Empirical Security & Privacy,

for Humans B 55 4 BN

UPenn CIS 7000-010
11/20/2025

How Long Do Vulnerabilities Live in the Code?

A Large-Scale Empirical Measurement Study on FOSS Vulnerability Lifetimes

How Long Do Vulnerabilities Live in the Code? A Large-Scale Empirical
Measurement Study on FOSS Vulnerability Lifetimes

introduction for o
ate il
vulnerabilities,

Phase 4

spread over time
that can

understand and quantify
on vulnerability lifetim

uct (at time t;
nds with its

1 Introduction

31st USENIX Security Symposium 358

Vulnerability lifecycle

Phase 1

%—/

Lifetime of a vulnerability

Code lifetime of vulnerability

VCC: Vulnerability Contributing Commit <

A fixing commit, blamed

CVE-2022-25375

rnais_resp_t *r,

BufLength = l1le32 to cpu(buf->InformationBufferLength);
BufOffset = 1e32_to_cpu(buf->InformationBufferOffset);
if ((BufLength > RNDIS_MAX_TOTAL_SIZE) ||
(BufOffset + 8 >= RNDIS_MAX_TOTAL_SIZE))
return -EINVAL;

r = rndis_add_response(params, sizeof(rndis_set_cmplt_type));

if (!'r)

return -ENOMEM;

resp = (rndis_set_cmplt_type *)r->buf;

Blames [7e27£f18] += 1

Blames[83210e5] += 1

Blames [aldfded] += 1
Blames [aldfded] += 1
Blames[ldal77e] += 1

Estimating lifetimes

e Goal: approximate the point in time when a vulnerability was
introduced — do not care about the actual VCC

* Compute d, of VCC as follows: Collect n commits based on the fix
where b; is # blames for the commit, and d, is its date.

* Blame every line that was removed

* Blame before and after every added block of code (two or more lines) if it is
not a function definition as these can be inserted arbitrarily.

* Blame before and after each single line the fixing commit added if it contains
at least one of these keywords ("if", "else", "goto", "return”, "sizeof", "break",
"NULL") or is a function call

Comparison to ground truth (Linux kernel)

¥ Heuristic Lifetime
Groundtruth lifetime

P
=
=
=

LN
=
(W]
=]
-
Qo
-
=
=

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
year of fixing commit

Study projects

Project CVEs w/fix. com. # fix. com.
Linux (kernel) 4.302 1,473 1.528
Firefox 2,179 1,498 3,751
Chromium 2,781 1, 580 2,820
Wireshark 600 314 343
Php 663 281 0932
Fimpeg 326 271 373
Openssl 214 144 259
Httpd 248 132 476
Tepdump 167 115 128
Qemu 340 213 290
Postgres 139 76 141
Total 11,959 5914 11,041

Table 1: Number of CVEs and mappings per project. First column
gives the total number of CVEs returned from a search of the NVD.
Second column gives the number of those CVEs for which at least
one fixing commit was found in the project repository. Third column
gives the total number of fixing commits found per project.

Comparison against ground truth

0.0006 —— Exponential fit
(PR AN ITLA

| Median
0.0004 \ = Mean

“‘"&
0.0002 \I\‘“‘“m,_
0.0000 \\‘—
] 1000 2000 3000 4000 5000 6000
Heuristic lifetime (days)

(a) Histogram for heuristic data

Exponential fit
Median

c 0.0005 = Mean

Density

1000 2000 3000 4000 5000 6000
Ground truth lifetime (days)

(b) Histogram for groundtruth data

Average lifetime trend

0 —rP
Lifetine w Lifetime

Li& n estimate &€) L i i son estimate

lifetime in days

sar of fixing com
{a) All CVEs i(b) Firefox
Insufficient data

Lifetime
son estimate Li&Paxson estimate

lifetime in ¢

2010 2012 201 6 0 . 2010 2012 2014 2016
19 commit
{c) Chromium (d) Linux
Figure 7: Average Lifetime trend (computed with our weighted average approach) for all CVEs, as well as for Firefox, Chromium and Linux,
in isolation. A lower bound computed similarly to Li and Paxson’s approach is included for completeness.

Lifetime trends vs. code age

4000

4000 w Lifetime % Lifetime

jular code age

lifetime in days

1000

2016
r of fixing commit
(a) Firefox (b} Chromium
4000 4000

» Lifetime Vul lifetime

Regular code age L Regular code age

lifetime in

= 1000

2012 2014 2016 2018 . : 2 2004 2 2 2014 2016 2018
of fix C y of fixing commit

(c) Linux (d) Httpd

Figure 9: Age of vulnerable code vs. all code, along with linear fits, for Firefox, Chromium, Linux (kernel) and Httpd. For Httpd, vulnerability
lifetimes are calculated in 4 or 5-year intervals to guarantee confidence in the estimation.

Surprise! No impact of fuzzing on Linux

2500 % Memory vulnerabilities
Others

'S

= 2000

|

1500

1000

-
=
a
E
et
a
u—

=00

0
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

year of fixing commit

Figure 10: Lifetimes of memory-related vs. all other vulnera-
bility categories for Linux.

Some analysis observations

* No evidence to support that we are introducing (and consequently
fixing) significantly fewer new vulnerabilities over time.

 Different vulnerability categories seem to be equally difficult to find
(at least post release)

* For some projects the vuln-age spread increases over time
* Maybe this means that parts of the code are “mature” and have fewer vulns?

* If so: We could be slowly progressing towards a state of relative maturity,
where vulnerability lifetimes become stable over time and not correlated to
code age, even if the latter is increasing

* And: Fuzzing code that has recently changed is the best vulnerability
discovery strategy. Yet: fuzzers keep discovering very old vulnerabilities

	Slide 1: Empirical Security & Privacy, for Humans
	Slide 2: Reading
	Slide 3: Vulnerability lifecycle
	Slide 4: Code lifetime of vulnerability
	Slide 5: A fixing commit, blamed
	Slide 6: Estimating lifetimes
	Slide 7: Comparison to ground truth (Linux kernel)
	Slide 8: Study projects
	Slide 9: Comparison against ground truth
	Slide 10: Average lifetime trend
	Slide 11: Lifetime trends vs. code age
	Slide 12: Surprise! No impact of fuzzing on Linux
	Slide 13: Some analysis observations

