Empirical Security & Privacy,

for Humans B 554 BN
UPenn CIS 7000-010

Introduction
Michael Hicks

How would you answer this question?

In the last decade, has the security
of computer systems, generally,

* improved,
* declined, or
e stayed the same?

A story of memory wn)safety

[@) & Whatis memory safety? -Th X <+

The Programming Languages

Enthusiast

HOME ABOUT THE PL ENTHUSIAST

BY MICHAEL HICKS | JULY 21, 2014 - 7:09 AM
What is memory safety?

I am in the process of putting together a
goes live in October. At the moment I'm finishing up material on buffer
5, and other sorts of vulnerabilities in C. After
presenting this material, I plan to step back and say, “What do these errors
have in common? They are violations of memory safety.” Then I'll state the
definition of memory safety, say why these vulnerabilities are violations of
memory safety, and conversely say why memory safety, e.g., as ensured by Entervouremail address to:sub

languages like Java, prevents them. this blog and receive notifications of new
B email.

Violations of memory safety

 Spatial
» Buffer overflow (heap or stack, read or write)

* Temporal
e Use after free
e Use of uninitialized memory

e Other (maybe)
* Wild pointer deference (int to pointer, deref)
e Type confusion (bad cast, deref)

previous stack frame

+prc\mlh stack fra

net_msg
return address P
B P
— | saved frame ptr

=1}

=)
3
-
=
=
=
=
-
-
=

Buffer grows upward

shellcode
shellcode
shellcode
shellcode
shellcode

m) shellcode
- -

(a) Before Overflow (b) After Overflow

Stack

copy_msg()
copy_msg()

msg[128]

Low-level Software Security o »

History of buffgr overflows

i

The harm has beer] substantial

(1988] 1999 2000 200
I‘ ! { 1

lorris worm
Propagated across machines (too aggressively, thanks to a bug)
One way it propagated was a buffer overflow attack against a
vulnerable version of £fingerd on VAXes
« Sent a special string to the finger daemon, which caused it to
execute code that created a new worm copy
Didn't check OS: caused Suns running BSD to crash
End result: $10-100M in damages, probation, community service

» »l ‘D 3:07/7:35 Scroll for details -o m * :IIII:

v

https://www.youtube.com/watch?v=3BqiTEwz 110

What to do? Some options

1. Write C/C++ code without (or with fewer of) these bugs in it
2. Write code in a memory safe language

3. Leverage compiler and OS-level mitigations that
1. make the bugs more difficult to exploit, and/or
2. limit the damage/scope of an exploitation

[} [] # CERT Secure Coding in C ar

Secure Coding
in C and C++

Home > Credentials > CERT Secure Coding in C and C++ Professional Certificate :
0
o SEconD EDITION
-
5 o & at™ NN
& NG| AL NN
i H W - p* (2R S RN
CERT Secure Coding in C and B AN [IRAEERS
'~'I“K~ L ,""r s
i (al (",“» L1 1/'® “’\
C++ Professional Certificate N A -
. Ny g ™~ >
I I . :, » > % S \LL 3
CERT Secure Coding in C and C++ w -
. . x Y 4=
Professional Certificate 2 T - A
n t " X ‘:’\ -~
g g 4 . 1 | \
The need for qualified experts to support organizations that . W ¥ i‘;un!‘, Q ¥ &),
Benefits 0 : % Y. v A
develop secure software is now greater than ever. To meet this .
growing demand, we share solutions that are developed as
part of our important research. The most effective way to Who Should Get This
improve software security is to eliminate vulnerabilities during Credential?
development—before the software is released to users. We RO be rt C - Seaco rd
offer two certificates in secure coding: Secure Coding in C and Term and Renewal
C++, described here, and Secure Coding in Java. Both Foreword by Richard D. Pethia
certificates can be earned entirely through online training. CERT Director

Summary of Fees

Build More Secure Software

N _____ FREE SAMPLE CHAPTER |
i 1. Write C/C++ code without (or with fewer of) these bugs in it

Certificate h

@ [] . Coverity Scan - Static Analy * + @ [] Q CodeQL ® +

« =2 . 1% scan.coverity.com -;}) @ 3} a R < c 23 codeqgl.github.com +r @ o3 = & = @

O GItHub Docs Repository License Security Lab

FAQ 0SS Success Stories Projects Using Scan

CodeQL
COVE R I TY SCAN Discover vulnerabilities across a codebase with CodeQL, our

industry-leading semantic code analysis engine. CodeQL lets
you guery code as though it were data. Write a query to find all
variants of a vulnerability, eradicating it forever. Then share
your query to help others do the same.

