Empirical Security & Privacy,
@ for Humans [saum

W UPenn CIS 7000-010 '.‘
9 ' 9/23/2025 “‘

Measuring secure software
development practices

Readings

Build It, Break It, Fix It: Contesting Secure Development

Andrew Ruef Michael Hicks James Parker
Dave Levin Michelle L. Mazurek Piotr Mardziel'

University of Maryland

ABSTRACT

Typical security contests focus on breaking or mitigating the
impact of buggy systems. We present the Build-it, Break-it,
Fix-it (BIBIFI) contest, which aims to assess the ability to
securely build software, not just break it. In BIBIFI, teams
build specified software with the goal of maximizing correct-
ness, performance, and security. The latter is tested when
teams attempt to break other teams’ submissions. Win-
ners are chosen from among the best builders and the best
breakers. BIBIFI was designed to be open-ended—teams

can use any language, tool, process, etc. that they like. As
such, contest outcomes shed light on factors that correlate
with successfully building secure software and breaking inse-
cure software. During 2015, we ran three contests involving
a total of 116 teams and two different programming prob-
lems. Quantitative analysis from these contests found that
the most efficient build-it submissions used C/C++, but
submissions coded in other statically-typed languages were
less likely to have a security flaw; build-it teams with di-
verse programming-language knowledge also produced more
secure code. Shorter programs correlated with better scores.
Break-it teams that were also successful build-it teams were
significantly better at finding security bugs.

1. INTRODUCTION
Cyber:

nrovinege eroinds for evhe

curity contests

4, 25, 11, 27, 13] are popular
v talent Fy

+ineg conteste

'Carnegie Mellon University

experts have long advocated that achieving security in a
computer system requires treating security as a first-order
design goal [32], and is not something that can be added
after the fact. As such, we should not assume that good
breakers will necessarily be good builders [23], nor that top
coders necessarily produce secure systems.

This paper presents Build-it, Break-it, Fix-it (BIBIFI),
a new security contest with a focus on building secure sys-
tems. A BIBIFI contest has three phases. The first phase,
Build-it, asks small development teams to build software ac-

cording to a provided specification that includes security
goals. The software is scored for being correct, efficient, and
feature-ful. The second phase, Break-if, asks teams to find
defects in other teams’ build-it submissions. Reported de-
fects, proved via test cases vetted by an oracle implementa-
tion, benefit a break-it team'’s score and penalize the build-it
team’s score; more points are assigned to security-relevant
problems. (A team’s break-it and build-it scores are inde-
pendent, with prizes for top scorers in each category.) The
final phase, Fiz-it, asks builders to fix bugs and thereby get
points back if the process discovers that distinct break-it
test cases identify the same defect.

BIBIFI's design aims to minimize the manual effort of
running a contest, helping it scale. BIBIFI's structure and
scoring system also aim to encourage meaningful outcomes,
e.g., to ensure that the top-scoring build-it teams really pro-
duce secure and efficient software. Behaviors that would
thwart such outcomes are discouraged. For example, break-
it teams may submit a limited number of bug reports per
build-it submission, and will lose points during fix-it for test
cases that expose the same underlying defect or a defect also
identified by other teams. As such, they are encouraged to

Understanding security mistakes developers make: Qualitative analysis from
Build It, Break It, Fix It

Daniel Votipka, Kelsey R. Fulton, James Parker,
Matthew Hou, Michelle L. Mazurek, and Michael Hicks
University of Maryland
{dvotipka,kfulton,jpriderl,mhoul , mmazurek,mwh}@cs.umd.edu

Abstract

Secure software development is a challenging task requir-
ing consideration of many possible threats and mitigations.
This paper investigates how and why programmers, despite a
baseline of security experience, make security-relevant errors.
To do this, we conducted an in-depth analysis of 94 submis-
sions to a secure-programming contest designed to mimic
real-world constraints: correctness, performance, and security.
In addition to writing secure code, participants were asked
to search for vulnerabilities in other teams’ programs; in to-
tal, teams submitted 866 exploits against the submissions we
considered. Over an intensive six-month period, we used itera-
tive open coding to manually, but systematically, characterize
each submitted project and vulnerability (including vulnera-
bilities we identified ourselves). We labeled vulnerabilities
by type, attacker control allowed, and ease of exploitation,
and projects according to security implementation strategy.
Several patterns emerged. For example, simple mistakes were
least common: only 21% of projects introduced such an error.
Conversely, vulnerabilities arising from a misunderstanding
of security concepts were significantly more common, ap-
pearing in 78% of projects. Our results have implications for
improving secure-programming APIs, API documentation,
vulnerability-finding tools, and security education.

