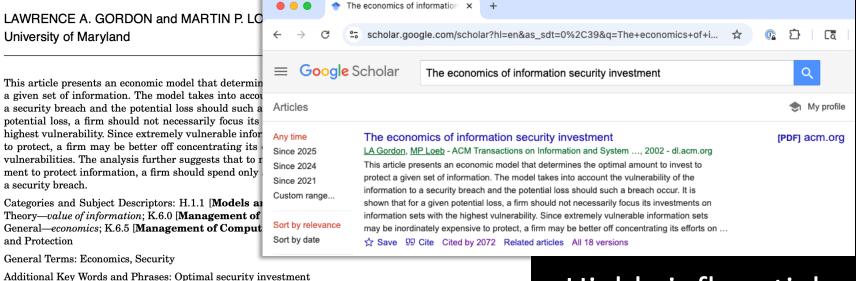

Empirical Security & Privacy,

for Humans


UPenn CIS 7000-010 10/23/2025

The Economics of Information Security Investment

Reading

The Economics of Information Security Investment

1. INTRODUCTION

Security of a computer-based information system should, by design, protect the confidentiality, integrity, and availability of the system (e.g., see NIST [1995, p. 5]). Given the information-intense characteristics of a modern economy (e.g., the Internet and World Wide Web), it should be no surprise to learn that information security is a growing spending priority among most companies. This growth in spending is occurring in a variety of areas including software to detect viruses, firewalls, sophisticated encryption techniques, intrusion detection systems, automated data backup, and hardware devices [Larsen 1999]. The above notwithstanding, a recent study by the Computer Security Institute, with the participation of the Federal Bureau of Investigation, reported that "Ninety-one

This research was partially supported by The Robert H. Smith School of Business, University of Maryland and the Laboratory for Telecommunications Sciences (within the Department of Defense) through a grant with the University of Maryland Institute for Advanced Computer Studies. Authors' address: The Robert H. Smith School of Bussiness, University of Maryland, College Park, College Park, MD 20742-1815; email: {lgordon;mloeb}@rhsmith.umd.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is

Highly influential: Cited > 2000 times

Model parameters

One-period model: No game theory Assumes defender is risk-neutral

Core parameters

λ	Monetary loss of a breach
t ∈ [0, 1]	Threat: probability of an attack
v ∈ [0, 1]	Vulnerability: baseline probability an attack is successful

Shorthands, bounds

vtλ	Expected loss
$L = t\lambda$	Potential loss
$M > \lambda$	Catastrophic loss

Security investments

z > 0	Security investment
S(z, v)	Security breach prob. function:
	effective vulnerability starting from v, given an investment z

Security breach prob. function requirements

Security investments

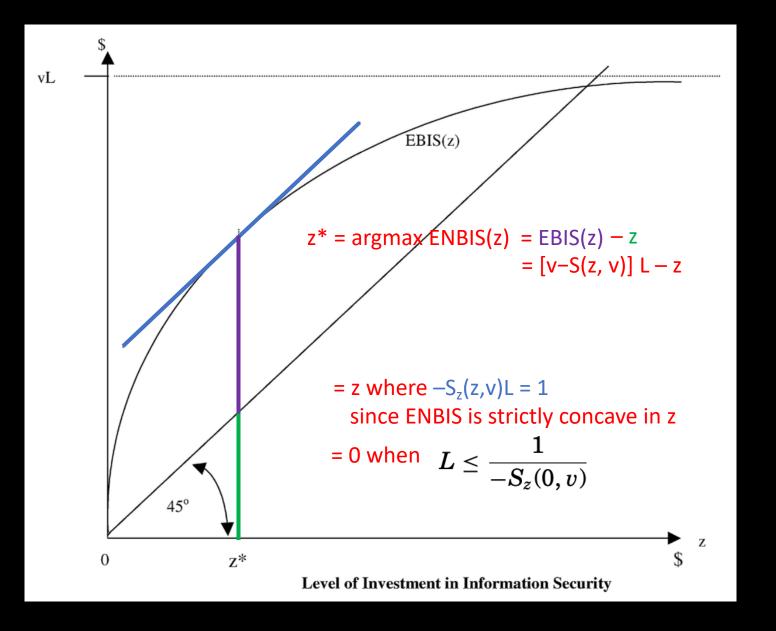
z > 0	Security investment
S(z, v)	Security breach prob. function:
	effective vulnerability starting
	from v, given an investment z