Find and fix defects in your Java, C/C++, C#, JavaScript, Ruby, or

. CodeQL is free for research and open source.
Python open source project for free QL is free for research and open sour

v Test every line of code and potential execution path.

v The root cause of each defect is clearly explained, making it easy to fix bugs

v Integrated with

UnsafeDeserialization.gl

import TaintTracking::Global<UnsafeDeserializationConfig>
from PathNode source, PathMode sink
where flowPath{source, sink)

select sink.getNode().(UnsafeDeserializationSink}.getMethodAccess(), source, sink,
"Unsafe deserialization of $@.", source.getNode(), "user input"

® © ® () GitHub - googlefoss-fuzz: O° X + @ ® 0 GitHub - googlefoss-fuzz: 0" X +

i & 2% github.comfgooglefoss-fuzz [g @ =} B = B)
- ¢ « c 2% github.com/google/oss-fuzz L @

[sinin | (]

README Code of conduct Contributing More - =

[google [oss-fuzz Public L1 Motifications % Fork 2.5k 7 Star 1.3k over\fiew

¢» Code (%) Issues 238 Il Pull requests 200) Discussions (*) Actions

Upstrearmn projedt

Bil der

i {Cloud Buwild)
¥ master - F O Go to file <> Code ~ About agle/oss-fuzs GCS bucket
4 ang laer
Q J o ClusterFuzz

055-Fuzz - continuous fuzzing

“% serge-sans-paille zlib:i.. + 4lcedda-6minutesago {9 for open source software. L
.allstar Opt out of allstar ... 3 years ago ¢ google.github.iofoss-fuzz -
[—1-™ rach deadires sheriithat
. . " I r 1 erifiha
.clusterfuzzlite ClusterFuzzLite: f... last year security Ll et Ll Developer R —
vulnerabilities stability
.github Add indexer_build... last manth oss-fuzz
docs build(deps-dev): ... 4 months ago [0 Readme Documentatiﬂn
infra helper: add ability... 31 minutes ago KB Apache-2.0 license |
) o _ & Code of conduct Read our detailed documentation to learn how to use
projects zlib: improve cove... & minutes ago |
Ay Contributing 0SS-Fuzz.
toolsjvscode-exte... build(deps): bum... 4 months ago 55 Security policy
A i i B - | -
D .dockerignore [ClusterFuzzLite] ... 4 years ago L5 Cite this repository Tl'DphIES
A Activity
[.gitattributes Add .gitattributes ... 3 years ago .
B Custom properties As of May 2025, 0SS-Fuzz has helped identify and fix
[.gitignore over 13,000 vulnerabilities and 50,000 bugs across

000 projects.

[.pylintre

Write C/C++ code without (or v

i)Y iNG Memory Unsafe b +

®s usenix.org/conferencefenigma2021/presentation/gaynor ¥y

How's that going?

QUANTIFYING MEMORY UNSAFETY AND
REACTIONS TO IT

Wednesday, February 03, 2021 - 9:20 am-9:50 am

e Chrome: 70% of high/critical vulnerabilities are memory unsafety
e Firefox: 72% of vulnerabilities in 2019 are memory unsafety e-after-free and buffer-
e Odays: 81% of in the wild Odays (PO dataset) are memory unsafey rnew projecs or
e Microsoft: 70% of all MSRC tracked vulnerabilities are memory unsafety cing developers to
e Ubuntu: 65% of kernel CVEs in USNs in a 6-month sample are memory
unsafety ion that C and C++ are not
. . .y A jects. We also present
e Android: More than 65% of high/critical vulnerabilities are memory unsafety SertEReu?

e mac0s: 71.5% of Mojave CVEs are due to memory unsafety

Barrel, working on systemic
Security Officer at Alloy and
ontribution in open

on Software

How’s that going?