1 Introduction

Developing secure software is a challenging task, as evi-
denced by the fact that vulnerabilities are still discovered.

developers [16,44,77] is evidence of the intense pressure to
produce new services and software quickly and efficiently. As
such, we must be careful to choose interventions that work
best in the limited time they are allotted. To do this, we must
understand the general type, attacker control allowed, and
case of exploitation of different software vulnerabilities, and
the reasons that developers make them. That way, we can
examine how different approaches address the landscape of
vulnerabilities.

This paper presents a systematic, in-depth examination (us-
ing best practices developed for qualitative assessments) of
vulnerabilities present in software projects. In particular, we
looked at 94 project submissions to the Build it, Break it, Fix it
(BIBIFI) secure-coding competition series [66]. In each com-
petition, participating teams (many of which were enrolled
in a series of online security courses [34]) first developed
programs for either a secure event-logging system, a secure
communication system simulating an ATM and a bank, or a
scriptable key-value store with role-based access control poli-
cies. Teams then attempted to exploit the project submissions
of other teams. Scoring aimed to match real-world develop-
ment constraints: teams were scored based on their project’s
performance, its feature set (above a minimum baseline), and
its ultimate resilience to attack. Our six-month examination
considered each project’s code and 866 total exploit submis-
sions, corresponding to 182 unique security vulnerabilities
associated with those projects.

The BIBIFI competition provides a unique and valuable
vantage point for examining the vulnerability landscape. com-

Readings

Build It, Break It, Fix It: Contesting Secure Development

"""""
- - ui

computer system requirfes Lred

waion eoal 1321 2 is not sc

unive y O viarylana

securely build software, not just break it. In BIBIFI, teams
build specified software with the goal of maximizing correct-
ness, performance, and security. The latter is tested when
teams attempt to break other teams’ submissions. Win-
ners are chosen from among the best builders and the best
breakers. BIBIFI was designed to be open-ended—teams
can use any language, tool, proc te. that they like. As
such, contest outcomes shed light on factors that correlate
with suceessfully building secure software and breaking ir
cure software. During

lems. Quantitative

the most efficient build-

submissions coded in other stati

less lik to have a security flaw; build-it teams with di-
verse programming-language knowledge also produced more
secure code. Shorter programs correlated with better sco!
Break-it teams that were also successful build-it teams were
significantly better at finding security bugs.

1. INTRODUCTION
Cybersecurity contests [24, s 27, are popular

nng o o

¢ CoeTUS D UTa-It,
a new security contest with a focus on building secure
tems. A BIBIFI contest has three phases. The first phase
Build-it, asks small development teams to build software ac-
cording to a provided specification that includes security
goals. The software is scored for being correct, efficient, and
feature-ful. The second phase, Break-if, asks teams to find
defects in other teams’ build-it submissions. Reported de-
fects, proved via test cases vetted by an oracle implementa-
tion, benefit a break-it team’s score and penalize the build-it
team'’s score; more points are assigned to security-relevant
problems. (A team’s break-it and build-it scores are inde-
pendent, with prizes for top scorers in each category.) The
final phase, Fiz-it, asks builders to fix bugs and thereby get
points back if the process discovers that distinct break-it
test cases identify the same defect.

BIBIFI's design aims to minimize the manual effort of
running a contest, helping it scale. BIBIFI's structure and
scoring system also aim to encourage meaningful outcomes,
¢ to ensure that the top-scoring build-it teams really pro-
duce secure and efficient software. Behaviors that would
thwart such outcomes are discouraged. For example, break-
it teams may submit a limited number of bug reports per
build-it submission, and will lose points during fix-it
cases that expose the same underlying defect or a defect also

ntified by other teams. As such, they are encouraged to

Overview

M -

)
2 weeks

Must satisfy Bug reports are Doing so may
basic correctness (failing) wipe out many
requirements; executable test bug reports in
optional features cases, including one go: all count
and good exploits as the same bug

performance for .
more points Last: Judges tally final results

Scoring System

Gains points for good performance
Gains points for implementing optional features
Loses points for unique bugs found

More points for (obviously) security-relevant bugs

Gains points for unique bugs found
Scaled by how many other teams found the same bug

* Winners in both categories

Build-it Round

* Build software according to the posted specification

 Make it correct, feature-ful, efficient, and secure
* The first three are assessed by (our) test cases (build-it round score)
* The last is assessed by Break-it teams in round 2

* For many elements of the task, teams may choose
* The software’s internal design and algorithms

Which optional features to implement

What programming language to use

What development and testing tools to use

How to divide tasks among team members, etc.

