Empirical Security & Privacy,

for Humans [magmn

UPenn CIS 7000-010
11/18/2025




Reading

SoK: Quantifying Cyber Risk

Daniel W. Woods

Abstract—Thi troduces a causal model inspired by
structural equation modeling that explains cyber risk outcomes
in terms of latent factors measured using reflexive indicators.
First, we use the model to classi cal cyber harm studies.
‘We discover cyber harms are not exceptional in terms of typical
or extreme losses. The increasing frequency of data breaches
is contested and stock market reactions to cyber incidents are
becoming less damaging over time. Focusing on harms alone
breeds fatalism; the causal model is most usefol in evaluating
the effectiveness of security interventions. We show how simple

atistical relationships lead to spurious results in which more
security spending or applying updates are associated with greater
rates of compromise. When accounting for threat and exposure,
indicators of security are shown to be important factors in
explaining the variance in rates of compromise, especially when
the studies use multiple indicators of the security level.

Index Terms—cyber risk, security metrics, cyber harm, con-
trol effectiveness, science of security, causal model, stroctural
equation modeling
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The problem

* Unsupported claims about increasing cyber risk are common
e Research inconsistently demonstrates how interventions reduce risk
e "Cyber risk is more art than science"

* Need: Systematize what we know about quantifying cyber risk



Three research questions

 RQ1: How much harm results from cyber incidents?
 RQ2: Which security interventions effectively reduce harm?
* RQ3: Have these answers changed over time?



A naive model relating loss to security level

Naive security effectiveness regressions

° Slmple regreSSIOn (blue |Ine) 8 e high-threat population
more security implies more » W low-threat population
losses?! -

* Problem: Confounding variables
(especially threat level)

0.4 0.6 0.8 1.0
Security

Fig. 1. The solid blue line fails to account for threat level, which may lead
the high-threat population to under estimate the effectiveness of security.



A simple causal model of cyber risk

* Threat: The motivation, capability and
activity of adversaries

* Harm: Negative consequences resulting
from compromise

* Exposure amplifies E(+) the relationship
between Threat and Harm

e Security moderates S(-) the relationship
between Threat and Harm
* Security has reflexive indicators |, |, ... |,

which have corresponding measurements m;,
m,, ... m,

Fig. 2. A high-level causal model of cyber risk.



A more sophisticated model of cyber risk

* Introduces Compromise:
Violation of victim security goal /7
. . . _ Preventive
e Subdivides Security — T seeurity ) LS L
* Preventive: Interventions reducing Iss | \ |
the ease of compromise
* Reactive: Interventions reducing
the impact of compromise
e Subdivides Exposure

* Surface: Factors increasing Ie e/
potential vectors of compromise

* Asset: Factors increasing the value
of what can be compromised

e Adds more reflexive indicators

Surface
exposure




A more sophisticated model of cyber risk

TABLE VI
TECHNICAL INDICATORS [116] CORRESPONDING TO [ IN FIGURE 3

Technical indicator

[ Preventive
security

- q;ll If
# domains in phishing blacklist '
# domains in malware blacklist
# IPs on shared hosting
# domains on shared hosting
HTTP server version
SSL version

Admin panel version

PHP version

OpenSSH version

CMS version

HittpOnlyCookie

X-Frame-Options

X-Content-Type-Options

Mixed-content inclusions

Secure cookie . . .

Content-Security-Policy Parts in modeled in a prior study.

HTTP Strict-Transport-Security

SSL-stripping vulnerable form S. Tajalizadehkhoob, T. Van Goethem, M. Korczyinski, A. Noroozian, R.

Browser XSS protection Boehme, T. Moore, W. Joosen, and M. van Eeten. Herding vulnerable
cats: A statistical aﬁproach to disentangle joint responsibility for web
security in shared hosting. In CCS, 2017.

Surface
exposure




[RQ1: Harm] Data breach studies

TABLE II
THE OFTEN CONTRADICTORY FINDINGS FROM DATA BREACH STUDIES.

Breach [requency Breach size o0

Reference Type of data . Years Distribution Trend Distribution Trend Moment

Curtin et al. (Z008) [30] N + M (USA) 2005-07 ? A ? ? 7
Maillart et al. (2010) [83] N+ M (USA) 2000-08 ? P Power law 3 Yes

Edwards et al. (2016) [36] N+ M (USA) 23 2005~ Megative binomial — Lognormal (M) 5 No
Wheatley et al. (2016) [127] M (Woarld) ] Poisson gen LM — (USA) DT power law (t) Yes*
Eling et al. {2017} [40] N+ M (USA) ? Megative binomial "y Skew-normal 3 No
Xu et al. (2018) [131] M (USA) 2005-17 ARMA/GARCH Va Gen Pareto (1) : No
Wheatley et al. (2019) [128] N + M (USA) 2005-17  Negative binomial — Pareto ) 7

Carfora et al. {2019) [23] N+ M (USA) 2005-17  Megative binomial A (M) Skew/Lognormal No
Farkas et al. (2020) [43] N+ M (USA) 2005-19 Binomial T Lognormal (t) Yies

N/M = Negligent/malicious breach, (t) = distribution of the tail, LM = linear model, DT = double truncated, * = without maximum, 7 = not reported.