Classic memory-safety vulnerabilities

Name

CVEs
in KEV

Rank
Change
vs.
2023

CWE-79

Improper Neutralization of Input During
Web Page Generation ('Cross-site
Scripting')

| CWE-20

’Improper Input Validation

| CWE-787

|Out-of-b0unds Write

CWE-77

Improper Neutralization of Special
Elements used in a Command ('Command
Injection')

CWE-89

Improper Neutralization of Special
Elements used in an SQL Command ('SQL
Injection')

| CWE-287

’Improper Authentication

| CWE-269

’Improper Privilege Management

| CWE-352

|Cross-Site Request Forgery (CSRF)

| CWE-502

’Deserialization of Untrusted Data

CWE-22

Improper Limitation of a Pathname to a
Restricted Directory ('Path Traversal')

CWE-200

Exposure of Sensitive Information to an
Unauthorized Actor

| CWE-125

CWE-78

| CWE-416

|Out—of—b0unds Read

Improper Neutralization of Special
Elements used in an OS Command ('OS
Command Injection')

|Use After Free

CWE-863

Incorrect Authorization

CWE-918

CWE-119

Server-Side Request Forgery (SSRF)

Improper Restriction of Operations within
the Bounds of a Memory Buffer

| CWE-476

‘NULL Pointer Dereference

| CWE-862

|M|'ssing Authorization

| CWE-798

’Use of Hard-coded Credentials

CWE-434

Unrestricted Upload of File with
Dangerous Type

| CWE-190

’Integer Overflow or Wraparound

| CWE-400

’Uncontrolled Resource Consumption

CWE-94

Improper Control of Generation of Code
('Code Injection')

’ CWE-306

Missing Authentication for Critical
Function

https://cwe.mitre.org/top25/archive/2024/2024 cwe_top25.html

What to do? Some options

2. Write code in a memory safe language

3. Leverage compiler and OS-level mitigations that
1. make the bugs more difficult to exploit, and/or
2. limit the damage/scope of an exploitation

2. Write code in a memory safe language

Memory safe: Memory unsafe:
* Rust * C

* Swift o C++

* Go * Assembly

* Haskell

* Python

e Etc.

How's that going?

the percentage of memory safety
vulnerabilities in Android
dropped from 76% to 24% over 6
years as development shifted to
memory safe languages

[] Google Online Security Blog * +

&) 2% security.googleblog.com/2024/09/eliminating-... 1}) e é:}

oogle Security Blog

The latest news and insights from Google on security and safety on the Internet

Eliminating Memory Safety Vulnerabilities at the Source

September 25, 2024

ert - Security Foundations

Memory safety vulnerabilities remain a pervasive threat to software security. At Google,
we believe the path to eliminating this class of vulnerabilities at scale and building high-
assurance software lies in , @ secure-by-design approach that prioritizes

transitioning to memory-safe languages.

This post demonstrates why focusing on Safe Coding for new code quickly and
counterintuitively reduces the overall security risk of a codebase, finally breaking
through the stubbornly high plateau of memory safety vulnerabilities and starting an

exponential decline, all while being scalable and cost-effective.

We'll also share updated data on how the percentage of memory safety vulnerabilities
in Android dropped from 76% to 24% over 6 years as development shifted to memory

safe languages.

How's that going?

Total Memory safe and Memory Unsafe Lines of Code in AOSP

B Memory safe B Memory Unsafe

[k
&)
[
&
=
i}
:
o
e
L=
|_

2019 2020 2022

How’s that going?

Memory safe Memory Unsafe

Taotal Lines of Code

2021 2022 2023

ad AUSTRALIAN
SIGNALS
- - DIRECTORATE

Australian Government g e
-
Australian Sigaals Directorate ACSCE

s Centre da la sécurit & { / ;
ty Las':snwe-'r. aailejec::ru;gl’i:ns M Natlor?al Cyber /// SNallqﬂalCCyber Cer‘tr]z
CanadanCentre Centrecanadien =+ |Security Centre Security Centre

for Cyber Security pour la cybersécurité a pant of GCHO 4

The Case for Memory Safe

Roadmaps

Why Both C-Suite Executives and Technical Experts
Need to Take Memory Safe Coding Seriously

' December 2023

United States Cybersecurity and Infrastructure Security Agency
United States National Security Agency

United States Federal Bureau of Investigation

Australian Signals Directorate's Australian Cyber Security Centre
Canadian Centre for Cyber Security

United Kingdom National Cyber Security Centre

New Zealand National Cyber Security Centre

Computer Emergency Response Team New Zealand

This document is marked TLP:CLEAR. Disclosure is not limited. Sources may use TLP:CLEAR when information carries minimal or no
foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject to standard copyright rules,
TLP:CLEAR information may be distributed without restriction. For more information on the Traffic Light Protocol, see cisagov/to.