Break-it Round

* Find bugs and vulnerabilities in submitted code
* Provide an exploit, as defined by particular problem

* Teams will be given access to the source code

* We provide scripts that teams can use to test projects against the standard
tests, using a VM

* How teams go about this task is up to them, e.g.,
* How to divide up the task among team members, and
* whether (or how much) testing to use,
* manual code reviews,
« automated dynamic/static analysis, etc.

Fix-it Round

* Different teams may submit different test cases that identify the
same underlying bug

str = “this is too long”
str = “this is too long too”
str = “and so is this string”

* Build-it teams should only lose points for each bug, not for each test
case that reveals it

e How to tell that test cases are “the same” ?

Fix-it Round

* Teams will receive the test cases during the fix-it round, and they can
then fix each bug identified

str = “this is too long”
str = “this is too long too”

strlcpy 10 str = “and so is this string”

* All test cases that pass are unified to be the same underlying bug
* Judges consider whether the fix is to a single bug
* If not, the affected test cases will be scored individually

Builder score, as the contest progresses

2
o)
O
w
S
@
@
—
ke,
=
m

-500
08/30 09/06 09/13 09/20 09/27
Date

BIBIFI incentives approximate the real world

* Build-it teams are incentivized to
* meet near-term requirements (correctness and performance)
e Under time pressure, and "no points for no submission” pressure
* but while not neglecting security
* Which will soon matter

* Break-it teams are incentivized to
 find unique security bugs (more points than correctness)
* Duplicate submissions consume exploit budget

e that are hard to find or in neglected submissions
* no point sharing if others miss

* Upshot: Aim to cover all submissions, in depth
* But only bugs that are exploitable via contest infrastructure

Contest problems

* Secure log of events at an art gallery
« Commands to append records and query the log contents

* Threat model:
* Attacker has access to the log
* Should be tamperproof and protect confidentiality

e Secure ATM

 ATM communicates with Bank server to carry out transactions
* Threat model: MITM can observe, send, drop messages, and simulate the ATM

e Multi-user DB [in extended version of paper]
* Scriptable key-value store with RBAC policies with delegation
* Threat model: Attacker as client; writes scripts to try to break RBAC implementation

Contest implementation

Participants BIBIFI Infrastructure Amazon EC2

Organizers x Contest Contest

Website Database Contest VM

Build-it & Surveys Build-it subs

Build
Test
Benchmark
Oracle

Break-it Scoreboard Metadata
Teams Break-it subs

* Website written in Yesod, Haskell-based web framework
* www.yesodweb.com

* Extended with a custom version of LIO, for security enforcement

Participant demographics

* Worldwide participant
pool (mostly non-US)

* 156 teams, 406 people

* Average 9 years

programming experience

* 1/3 have CS degree

* Most participants part of

MOOC

* Four courses of security

training

* Average team size: ~2

Contest

Fall 2015

Fall 2016

Contest

Problem

Contestants

% Male

% Female

Age (mean/min/max)

% with CS degrees

Years programming

Build-it teams

Build-it team size

Break-it teams (that also built)
Break-it team size

PLs known per team

% MOOC

USA India

Spring 2015 30

64
4

‘ Spring 15

Secure Log
156

91 %

5%
34.8/20/61
35 %
9.6/0/30
61

2.2/1/5

65 (58)
2.4/1/5
6.8/1/22
100 %

Russia

i d 12
14 12
13 4

Fall 15

ATM
145

91 %

8 %
32.2/17/69
35 %
9.4/0/37
40
3.1/1/6
43 (35)
3.1/1/6
9.1/1/20
84 %

Brazil Other

12 120
20 110
103

Fall 16

Multiuser DB
105

84 %

4 %
29.9/18/55
39 %
9.0/0/36
29

2.5/1/8

33 (22)
2.6/1/8
7.8/1/17
65 %

Contest

el Submission features

B Multiuser DB

. Count by language
. Grouped by category

N

ally type-safe (49)
ally typed (60)
. 54 are Python!

w
—
—_—
~
o
. —
o
o
—
—
—
L
=
w
—
—
o
—
L
LD
—
ot
=

(21)

python
javascript
perl

Dynamic

Summary of data analysis

e Build-it
* Best performance: coded in C/C++
* Lower chance of a security flaw (11x): coded in statically type-safe language

* Diverse programming background, shorter code, team size, knowledge of C
factor in less significantly

* Break-it
* Increased chance of finding security bug: Larger team
* Higher overall bug count: Larger team, took part in build-it
* Advanced techniques made no measurable difference

Discussion

* How does this format of study compare to alternatives?
 What variations on the contest design that might improve it?

