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Round 2: Break-it
Teams report 

bugs in 
submissions

2 weeks

Round 1: Build-it
Teams build 
software to 

specification

2 weeks

Must satisfy
basic correctness
requirements; 
optional features
and good 
performance for 
more points

Round 3: Fix-it
Teams fix bugs 
found in their 

software

1 week

Doing so may 
wipe out many 
bug reports in 
one go: all count 
as the same bug

Bug reports are 
(failing) 
executable test 
cases, including 
exploits

Last: Judges tally final results

Overview



Scoring System

Build-it Score

Break-it Score

• Build-it Score

• Break-it Score

• Winners in both categories

• Gains points for unique bugs found

• Scaled by how many other teams found the same bug

• Gains points for good performance

• Gains points for implementing optional features

• Loses points for unique bugs found

• More points for (obviously) security-relevant bugs



Build-it Round

• Build software according to the posted specification
• Make it correct, feature-ful, efficient, and secure

• The first three are assessed by (our) test cases (build-it round score)

• The last is assessed by Break-it teams in round 2

• For many elements of the task, teams may choose
• The software’s internal design and algorithms

• Which optional features to implement

• What programming language to use

• What development and testing tools to use

• How to divide tasks among team members, etc.



Break-it Round

• Find bugs and vulnerabilities in submitted code
• Provide an exploit, as defined by particular problem

• Teams will be given access to the source code
• We provide scripts that teams can use to test projects against the standard 

tests, using a VM

• How teams go about this task is up to them, e.g., 
• How to divide up the task among team members, and 

• whether (or how much) testing to use, 

• manual code reviews,

• automated dynamic/static analysis, etc.  



Fix-it Round

• Different teams may submit different test cases that identify the 
same underlying bug

• Build-it teams should only lose points for each bug, not for each test 
case that reveals it

• How to tell that test cases are “the same” ?

void foo(char *str) {

char buf[10];

strcpy(buf,str);

}

• str = “this is too long”

• str = “this is too long too”

• str = “and so is this string”



Fix-it Round

• Teams will receive the test cases during the fix-it round, and they can 
then fix each bug identified

• All test cases that pass are unified to be the same underlying bug
• Judges consider whether the fix is to a single bug

• If not, the affected test cases will be scored individually

void foo(char *str) {

char buf[10];

strcpy(buf,str);

}

• str = “this is too long”

• str = “this is too long too”

• str = “and so is this string”

void foo(char *str) {

char buf[10];

strlcpy(buf,str,10);

}

• str = “this is too long”

• str = “this is too long too”

• str = “and so is this string”
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Build-it Break-it Fix-it

Builder score, as the contest progresses



Contest problems

• Secure log of events at an art gallery
• Commands to append records and query the log contents

• Threat model:
• Attacker has access to the log

• Should be tamperproof and protect confidentiality

• Secure ATM
• ATM communicates with Bank server to carry out transactions

• Threat model: MITM can observe, send, drop messages, and simulate the ATM

• Multi-user DB [in extended version of paper]
• Scriptable key-value store with RBAC policies with delegation

• Threat model: Attacker as client; writes scripts to try to break RBAC implementation



Participant demographics

• Worldwide participant 
pool (mostly non-US)
• 156 teams, 406 people

• Average 9 years 
programming experience
• 1/3 have CS degree

• Most participants part of 
MOOC
• Four courses of security 

training

• Average team size: ~2



Submission features

• Count by language
• Grouped by category

• Statically type-safe   (49)

• Dynamically typed   (60)
• 54 are Python!

• C/C++ (21)



The Four Core Analyses

All four use the same general approach: select candidate factors, test 
all subsets, pick the best model via AIC

# Outcome Variable Model Type Table

1 Ship score (continuous) Linear regression Table 5

2 Security bug found? (binary) Logistic regression Table 7

3 Break-it score (continuous) Linear regression Table 10

4 Security bug count (continuous) Linear regression Table 11



Ship Score Model (Table 5)

Outcome: Build-it team’s ship score (continuous, points-based)

R² = 0.232

C/C++ teams scored 
~113–133 points higher 
than other language 
categories 



Security Bug Model (Table 7)

Outcome: Was a security bug found in this team’s submission? 

So: logistic regression

Nagelkerke R² = 0.619

C/C++ submissions were 
~11× more likely to 
have a security bug 
(1/0.089 ≈ 11.2)

ATM contest: vastly 
more security bugs 
than Secure Log



Odds Ratios and Exponential Coefficients

Recall:

• Odds ratios (eβ) — The paper reports Exp(coef) and Exp CI columns:
exponentiated coefficients and their confidence intervals

• Interpreting direction — Exp(coef) < 1 means lower likelihood

• Confidence intervals on odds ratios — Statically typed: [0.02, 0.51], 
entirely below 1, confirming the protective effect

Recall our pitfall: “Higher CVSS increases exploitation by 0.52” 

The paper correctly says “11× more likely” and not the raw coefficient



Break-it Models (Tables 10 and 11)