LP:CLEAR

Australizs Govermment

Australian Signals Directorate

Communications Centre de la sécurité
Security Establishment des télécommunications

Canadian Centre Centre canadien
for Cyber Security pour la cybersécurité

Exploring Memory Safety in
Critical Open Source Projects

Publication: June 26, 2024 J 2024
Cybersecurity and Infrastructure Security Agency (CISA) u n e
Federal Bureau of Investigation (FBI)

Australian Signals Directorate’s (ASD's) Australian Cyber Security Centre (ACSC)
Canadian Centre for Cyber Security (CCCS)

This document is marked TLP:CLEAR. Disclosure is not limited. Sources may use TLP:CLEAR when information carries
minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject
to standard copyright rules, TLP:CLEAR information may be distributed without restriction. For more information on the
Traffic Light Protocol, see cisa.gov/tlp.

What to do? Some options

1. Write C/C++ code without (or with fewer of) these bugs in it

2. Write code in a memory safe language

3. Leverage compiler and OS-level mitigations that

1. make the bugs more difficult to exploit, and/or
2. limit the damage/scope of an exploitation

3. Leverage compiler and OS-level mitigations that

1. make the bugs more difficult to exploit, and/or
2. limit the damage/scope of an exploitation

Challenge exploitability:
e Stack canaries

* Address-space layout
randomization (ASLR)

* “write xor execute” (WEX)
e Control-flow integrity (CFl)
* Etc.

Limit damage:
* Process-level isolation

* Within-process
compartments (eg., RLbox)

* Externally enforced access
control

[] Project Zero: The More You b4 +
& ®: googleprojectzero.blogspot.com/2022/04/the-mor... ¥r H E} = @
More v

Project Zero

News and updates from the Project Zero team at Google

The More You Know, The More You Know You Don't Know

A Year in Review of 0-days Used In-the-Wild in 2021

Posted by Maddie Stone, Google Project Zero

This is our third annual year in review of 0-days exploited in-the-wild [2020, 2019]. Each year we've looked
back at all of the detected and disclosed in-the-wild 0-days as a group and synthesized what we think the
trends and takeaways are. The goal of this report is not to detail each individual exploit, but instead to
analyze the exploits from the year as a group, looking for trends, gaps, lessons learned, successes, etc. If
you're interested in the analysis of individual exploits, please check out our root cause analysis repository.

We perform and share this analvsis in order to make 0-day hard. We want it to be more costly. more

® Project Zero: Oday "In the W, X aF

] (‘5 googleprojectzero.blogspot.com/p/0day.html {r) N a2 ®

Maore hd

Project Zero

News and updates from the Project Zero team at Google

Oday "In the Wild"
Posted by Ben Hawkes, Project Zero {2019-05-15)

Project Zero's team mission is to "make zero-day hard", i.e. to make it more costly to discover and exploit security
vulnerabilities. We primarily achieve this by performing our own security research, but at times we also study external
instances of zero-day exploits that were discovered "in the wild". These cases provide an interesting glimpse into real-
world attacker behavior and capabilities, in a way that nicely augments the insights we gain from our own research.

Today, we're sharing our tracking spreadsheet for publicly known cases of detected zero-day exploits, in the hope that
this can be a useful community resource:

Spreadsheet link: Oday "In the Wild"

This data is collected from a range of public sources. We include relevant links to third-party analysis and attribution,
but we do this only for your information; their inclusion does not mean we endorse or validate the content there. The
data described in the spreadsheet is nothing new, but we think that collecting it together in one place is useful. For
example, it shows that:

» On average, a new "in the wild" exploit is discovered every 17 days (but in practice these often clump
together in exploit chains that are all discovered on the same date);

» Across all vendors, it takes 15 days on average to patch a vulnerability that is being used in active attacks;
» Adetailed technical analysis on the root-cause of the vulnerability is published for 86% of listed CVEs;

+ Memory corruption issues are the root-cause of 68% of listed CVEs.

We also think that this data poses an interesting question: what is the detection rate of Oday exploits? In other words, at
what rate are Oday exploits being used in attacks without being detected? This is a key "unknown parameter” in
security, and how you model it will greatly inform your views, plans, and priorities as a defender.

How’s that going?

In-the-Wild 0-days Detected vs. Year

=
(L
i
L)
(1l
4
il
3
Ui
-
|5
=
i
O

How’s that going?

