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Vulnerability lifecycle

Phase 1
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Lifetime of a vulnerability




Code lifetime of vulnerability

VCC: Vulnerability Contributing Commit <




A fixing commit, blamed

CVE-2022-25375

rnais_resp_t *r,

BufLength = l1le32 to cpu(buf->InformationBufferLength);
BufOffset = 1e32_to_cpu(buf->InformationBufferOffset);
if ((BufLength > RNDIS_MAX_TOTAL_SIZE) ||
(BufOffset + 8 >= RNDIS_MAX_TOTAL_SIZE))
return -EINVAL;

r = rndis_add_response(params, sizeof(rndis_set_cmplt_type));

if (!'r)

return -ENOMEM;

resp = (rndis_set_cmplt_type *)r->buf;

Blames [7e27£f18] += 1

Blames[83210e5] += 1

Blames [aldfded] += 1
Blames [aldfded] += 1
Blames[ldal77e] += 1




Estimating lifetimes

e Goal: approximate the point in time when a vulnerability was
introduced — do not care about the actual VCC

* Compute d, of VCC as follows: Collect n commits based on the fix
where b; is # blames for the commit, and d, is its date.

* Blame every line that was removed

* Blame before and after every added block of code (two or more lines) if it is
not a function definition as these can be inserted arbitrarily.

* Blame before and after each single line the fixing commit added if it contains
at least one of these keywords ("if", "else", "goto", "return”, "sizeof", "break",
"NULL") or is a function call



Comparison to ground truth (Linux kernel)
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Study projects

Project CVEs w/fix. com. # fix. com.
Linux (kernel) 4.302 1,473 1.528
Firefox 2,179 1,498 3,751
Chromium 2,781 1, 580 2,820
Wireshark 600 314 343
Php 663 281 0932
Fimpeg 326 271 373
Openssl 214 144 259
Httpd 248 132 476
Tepdump 167 115 128
Qemu 340 213 290
Postgres 139 76 141
Total 11,959 5914 11,041

Table 1: Number of CVEs and mappings per project. First column
gives the total number of CVEs returned from a search of the NVD.
Second column gives the number of those CVEs for which at least
one fixing commit was found in the project repository. Third column
gives the total number of fixing commits found per project.




Comparison against ground truth
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Average lifetime trend
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Figure 7: Average Lifetime trend (computed with our weighted average approach) for all CVEs, as well as for Firefox, Chromium and Linux,
in isolation. A lower bound computed similarly to Li and Paxson’s approach is included for completeness.




Lifetime trends vs. code age
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Figure 9: Age of vulnerable code vs. all code, along with linear fits, for Firefox, Chromium, Linux (kernel) and Httpd. For Httpd, vulnerability
lifetimes are calculated in 4 or 5-year intervals to guarantee confidence in the estimation.




Surprise! No impact of fuzzing on Linux
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Figure 10: Lifetimes of memory-related vs. all other vulnera-
bility categories for Linux.




Some analysis observations

* No evidence to support that we are introducing (and consequently
fixing) significantly fewer new vulnerabilities over time.

 Different vulnerability categories seem to be equally difficult to find
(at least post release)

* For some projects the vuln-age spread increases over time
* Maybe this means that parts of the code are “mature” and have fewer vulns?

* If so: We could be slowly progressing towards a state of relative maturity,
where vulnerability lifetimes become stable over time and not correlated to
code age, even if the latter is increasing

* And: Fuzzing code that has recently changed is the best vulnerability
discovery strategy. Yet: fuzzers keep discovering very old vulnerabilities
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