 12: How’s that going?
	Slide 13: How’s that going?
	Slide 14: What to do? Some options
	Slide 15
	Slide 16: How’s that going?
	Slide 17: How’s that going?
	Slide 18: How’s that going?
	Slide 19
	Slide 20: What to do? Some options
	Slide 21
	Slide 22: How’s that going?
	Slide 23: How’s that going?
	Slide 24: How’s that going?
	Slide 25: How’s that going?
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: The big picture
	Slide 32: The big picture
	Slide 33: So: What would you do?
	Slide 34: Empirical Security & Privacy, for Humans
	Slide 35: Goals for the course
	Slide 36
	Slide 37: Goals for the course
	Slide 38
	Slide 39: Approach
	Slide 40: Read papers: Question, understand, improve
	Slide 41: Class prep
	Slide 42: Guest lectures (so far)
	Slide 43: Present papers: Distill, reveal, dive deep
	Slide 44: Projects
	Slide 45: About me
	Slide 46: About me
	Slide 47: About me
	Slide 48: Reading for next time