60

Froject Zero: The More You +

c °: googleprojectzero.blogspot.com/2022/04/the-mor... ¥

O-days Detected

New Year, Old Techniques

We had a record number of “data points” in 2021 to understand how attackers are actually using 0-day
exploits. A bit surprising to us though, out of all those data points, there was nothing new amongst all tk
data. O-day exploits are considered one of the most advanced attack methods an actor can use, so itw
be easy to conclude that attackers must be using special tricks and attack surfaces. But instead, the O-waye
we saw in 2021 generally followed the same bug patterns, attack surfaces, and exploit "shapes” previously

seen in public research. Once “0-day is hard”, we'd expect that to be successful, attackers would have to find Out Of the 58 I'n_

new bug classes of vulnerabilities in new attack surfaces using never before seen exploitation methods. In

eneral, that wasn't what the data showed us this year. With two exceptions (described below in the iDS ’
‘ , prons the-wild 0-days for

section) out of the 58, everything we saw was pretty “meh” or standard.

Out of the 58 in-the-wild 0-days for the year, 39, or 67% were memory corruption vulnerabilities. Memory the year; 39, OI"
corruption vulnerabilities have been the standard for attacking software for the last few decades and it's still o)
how attackers are having success. Out of these memory corruption vulnerabilities, the majority also stuck 6 7 A) We r e I ; ,I) Ory

with very popular and well-known bug classes:

e 17 use-after-free COI’I’U,DtiOn
e 6 out-of-bounds read & write VU/neI’abIIItIeS,

o 4 buffer overflow

4 integer overflow

How’s that going?

Lots we don't know
* No estimate of the damage caused by the exploitation

« Data is lower bound — probably more exploited zero-
days than these (not known, not reported)

« Zero-days are not the only vector of attack

¢ (23 verizon.com/business

verizon

business

Home Bus dInsights s Re / 2025 Data Breach Investigations Report Call Sales: B44-669-0847

2025 Data Breach
Investigations Report

Today's threat landscape is shifting. Get the latest
updates on real-world breaches and help
safeguard your organization from cybersecurity
attacks.

Key resources

- i -

2025DBIR 2025 DBIR Executive 2025 DBIR infographic
Summary

The exploitation of vulnerabilities has
Credential abuse (22%) seen another year of growth as an initial verizon
access vector for breaches, reaching
20%. This value approaches that of
credential abuse, which is still the most
common vector. This was an increase
Exploitation of vulnerabiftias (208 of 34% in relation to last year's report
and was supported, in part, by zero-
day exploits targeting edge devices
and virtual private networks [WPNs).
The percentage of edge devices and
VPMs as a target on our exploitation
of vulnerabilities action was 22%, and
it grew almost eight-fold from the 3%
found in last year's report. Organizations
worked very hard to patch those edge
device vulnerabilities, but our analysis
showed only about 54% of those were Key resources

fully remediated throughout the year, ; & 1 . R ¥
and it took a median of 32 days ; Ql 5. \ 2

to accomplish.

nd Insights ¢ Reports ; 2025 Data Breach Investigations Report R Call Sales: 844-669-0847

Phishing {18%)

Figure 1. Known initial access vectors in non-Error, non-Misuse breaches (n=9,891)

2025DBIR 2025 DBIRExecutive 2025 DBIRinfographic
Summary

The exploitation of vulnerabilities has seen another year of
growth as an initial access vector for breaches, reaching 20%.
This value approaches that of credential abuse, which is still
the most common vector.

The US Treasury Department was
hacked

/ The Treasury Department said a
China-based threat actor gained
access to several employee
workstations and unclassified
documents.

by Emma Roth
Dec 30, 2024, 5:256 PM EST

f @ 25 | Comments (26 New)

c 2 beyondtrust.com/remote-support-saas-service-security-investigation7utm_source=google&utm_medium=cpc&ut... i g E} 0

Security Incident Details

BeyondTrust confirmed and began taking measures to address the security incident on December 5, 2024 that involved our Remote Support
SaaS product. No BeyondTrust products outside of Remote Support SaaS were affected. No FedRAMP instances were affected. No other
BeyondTrust systems were compromised, and ransomware was not involved.

Our investigation into the cause and impact of the compromise was conducted with a recognized third-party cybersecurity and forensics firm.
The investigation determined that a zero-day vulnerability of a third-party application was used to gain access to an online assetin a
BeyondTrust AWS account. Access to that asset then allowed the threat actor to obtain an infrastructure API key that could then be leveraged
against a separate AWS account which operated Remote Support infrastructure. This vulnerability, as well as the two vulnerabilities
discovered and disclosed as noted in the timeline above have been patched.

.. 'gain access to an
online assetin a
BeyondTrust AWS
account. Access to
that asset then
allowed the threat
actor to obtain an
infrastructure API
key .." which was
used to operate the
Remote Support
infrastructure

SECURITY B ¢ X in @ B @

AT&T says criminals stole phone
records of ‘nearly all’ customers in
new data breach

Breach linked to Snowflake

Zack Whittaker

Snowflake blamed the data thefts on its customers for not using multi-factor
authentication to secure their Snowflake accounts, a security feature that the
cloud data giant did not enforce or require its customers to use.