A1: S(z, 0)=0 for all z

A2: For all v, S(0, v) = v

A3: For all $v \in (0, 1)$, and all $z, S_z(z, v) < 0$ and $S_{zz}(z, v) > 0$

- I.e., as the investment in security increases, the information is made more secure, but at a decreasing rate
- Assume for all $v \in (0, 1)$, $\lim S(z, v) \rightarrow 0$, as $z \rightarrow \infty$


Optimizing investment

Security investments

z > 0	Security investment
S(z, v)	Security breach prob. function:
	effective vulnerability starting
	from v, given an investment z

EBIS(z) = [v-S(z, v)] L	Expected benefits of an investment
ENBIS(z) = EBIS(z) - z	Expected <i>net</i> benefits of an investment
z* = argmax ENBIS(z)	Optimal investment

Benefits vs. cost of investment

Modeling scenarios

<u>Who</u>

- Cloud provider
- Hospital
- Bank
- Local government
- Retailer
- University

•

Resource

- Computing / storage
- Company's sensitive data
- Customers' sensitive data

Security investment

- MFA, passkeys
- IDS or A/V
- Pen testing
- •

When might we have different vulnerability, and a different form of investment, for different resources?

Table 1. Vulnerability prevention practices

Problem

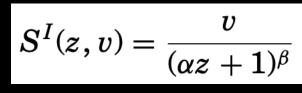
Flaws (28)

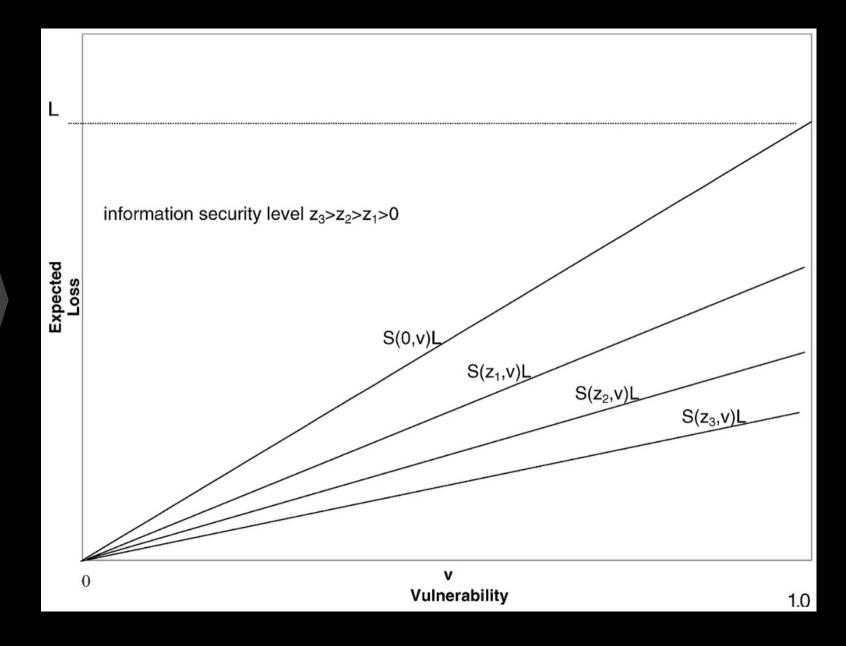
Practice	nerability prevention practice	Usage (%)
Use a top-N bugs	list (real data preferred).	21
Use secure coding	g standards.	14
Average (bugs)		18
Build and publish	security features.	78
Translate complia	ance constraints to requirements.	65
Engage a softwar	re security group (SSG) with architecture.	64
Create a data clas	ssification scheme and inventory.	62
Unify regulatory p	pressures.	61
Create security st	tandards.	61
Create (security)	policy.	51
Gather and use at	ttack intelligence.	46
Create an SSG ca	pability to solve difficult design problems.	38
Identify potential	attackers.	33
Implement and tra	ack controls for compliance.	32
Use application co	ontainers.	27
Identify a persona	ally-identifiable-information data inventory.	25
Create standards	for technology stacks.	23
Identify open sour	rce in apps.	23
Define and use an	architectural-analysis process.	13
Build and maintai	n a top-N possible attacks list.	13
Standardize archi	itectural descriptions (including dataflow).	11
Require use of ap	proved security features and frameworks.	10
Build attack patte	erns and abuse cases tied to potential attackers.	8
Create technology	y-specific attack patterns.	7
Build a capacity for	or eradicating specific bugs from the entire code base.	5
Form a review box	ard to approve and maintain secure design patterns.	5
Have a science te	am that develops new attack methods.	4
Make the SSG ava	ailable as an architectural-analysis resource or mentor.	2
Have software are	chitects lead design review efforts.	2
Find and publish r	mature design patterns from the organization.	2
Drive analysis res	sults into standard architecture patterns.	0
Average (flaws)		28
Average usage of	all 30 practices	27

