
Empirical Security & Privacy, 
for Humans
UPenn CIS 7000-010

11/20/2025

How Long Do Vulnerabilities Live in the Code?
A Large-Scale Empirical Measurement Study on FOSS Vulnerability Lifetimes



Reading



Vulnerability lifecycle



Code lifetime of vulnerability



A fixing commit, blamed



Estimating lifetimes

• Goal: approximate the point in time when a vulnerability was 
introduced – do not care about the actual VCC

• Compute dh of VCC as follows: Collect n commits based on the fix 
where bi is # blames for the commit, and di is its date.
• Blame every line that was removed
• Blame before and after every added block of code (two or more lines) if it is 

not a function definition as these can be inserted arbitrarily.
• Blame before and after each single line the fixing commit added if it contains 

at least one of these keywords ("if", "else", "goto", "return", "sizeof", "break", 
"NULL") or is a function call



Comparison to ground truth (Linux kernel)



Study projects



Comparison against ground truth



Average lifetime trend



Lifetime trends vs. code age



Surprise! No impact of fuzzing on Linux



Some analysis observations

• No evidence to support that we are introducing (and consequently 
fixing) significantly fewer new vulnerabilities over time.

• Different vulnerability categories seem to be equally difficult to find 
(at least post release)

• For some projects the vuln-age spread increases over time
• Maybe this means that parts of the code are “mature” and have fewer vulns?
• If so: We could be slowly progressing towards a state of relative maturity, 

where vulnerability lifetimes become stable over time and not correlated to 
code age, even if the latter is increasing

• And: Fuzzing code that has recently changed is the best vulnerability 
discovery strategy. Yet: fuzzers keep discovering very old vulnerabilities


	Slide 1: Empirical Security & Privacy, for Humans
	Slide 2: Reading
	Slide 3: Vulnerability lifecycle
	Slide 4: Code lifetime of vulnerability
	Slide 5: A fixing commit, blamed
	Slide 6: Estimating lifetimes
	Slide 7: Comparison to ground truth (Linux kernel)
	Slide 8: Study projects
	Slide 9: Comparison against ground truth
	Slide 10: Average lifetime trend
	Slide 11: Lifetime trends vs. code age
	Slide 12: Surprise! No impact of fuzzing on Linux
	Slide 13: Some analysis observations