Cybersecurity incident response firm Mandiant, which Snowflake called in to
help with notifying customers, later said about 165 Snowflake customers had
a "significant volume of data” stolen from their customer accounts.

“Snowflake blamed
the data thefts on its
customers for not
using multi-factor
authentication to
secure their
snowflake accounts,
.. did not require its
customers to use”

The XZ Backdoor: Everything You Need to Know

Details are starting to emerge about a stunning supply chain attack that sent the open source software community reeling.

“This might be the best
executed supply chain
attack we've seen
described in the open,
and it's a nightmare
scenario: malicious,
competent, authorized
upstream in a widely
used library"

The big picture
zusenix

THE ADVANCED
COMPUTING SYSTEMS
ASSOCIATION

26™ USENIX
OECURITY SYMPOSIUM

Open Access Sponsor

alllase Ellall as0
.. g L

https://www.usenix.org /conference/usenixsecurityl19/presentation/stamos

https://www.usenix.org/conference/usenixsecurity19/presentation/stamos

The big picture
p usenix

- THE ADVANCED
COMPUTING SYSTEMS
ASSOCIATION

26™ USENIX
OECURITY SYMPOSIUM

Open Access Sponsor

alllasc Ellall aoly
P

https://www.usenix.org /conference/usenixsecurityl19/presentation/stamos

https://www.usenix.org/conference/usenixsecurity19/presentation/stamos

So: What would you do?

* If you were a CISO, or a VP of Security Engineering, how would you
spend your money?

* If you were the head of a government agency like CISA, tasked with
improving the state of cybersecurity, what would you recommend?

* If you were the head of NSF’s Secure and Trustworthy Cyberspace
program, what would you fund?

Empirical Security & Privacy,

for Humans [mgaum
__II_ UPenn CIS 7000-010 ®
I 'o‘o'

Goals for the course

e Learn the research state of the art

 Economic view of cybersecurity

* End users and cybersecurity

* Cybersecurity as a scientific
pursuit

* Cybersecurity investment as risk
assessment

oCy
oCy
QCy

persecurity game theory
perattack economics

persecurity public health

* Developers’ and operators’
actions, and security

e Ethics in computer security
experimentation

* Network-based security
measurement

* Privacy

Goals for the course

e Learn the research state of the art
e Learn relevant research methods

* Learn how to learn — how to dive into a field, understand its results,
and see gaps and opportunities

* Do something interesting: New result, reproduction, or a deep dive

{P¥ CIS 7000-010 202530 Empir X +

& C 2% canvas.upenn.eduf/courses/1880676

@ — BAN _CIS-7000-010 202530 Search this course

202530 (Fall 2025)

P—— CIS 7000-010 202530 Empirical
https ://Canvas' upenn .ed u/ D Assignments Security & Privacy, For Humans

courses/1880676 Pashoeard piscussions

Grades

Courses This graduate seminar course has two main goals.
People 1. To understand ways to evaluate security meaningfully.
: Security is a tradeoff, imposing a cost to enable a benefit, and
Sliilecl Pages it is important to assess this tradeoff carefully. A theorem or an

Syllabus in-lab demonstration is necessary but not sufficient.

security and privacy solutions in realistic usage, i.e., used not

Inbox BigBlueButton 2. To understand how innovators should think about technical

Collaborati . , a " ;
oflaborations by people like the designer, but rather “normal” people in

History
Search practical settings.

:I This is a graduate seminar, focused on reading technical
H
- literature and discussing and exploring ideas.

See the syllabus for details on course content, and grading.

Approach

* Read papers, (sometimes) present them, critique them, discuss
* Learn from experts in the field
* Do a (group) project

* We will have Zoom enabled during the class, for remote lectures and
for those who (occasionally) can’t make it

Read papers: Question, understand, improve

How to Read a Paper

S. Keshav
David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, ON, Canada
keshav@uwaterloo.ca

ABSTRACT

Researchers spend a great deal of time reading research pa-
pers. However, this skill is rarely taught, leading to much
wasted effort. This article outlines a practical and efficient
three-pass method for reading research papers. I also de-
scribe how to use this method to do a literature survey.

Categories and Subject Descriptors: A.1 [Introductory
and Survey]|

General Terms: Documentation.

Keywords: Paper, Reading, Hints.