Possible investments: BSIMM8

Table 2. Vulnerability detection practices.*		
Problem	Practice	Usage (%)
Bugs (10)	Use external penetration testers to find problems.	87
	Ensure that quality assurance (QA) supports edge or boundary value condition testing.	80
	Have the SSG perform an ad hoc review.	63
	Use penetration testing tools internally.	62
	Use automated tools along with a manual review.	60
	Make code review mandatory for all projects.	31
	Integrate black-box security tools into the QA process.	23
	Perform fuzz testing customized to application APIs.	9
	Include security tests in QA automation.	8
	Create and use automation to do what attackers will do.	1
	Average for bugs	42
Flaws (11)	Use external penetration testers to find problems.	87
	Perform a security feature review.	83
	Use penetration testing tools internally.	62
	Perform a design review for high-risk applications.	28
	Integrate black-box security tools into the QA process.	23
	Have the SSG lead design review efforts.	22
	Use automated tools with tailored rules.	15
	Include security tests in QA automation.	8
	Build a factory. (Multiple analysis techniques feed into one reporting or remediation process.)	3
	Automate malicious-code detection.	3
	Create and use automation to do what attackers will do.	1
_	Average for flaws	30
	Average use of all 16 practices (duplicate practices removed)	36
* Italics indicate on	actices that appear for both buos and flaws.	

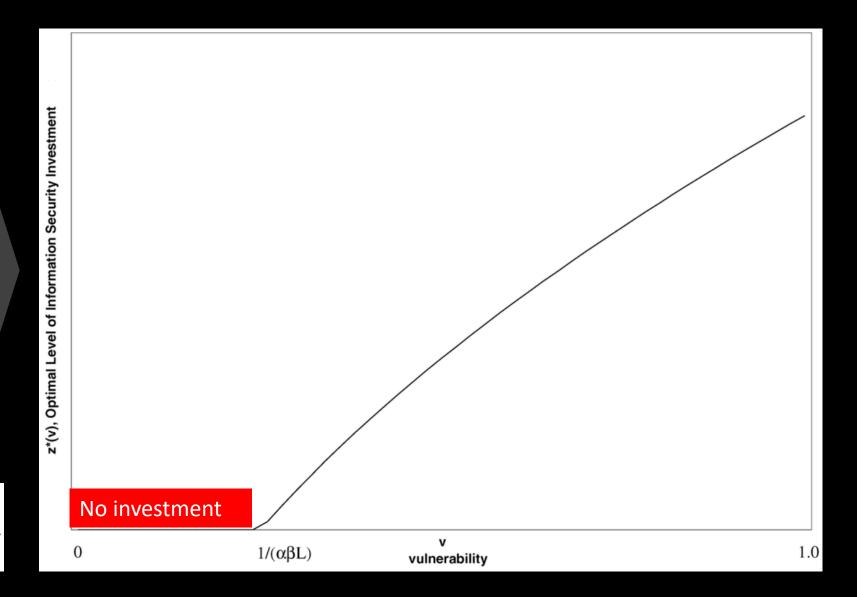
Table 3. Vulnerability response practices.		
Practice	Usage (%)	
Create or interface with incident response.	84	
Track software bugs found in operations through the fix process.	76	
Have an emergency code base response.	72	
Use application input monitoring.	45	
Use application behavior monitoring and diagnostics.	4	
Fix all occurrences of software bugs found in operations.	4	
Average	48	

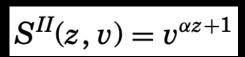

- 7 prevention practices are used by more than half the firms; more motivated by compliance than impact? Could firms better use their SSG for for prevention?
- Pen testing, external and internal, extremely popular
- In general, more activities followed for detection rather than prevention implies reactive rather than proactive security?
- For response, few firms use app behavior monitoring – missed opportunity?