* 10 years of studies, same data, contradictory results

* Frequency trends: decreasing, stable, or increasing?
* Size trends: stable or increasing?

* Heavy-tailed distributions, but unclear mapping to financial cost



[RQ1: Harm] Stock market reactions

 Effect decreasing over time
(from -7.9% to -0.05%)

* Firms learned to manipulate
announcements

e Evidence of strategic timing
and insider trading

Hovav and D"Arcy (2003) [62]
| Gordon et al. (2011) [53]
+7.9%, [—1, 1], 1988-2002 -
Iver et al. (2019)[65]

{33_\_" (2017) [51] % =1, 3], risk weighted returns

0, 0], privacy events

Kamiya et al. {2020) [68]

[~1,1]

[~1.1]
Cavu g]_u et P

1]
1) [53]

[-1,1]

1994 1996 998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Fig. 4. Impact of security incident disclosure on firm stock market value. The effect is reported as cumulative abnormal returns (C
thickness describe sample period and size, event window reported as [Days before, days after], statistical significance levels " p < 0

19 studies from 1988-2019

2018

), bar placement and
5, **p < 0.0




[RQ1: Harm] Are cyber harms exceptional?

TABLE 1
g N O . OVERVIEW OF DIFFERENT APPROACHES TO QUANTIFYING CYBER HARM,

# of Econ Sample Earliest Earliest
L M e a n Cy b e r |O S S : $4 . 1 IVI - S 4 3 M Unit of analysis studies loss size study sample
Public reports (Section 1I-A)

(Va ri eS by S a m p | e) Data breach ! 600-6160 2008 2000

Operational loss : 341-1579 2015 =2003
Cyber incident 2216 2016 2005

* Cyber losses smaller and less Private reports (Section IIL-B)
. Intermal incident 1BO0=23000 2010 1996
h - led th -cvb Insurance claim 2019 2015
eavy ta I e t a n no n Cy e r Crime reports 792 2020 2017

Firm survey response : 2012 2012

O pe ra ti O n a I |O S Se S Individual survey response _' (-6 72014 2010

Externally observed (Section

* Compare to fraud, theft, bad debt Legal case 19230 2011 1999

Legal case 118 2017 2010

. Bitcoin transaction : 10m 2014 2009

o Ty pica | breaches less extreme Criminal forum post Bm 2007 2006
[nsurance prices 6828 2019 2007

t h a n m e d i a re p O rts S ugge St Stock market reaction ! 43-542 2003 1988

System-wide harm (Section III-D)
Multi-party incident 1 800 2019 2008




[RQ2: Effect] Measuring security is hard

 Single indicators fail:

 Certifications: 86% of PCI-DSS certified sites violated requirements
 Security SS budgets: positively correlated with breaches

* Need: Multiple technical indicators

 Self-reported indicators (SeBIS scale) for individuals predict behavior but not
linked to harm outcomes. Costly to collect at organization-level



[RQ2: Effect] Measuring threat: 3 approaches

* Time-based: Track malicious activity over time

* Target-based: Study who gets attacked
e E.g., larger banks targeted more

* Researcher intervention: Honeypots, controlled experiments
* Challenge: Rational attackers use undetectable malware



[RQ2: Effect] Measuring exposure

e Unit of analysis matters (AS vs. hosting provider)

e Exposure can be highly influential in predicting harm. Example:

e 1 variable of hosting provider explains 20% of phishing abuse, but 4 variables
explain 84% of abuse

* Can train a classifier to identifier compromised website with 66%/17%
true/false positive rates



[RQ2: Effect] Structural relationships

* Between-subject designs can be misleading

* Example: Updated software associated with more compromise
e Until you control for threat level
* Then: 22.6% of updated sites re-compromised vs. 33.5% never-updated

* Within-subject designs help control confounders
* The relative infrequency of compromise undermines statistical power



RQ2
Evidence for
security
effectiveness
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RQ2
Evidence for
security
effectiveness
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RQ3: Temporal trends

 Harm studies: longer time windows (up to 20 years)

* Mitigation studies: brief windows (often <3 years)

» Stock market reactions: decreasing over time

* Cyber insurance prices: trending downward 2008-2018

* Data breach frequency: stable overall, increasing for malicious
breaches



Key findings

 RQ1: Cyber harms not exceptional; typical losses smaller than claimed
* RQ2: Security effective only when controlling for threat and exposure

* RQ3: Some evidence of decreasing stock market impact; otherwise
limited temporal data

* Single indicators misleading; multiple indicators essential

e But lots we don’t know
e Systemic cyber risk: insufficient observations
* Causal effects of specific interventions
* How to prioritize security investments
* Long-term trends in mitigation effectiveness



Implications

* For practice
* Don't underestimate exposure (very predictive)
* Avoid single-indicator solutions from vendors
e Security teams need resources for diverse tasks
* Be skeptical of exceptional harm claims

* For research
* Use the causal model framework
Include threat and exposure controls
Use multiple indicators of security
Longer time windows needed for mitigation studies
Consider randomized controlled trials (notification studies)



Future directions

* No data breach studies link security to
compromise/harm

* Need better methods for systemic risk
* Institutional data collection and sharing
* Move beyond prediction to causal understanding

Insurance prices

Legal cases

Manually compiled

Market reaction

Notification

Operational loss

Organisation incident

Survey of firms

Threat index
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