1. INTRODUCTION

Researchers must read papers for several reasons: to re-
view them for a conference or a class, to keep current in
their field, or for a literature survey of a new field. A typi-
cal researcher will likely spend hundreds of hours every year
reading papers.

Learning to efficiently read a paper is a critical but rarely
taught skill. Beginning graduate students, therefore, must
learn on their own using trial and error. Students waste
much effort in the process and are frequently driven to frus-

4. Glance over the references, mentally ticking off the
ones you've already read

At the end of the first pass, you should be able to answer
the five Cs:

1. Category: What type of paper is this? A measure-
ment paper? An analysis of an existing system? A
description of a research prototype?

2. Context: Which other papers is it related to? Which
theoretical bases were used to analyze the problem?

3. Correctness: Do the assumptions appear to be valid?

4. Contributions: What are the paper’s main contribu-
tions?

5. Clarity: Is the paper well written?

Using this information, you may choose not to read fur-
ther. This could be because the paper doesn’t interest you,
or you don’t know enough about the area to understand the
paper, or that the authors make invalid assumptions. The

':E‘:l Reading assignment, Aug 2¢

+

C 2% canvas.upenn.edu/courses/1880676/assignments/13860302

c

Y

Class prep

oK I

Account

e Read the paper(s)
for that class. Submit
a 1-2 paragraph
review

5

Dashboard

Courses

[Em

=3
o
o)
X

©

History

©®

202530 (Fall 2025)

Home

Assignments
Discussions
Grades

People

Pages
Syllabus
BigBlueButton
Collaborations

Search

BAN_CIS-7000-010 ...

> Assignments > Reading assignment, ... Search this course

Reading assighment, Aug 28 (part [)

Points 5
Submitting a text entry box or a file upload

Due Woednesday by 3pm

File Types doc, txt, and pdf
Available after Aug 25 at 10:30am

Read and submit a review of

e Ross Anderson. Why information security is hard - an economic
perspective . Proceedings of ACSAC, 2001.

Reminder to see the syllabus for review guidelines.

File Upload Text Entry

Copy and paste or type your submission right here.
Edit View Insert Format Tools Table

12pt ~ Paragraph ¥

Q

Guest lectures (so far)

-

Alex Gantman Cormac Herley Adam Shostack
VP, Security Engineering, VP, Security Engineering, Founder & CEQO, Shostack
Qualcomm, August 28 Qualcomm, September 4 & Associates, October 7

Present papers: Distill, reveal, dive deep

e Will do this for the second half of the class

* We will vote on a pool of papers to present, and you can select the 1
you want

* Grading criteria: Understanding, thoughtfulness,
background/perspective, clarity, materials quality, delivery, non-
regurgitation, answering questions

Projects

 Something substantial: New study, reproduction, literature review, ...

* Timeline
e Pitches in class @ 9/25
* Proposal @ 10/9
* Final paper @ finals week

About me

 Ph.D., CIS @ UPenn 2001
 Remained a Philly sports fan (go Eagles!)

About me

Employment

e 2002-2022 - TTk faculty, UMD

e 2006-2015 — Adjunct, IDA/CCS
(NSA-funded research lab)

e 2008, 2015 — Visiting Researcher,
Microsoft Research

* 2018-2021 - CTO, Correct
Compufnfinn Ine [ctartiin)

) 2022_p COMPUTER SCIENCE

SCIentI UNIVERSITY OF MARYLAND

] Education, UMD CS

About me

o

* Research @ UMD: Software Security, Programming Languages,
Software Engineering, Usability, Cryptography, Quantum
Computing, Networks, Databases

e Startup: Building tools for secure software development
* Binary analysis .
. AWS Focuses on centralized decision-making

O

e Cedar authorization
language

* Fuzzing/automated
test generation

 Formal/mechanized
proofs of security

Powers Amazon Verified Permissions and AWS Verified Access
Powers StrongDM and Common Fate access solutions

Open source at
https://github.com/cedar-policy

Reading for next time

Plus: “How to Read a Paper?”

Why Information Security is Hard

— An Economic Perspective

Ross Anderson

University of Cambridge Computer Laboratory,
JJ Thomson Avenue, Cambridge CB3 0FD, UK
Ross.Anderson@cl.cam.ac.uk

Abstract

According to one common view, information secu-
rity comes down to technical measures. Given better
access control policy models, formal proofs of crypto-
graphic protocols, approved firewalls, better ways of de-
tecting intrusions and malicious code, and better tools
for system evaluation and assurance, the problems can
be solved.