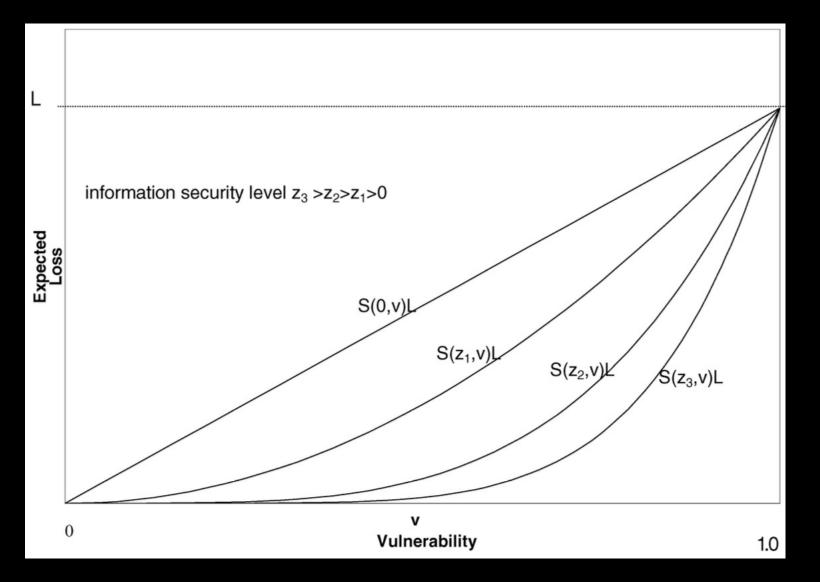

Function S(z,v): how to interpret it?

A3: For all $v \in (0, 1)$, and all z, $S_z(z, v) < 0$ and $S_{zz}(z, v) > 0$

- I.e., as the investment in security increases, the information is made more secure, but at a decreasing rate
- Assume for all $v \in (0, 1)$, $\lim S(z, v) \rightarrow 0$, as $z \rightarrow \infty$
- Consider scenarios outlined above; which of them look like this?
 - Fixed investment cost (no incremental fixed costs)
 - Continuous reduction in vulnerability with investment cost increase
 - Can you imagine a "lumpy" cost function instead? What other shapes?

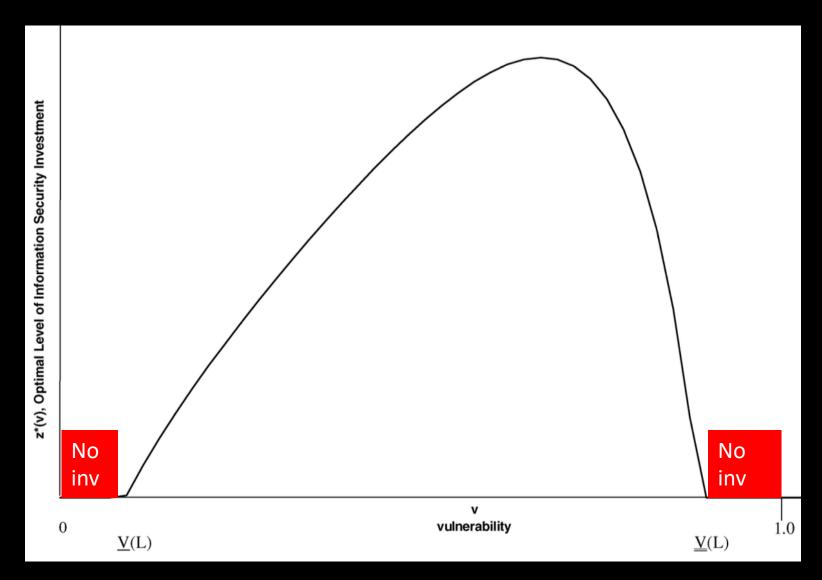

S: class I




Optimal value of investment, class I

$$z^{I*}(v) = rac{(vetalpha L)^{1/(eta+1)}-1}{lpha}$$

S: class II



Optimal level of investment does not weakly increase as vulnerability increases

Optimal value of investment, class II

$$z^{II*}(v) = \frac{\ln(1/-\alpha v L(\ln v))}{\alpha \ln v}$$

Some takeaways

- The key in analyzing information security decisions is not the vulnerability v (or the expected loss without the investment vL), but the reduction in expected loss [v-S(z,v)]L with the investment z
- The optimal investment amount z* could be well below the expected loss vL
 - Theorem: If the breach probability function S(z,v) is either of class I or class II, then z*<(1/e) vL = .3679vL
 - For class I, there are scenarios where z* < .25vL
- What does this mean for our modeled scenarios?

Discussion

- Do you think CISOs use the 37% rule in practice?
- Beyond what we've already discussed, what are limitations of this model?
 - What about one company's security affecting another (hello, AWS outage on Monday ...)?
- What improvements might you want to make to the model, to get to the point that you could use it for decisionmaking?
 - How does it relate to the Simpson uncertainty paper?
 - How might the results change if the model considered time, e.g., ongoing attacks over time, instead of just one period?