* Why might we trust, or not trust, these results?
* E.g., non-fixed breaks could overpenalize teams in a certain category
e Could not assess availability problems (hangs)
* Lack of data does not imply non-effect

* Could this contest setup be applied to other problems?

Readings

Understanding security mistakes developers make: Qualitative analysis from
Build It, Break It, Fix It

Daniel Votipka, Kelsey R. Fulton, James Parker,
Matthew Hou, Michelle L. Mazurek, and Michael Hicks
University of Maryland
{dvotipka,kfulton,jprider1,mhoul , mmazurek,mwh}@cs.umd.edu

Abstract

Secure software development is a challenging task requir-
ing consideration of many possible threats and mitigations.

This paper investigates how and why programmers, despite a

baseline of security experience, make security-relevant errors.
To do this, we conducted an in-depth analysis of 94 submis-

sions to a secure-programming contest designed to mimic

real-world constraints: correctness, performance, and security.

In addition to writing secure code, participants were asked
to search for vulnerabilities
tal, teams submitted 866 exploits against the submissions we

considered. Over an intensive six-month period, we used itera-

tive open coding to manually, ematically, characterize

e ubmitted project and vulnerability (including vulnera-

bilities we identified ourselves). We labeled vulnerabilities

by type, attacker control allowed, and ease of exploitation,
and projects according to security implementation strategy.

Several patterns emerged. For example, simple mistakes were

least common: only 21% of projects introduced such an error.

Conversely, vulnerabiliti ising from a misunderstanding

of security concepts were significantly more common, ap-

pearing in 78% of projects. Our results have implications for

improving secure-programming APIs, API documentation,

vulnerability-finding tools, and security education.

1 Introduction

Duclopmg secure software is a dlknvmg t.L\k as evi-

developers [16,44,77] is evidence of the intense pressure to
produce new serv and software quickly and efficiently. As
such, we must be careful to choose interventions that work
best in the limited time they are allotted. To do this, we must
understand the general type, attacker control allowed, and
case of exploitation of different software vulnerabilities, and
the reasons that developers make them. That way, we can
examine how different approaches address the landscape of
vulnerabilities.

This paper presents a systematic, in-depth examination (us-
ing best practices developed for qualitati ments) of
vulnerabilities present in software projects. In particular, we
looked at 94 project submissions to the Build it, Break it, Fix it
(BIBIFI) secure-coding competition series [66]. In each com-

ctition, participating teams (many of which were enrolled
in a series of online security courses [34]) first developed
ams for either a secure event-logging system, a secure

scriptable key-value store with role-based access control poli-

cies. Teams then attempted to exploit the project submissions

of other teams. Scoring aimed to match real-world develop-

eams were scored based on their project’s

i and

its ultimate resilience to attack. Our six-month examination
considered each project’s code and 866 total exploit sub

associated with those projects.

The BIB[F] comptuuon provides a umquc and valuable

Approach

* Examined each project and vulnerability in detail
* 94 projects

* Breaker-identified (866 submitted exploits) and researcher-identified (manual
analysis)
* |n total, 182 distinct vulnerabilities

* lterative open and axial coding
* Two+ independent coders
* High agreement: Krippendorff's a > 0.8

* Qual and quant analysis on resulting categories

Vulnerability classes

Vulnerability classes

Missed something “Intuitive”
* No encryption
* No access control

Vulnerability classes

Missed something “Unintuitive”
* No MAC

* Side channel leakage

* No replay prevention

45% of projects

Vulnerability classes

Made a “bad choice”
* Weak algorithms
* Homemade encryption

* strcpy()

Vulnerability classes

Made a “conceptual error”
* Insufficient randomness

* Disabling default protections

44% of projects

Vulnerability classes

Made a programming “mistake”
e Control flow error
» Skipped algorithmic step

21% of projects

Summary of data analysis

No implementation & misunderstanding more common (78%) than mistake (21%)
* Mistake: control error, skipped step

Unintuitive requirements missed or implemented incorrectly much more often
(45%) than intuitive ones

* Unintuitive: MAC; avoiding side channels and/or replays

* Intuitive: Encryption for privacy; access control

Implementation complexity breeds mistakes
* Failure to localize functionality, minimize TCB, completely mediate

Mistakes readily exploited
e Almost always result in contestant attacks

Recommendations

* Simplify API design

* Build in security primitives and focus on common use-cases

* Indicate security impact of non-default use in APl documentation
* Explain the negative effects of turning off certain things

* Expand capabilities of vulnerability analysis tools
* More emphasis on design-level conceptual issues

Discussion

* What is your take on what the data seems to be
saying?