In this note, I put forward a contrary view: infor-
mation insecurity is at least as much due to perverse
incentives. Many of the problems can be explained
more clearly and convinecingly using the language of
microeconomics: network externalities, asymmetric
information, moral hazard, adverse selection, liability
dumping and the tragedy of the commons.

1 Introduction

In a survey of fraud against autoteller machines [4],
it was found that patterns of fraud depended on who
was liable for them. In the USA, if a customer dis-
puted a transaction, the onus was on the bank to prove
that the customer was mistaken or lying; this gave US
banks a motive to protect their systems properly. But

in Britain, Norway and the Netherlands, the burden
N oy ;. - L L

risk of forged signatures from the bank that relies on
the signature (and that built the system) to the person
alleged to have made the signature. Common Criteria
evaluations are not made by the relying party, as Or-
ange Book evaluations were, but by a commercial fa-
cility paid by the vendor. In general, where the party
who is in a position to protect a system is not the
party who would suffer the results of security failure,
then problems may be expected.

A different kind of incentive failure surfaced in early
2000, with distributed denial of service attacks against
a number of high-profile web sites. These exploit a
number of subverted machines to launch a large coor-
dinated packet flood at a target. Since many of them
flood the victim at the same time, the traffic is more
than the target can cope with, and because it comes
from many different sources, it can be very difficult to
stop [7]. Varian pointed out that this was also a case of
incentive failure [20]. While individual computer users
might be happy to spend $100 on anti-virus software
to protect themselves against attack, they are unlikely
to spend even $1 on software to prevent their machines
being used to attack Amazon or Microsoft.

This is an example of what economists refer to as
the ‘Tragedy of the Commons’ [15]. If a hundred peas-

@ The Market for Silver Bullets X +

ol
®

c 25 iang.org/papers/market_for_silver_bullets.html hx g 'a o3

The Market for Silver Bullets

Ian Grigg
Systemics, Inc.

2nd March 2008

Abstract: What is security?

As a “good” in the sense of economics, security is now recognised as being one for which our knowledge is poor. As with
safety goods, events of utility tend to be destructive, yet unlike safety goods, the performance of the good is very hard to test.
The roles of participants are complicated by the inclusion of agressive attackers, and buyers and sellers that interchange.

This essay hypothesises that security is a good with insufficient information, and rejects the assumption that security fits in the
market for goods with asymmetric information. Security can be viewed as a market where neither buyer nor seller has
sufficient information to be able to make a rational buying decision. Drawing heavily from Michael Spence's “Job Market
Signaling,” these characteristics lead to the arisal of a market in silver bullets as participants herd in search of best practices, a
common set of goods that arises more to reduce the costs of externalities rather than achieve benefits in security itself.

Introduction

In an investigation into security, Adam Shostack posed the question, what are good signals in the market for security [1] 217 In addressing
this apparently clear question we find ourselves drawn to the question of what is security? One avenue of potential investigation is to ask
what the science of economics can provide in answer to this question. In economics terms, security could be a “good” as it is demanded
and traded for value. This essay seeks to cast security as a good, and attempts to classify what sort of good it is?

	Slide 1: Empirical Security & Privacy, for Humans
	Slide 2: How would you answer this question?
	Slide 3: A story of memory (un)safety
	Slide 4
	Slide 5: Violations of memory safety
	Slide 6
	Slide 7
	Slide 8: What to do? Some options
	Slide 9
	Slide 10
	Slide 11
	Slide 12: How’s that going?
	Slide 13: How’s that going?
	Slide 14: What to do? Some options
	Slide 15
	Slide 16: How’s that going?
	Slide 17: How’s that going?
	Slide 18: How’s that going?
	Slide 19
	Slide 20: What to do? Some options
	Slide 21
	Slide 22: How’s that going?
	Slide 23: How’s that going?
	Slide 24: How’s that going?
	Slide 25: How’s that going?
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: The big picture
	Slide 32: The big picture
	Slide 33: So: What would you do?
	Slide 34: Empirical Security & Privacy, for Humans
	Slide 35: Goals for the course
	Slide 36
	Slide 37: Goals for the course
	Slide 38
	Slide 39: Approach
	Slide 40: Read papers: Question, understand, improve
	Slide 41: Class prep
	Slide 42: Guest lectures (so far)
	Slide 43: Present papers: Distill, reveal, dive deep
	Slide 44: Projects
	Slide 45: About me
	Slide 46: About me
	Slide 47: About me
	Slide 48: Reading for next time

