
Empirical Security & Privacy,
for Humans
UPenn CIS 7000-010

9/23/2025

Measuring secure software
development practices

Readings

Readings

IT
BUILD
BREAK
FIX

Round 2: Break-it
Teams report

bugs in
submissions

2 weeks

Round 1: Build-it
Teams build
software to

specification

2 weeks

Must satisfy
basic correctness
requirements;
optional features
and good
performance for
more points

Round 3: Fix-it
Teams fix bugs
found in their

software

1 week

Doing so may
wipe out many
bug reports in
one go: all count
as the same bug

Bug reports are
(failing)
executable test
cases, including
exploits

Last: Judges tally final results

Overview

Scoring System

Build-it Score
Break-it Score

• Build-it Score

• Break-it Score

• Winners in both categories

• Gains points for unique bugs found
• Scaled by how many other teams found the same bug

• Gains points for good performance
• Gains points for implementing optional features
• Loses points for unique bugs found

• More points for (obviously) security-relevant bugs

Build-it Round

• Build software according to the posted specification
• Make it correct, feature-ful, efficient, and secure

• The first three are assessed by (our) test cases (build-it round score)
• The last is assessed by Break-it teams in round 2

• For many elements of the task, teams may choose
• The software’s internal design and algorithms
• Which optional features to implement
• What programming language to use
• What development and testing tools to use
• How to divide tasks among team members, etc.

Break-it Round

• Find bugs and vulnerabilities in submitted code
• Provide an exploit, as defined by particular problem

• Teams will be given access to the source code
• We provide scripts that teams can use to test projects against the standard

tests, using a VM

• How teams go about this task is up to them, e.g.,
• How to divide up the task among team members, and
• whether (or how much) testing to use,
• manual code reviews,
• automated dynamic/static analysis, etc.

Fix-it Round

• Different teams may submit different test cases that identify the
same underlying bug

• Build-it teams should only lose points for each bug, not for each test
case that reveals it
• How to tell that test cases are “the same” ?

void foo(char *str) {
char buf[10];
strcpy(buf,str);

}

• str = “this is too long”
• str = “this is too long too”
• str = “and so is this string”

Fix-it Round

• Teams will receive the test cases during the fix-it round, and they can
then fix each bug identified

• All test cases that pass are unified to be the same underlying bug
• Judges consider whether the fix is to a single bug
• If not, the affected test cases will be scored individually

void foo(char *str) {
char buf[10];
strcpy(buf,str);

}

• str = “this is too long”
• str = “this is too long too”
• str = “and so is this string”

void foo(char *str) {
char buf[10];
strlcpy(buf,str,10);

}

• str = “this is too long”
• str = “this is too long too”
• str = “and so is this string”

Build-it Break-it Fix-it

Builder score, as the contest progresses

BIBIFI incentives approximate the real world

• Build-it teams are incentivized to
• meet near-term requirements (correctness and performance)

• Under time pressure, and ”no points for no submission” pressure
• but while not neglecting security

• Which will soon matter

• Break-it teams are incentivized to
• find unique security bugs (more points than correctness)

• Duplicate submissions consume exploit budget
• that are hard to find or in neglected submissions

• no point sharing if others miss
• Upshot: Aim to cover all submissions, in depth

• But only bugs that are exploitable via contest infrastructure

Contest problems

• Secure log of events at an art gallery
• Commands to append records and query the log contents
• Threat model:

• Attacker has access to the log
• Should be tamperproof and protect confidentiality

• Secure ATM
• ATM communicates with Bank server to carry out transactions
• Threat model: MITM can observe, send, drop messages, and simulate the ATM

• Multi-user DB [in extended version of paper]
• Scriptable key-value store with RBAC policies with delegation
• Threat model: Attacker as client; writes scripts to try to break RBAC implementation

Contest implementation

• Website written in Yesod, Haskell-based web framework
• www.yesodweb.com

• Extended with a custom version of LIO, for security enforcement

Participant demographics

• Worldwide participant
pool (mostly non-US)
• 156 teams, 406 people

• Average 9 years
programming experience
• 1/3 have CS degree

• Most participants part of
MOOC
• Four courses of security

training
• Average team size: ~2

Submission features

• Count by language
• Grouped by category

• Statically type-safe (49)
• Dynamically typed (60)

• 54 are Python!
• C/C++ (21)

Summary of data analysis

• Build-it
• Best performance: coded in C/C++
• Lower chance of a security flaw (11x): coded in statically type-safe language
• Diverse programming background, shorter code, team size, knowledge of C

factor in less significantly

• Break-it
• Increased chance of finding security bug: Larger team
• Higher overall bug count: Larger team, took part in build-it
• Advanced techniques made no measurable difference

Discussion

• How does this format of study compare to alternatives?
• What variations on the contest design that might improve it?

• Why might we trust, or not trust, these results?
• E.g., non-fixed breaks could overpenalize teams in a certain category
• Could not assess availability problems (hangs)
• Lack of data does not imply non-effect

• Could this contest setup be applied to other problems?

Readings

Approach

• Examined each project and vulnerability in detail
• 94 projects
• Breaker-identified (866 submitted exploits) and researcher-identified (manual

analysis)
• In total, 182 distinct vulnerabilities

• Iterative open and axial coding
• Two+ independent coders
• High agreement: Krippendorff’s α > 0.8

• Qual and quant analysis on resulting categories

No Implementation Misunderstanding Mistake

Intuitive Unintuitive Bad
Choice

Conceptual
Error

Vulnerability classes

No Implementation

Intuitive

Missed something “Intuitive”
• No encryption
• No access control

Vulnerability classes

Missed something “Unintuitive”
• No MAC
• Side channel leakage
• No replay prevention

45% of projects

No Implementation

Unintuitive

Vulnerability classes

Made a “bad choice”
• Weak algorithms
• Homemade encryption
• strcpy()

Misunderstanding

Bad
Choice

Vulnerability classes

Made a “conceptual error”
• Insufficient randomness
• Disabling default protections

44% of projects

Misunderstanding

Conceptual
Error

Vulnerability classes

Made a programming “mistake”
• Control flow error
• Skipped algorithmic step

21% of projects

Mistake

Vulnerability classes

Summary of data analysis

• No implementation & misunderstanding more common (78%) than mistake (21%)
• Mistake: control error, skipped step

• Unintuitive requirements missed or implemented incorrectly much more often
(45%) than intuitive ones
• Unintuitive: MAC; avoiding side channels and/or replays
• Intuitive: Encryption for privacy; access control

• Implementation complexity breeds mistakes
• Failure to localize functionality, minimize TCB, completely mediate

• Mistakes readily exploited
• Almost always result in contestant attacks

Recommendations

• Simplify API design
• Build in security primitives and focus on common use-cases

• Indicate security impact of non-default use in API documentation
• Explain the negative effects of turning off certain things

• Expand capabilities of vulnerability analysis tools
• More emphasis on design-level conceptual issues

Discussion
• What is your take on what the data seems to be

saying?
• What sort of follow-on studies could we do to support

or refute the stated conclusions?
• How does this study’s results speak to the big picture

of securing software?
• What technical next steps do you think might be worth

pursuing, to improve the state of affairs?

One more paper in this series!