* What sort of follow-on studies could we do to support
or refute the stated conclusions?

* How does this study’s results speak to the big picture
of securing software?

 What technical next steps do you think might be worth
pursuing, to improve the state of affairs?

One more paper in this series!

Understanding the How and the Why: Exploring Secure
Development Practices through a Course Competition

Kelsey R. Fulton Daniel Votipka Desiree Abrokwa

University of Maryland Tufts University
College Park, MD, USA Medford, MA, USA
kfulton@umd.edu dvotipka@cs.tufts.edu

University of Maryland
College Park, MD, USA
desireeabrokwa@gmail.com

Michelle L. Mazurek Michael Hicks" James Parker

University of Maryland
College Park, MD, USA

of Maryland and Amazon Galois, Inc.
College Park, MD, USA Portland, OR, USA

mmazurek@umd.edu mwh@cs.umd.edu james@galois.com

ABSTRA

This paper presents the results of in-depth study of 14 teams’ de-
velopment processes during a three-week undergraduate course
organized around a secure coding competition. Contest participants
were expected to first build code to a specification—emphasizing
correctness, performance, and security—and then to find vulnera-
bilities in other teams’ code while fixing discovered vulnerabilities
in their own code. Our study aimed to understand why developers
introduce different vulnerabilities, the ways they evaluate programs
for vulnerabilities, and why different vulnerabilities are (not) found
and (not) fixed. We used iterative open coding to systematically

lyze contest data including code, commit messages, and team
design documents. Our results point to the importance of existing
best practices for secure development, the use of security tools, and
development team organization.

CCS CONCEPTS

+ Security and privacy — Usability in security and privacy; +
Human-centered computing;

KEYWORDS

Secure software development

ACM Reference Format:

Kelsey R. Fulton, Daniel Votipka, Desiree Abrokwa, Michelle L. Mazurek,
Michael Hicks, and James Parker. 2022. Understanding the How and the
Why: Exploring Secure Development Practices through a Course Competi-

ne prior to starting at Amazon

Permission to make digital or hard copies of all or part of this work for personal or
ol nted without fe p: are not made o distributed

ial advantage and that this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the

1 INTRODUCTION

Secure software development is a difficult task, exemplified by the
fact that vulnerabilities are still discovered in production code on a
regular basis [18, 49, 60]. Many solutions have been put forward
to solve this problem: more security education [16, 3: 39,59],
better secure development tools [5, 8, 9, 22, 27, 43, 50, 67, 72, 77, 78],
and better integration of security in to the software development
cycle [6, 17, 42, 48, 65].

Given the difficulty of balancing various business pressures (e.g.,
costs, customer experience, delivery date) during software develop-
ment [63], it is important to understand which solutions aid secure
development most effectively and efficiently. Companies simply
will not adopt every secure development practice; how should the
prioritize their choices? To answer this question, we must under-
stand why developers introduce different vulnerabilities, as well as
how and why testers (do not) find and fix them, in order to identify
processes and tools that most effectively reduce real risks.

Prior work has considered secure development in controlled

ings, allowing clear comparisons among different tools and
strategies [1, 2, 53-55, 61]. While valuable, these studies are limited
alidity, as the program size and flexibility of approach
are restricted by necessity. Other work has reviewed open-source
repository commits to identify practices correlated with greater
vulnerability incidence, providing results from a real-world set-
ting [44-46, 62]. However, it is difficult to make clear comparisons
between these codebases due to significant differences in goals
and functional requirements. This research also typically cannot
investigate developer motivations or thought processes, as only
submitted code (with often-terse commit messages) is available.
Finally, some recent work has taken an ethnographic approach, em-
bedding researchers in companies to observe secure-development
practices [63, 81]. This work provides rich insights into the devel-
opment process, but to date, has mostly focused on organizational
processes impeding security, not technical issues.

In prior work, we! sought to establish a middle point along this

spectrum with the Build It, Break It, Fix it (BIBIFI) secure-
titi ds balances ecolo; validity with studs