Two more linear regressions, now for the breaking phase

R² = 0.15 and R² = 0.203 respectively

Model Key Significant Factors

Break-it score 
(Table 10)

More team members (+387 pts each, p = 0.028); 
ATM teams scored lower

Security bug 
count (Table 11)

More team members (+1.2 bugs each, p = 0.006); 
Build participants found +4 more bugs (p = 0.045)



Factors That Didn’t Make the Cut

Notably absent from final models:

• Advanced techniques (fuzzing, static analysis) — dropped during model 
selection, not significant

• MOOC participation — security education didn’t significantly help

But: Non-significant results are still informative! The paper discusses these:

“Making use of advanced analysis techniques did not factor into the final 
model… such techniques tend to find generic errors such as crashes, 
bounds violations… Security violations for our problems are more often 
semantic”



Model Selection via AIC (new)

What the paper does: “We test models with all possible combinations of our 
chosen potential factors and select the model with the minimum Akaike 
Information Criterion (AIC)”

• AIC is an information-theoretic criterion: AIC = 2k − 2 ln(L), where k = 
number of parameters and L = likelihood
• Lower AIC = better balance of fit and parsimony

• In lecture, we used likelihood-ratio (LR) tests to compare nested models 
(reduced vs. full)

Key difference: LR tests compare two specific nested models; AIC can be 
used to rank any set of models, including non-nested ones



The Iterative Model-Building Process

1. Select candidate factors based on domain knowledge (Tabs 4 and 9)

2. Limit the number of factors based on power analysis

3. Test all possible combinations of factors

4. Select the model with minimum AIC

5. Report the final model



What Is Power Analysis?

Problem: How many factors can we include in our model without overfitting?

Statistical power = the probability of detecting a real effect if one exists (i.e., 
correctly rejecting H₀)

• Convention: aim for power ≥ 0.75 or 0.80

• Recall: failing to reject H₀ when it’s false = Type II error

• Power = 1 − P(Type II error)

Power depends on three things:
Factor Effect on Power

Sample size (N) Larger N → more power

Effect size (f²) Larger effect → easier to detect

Number of 
parameters (k)

More parameters → less power 
per parameter



How the Paper Uses Power Analysis

Power analysis in the paper:

1. Given: N = 130 build-it teams

2. Goal: “medium” effect size or Cohen’s f² = 0.15 (equivalent to R² ≈ 0.13)

3. Goal: power = 0.75, 

Result: We are limited to 10 degrees of freedom (i.e., k = ~10 parameters)
So we pre-commit to a small set of factors (Table 4) before looking at results —
this prevents overfitting and data mining (“p hacking”)

Contrast with a naïve approach:

• Throw 30 variables into a regression with 130 observations → spurious 
results

• Power analysis says: with N = 130, you can responsibly test ~10 factors for 
medium effects



A Different Effect Size: Cohen’s f²

From our lectures: Cohen’s d for comparing two group means

In the paper: Cohen’s f² for regression effect sizes

“Our modeling was designed for a 
prospective effect size roughly 
equivalent to Cohen’s medium 
effect heuristic, f² = 0.15”

This corresponds to R² = 0.13 — 
the model needs to explain at 
least 13% of variance to be 
detectable

Measure Context “Medium” 
threshold

Cohen’s d Two-group 
comparison

0.5

Cohen’s f² Regression 
models

0.15



Pitfalls avoided

• Correlation ≠ Causation 
• “This was not a completely controlled experiment (e.g., we do not use 

random assignment), so our models demonstrate correlation rather than 
causation.”

• Independent samples
• Build it and Break it participants overlap (Ok – not combined in analysis)

• Overlap in participants between contests? Added ”Contest” as factor

• Honest about limitations
• Resilience score issue, limitations of self reported data



Survivor Bias in Resilience Scores

A measurement problem the paper discovered:

• Resilience scores depend on teams fixing bugs during the fix-it phase

• But most teams didn’t fix any bugs — especially low-scoring teams

Consequence: The paper abandons resilience score as an outcome 
variable and switches to the binary “any security bug found?” model 
instead

Lesson: Sometimes your planned outcome variable doesn’t work, and 
you need to adapt

So: The paper abandons resilience 
score as an outcome variable



Pitfall: Multiple Models, No Correction

From our lecture: Running many tests inflates false positive rates

The paper fits four separate regression models, each testing multiple factors

• No explicit correction for multiple comparisons across models

• The all-subsets AIC approach tests many model specifications within each analysis

Mitigating factors:

• AIC inherently penalizes model complexity (acts as a soft correction)

• The factors were pre-specified based on domain knowledge, not data-mined

• Power analysis limits the number of factors tested

But: with enough model combinations, some “significant” factors may be false 
positives



Mapping to Our Lectures

Lecture Topic Used in Paper? Where

Linear regression Tables 5, 10, 11

Logistic regression Table 7

Dummy coding / reference 
levels

Language category, Contest

Odds ratios (e^β) Table 7

Confidence intervals All tables

R² / model fit All models

Effect sizes (Cohen’s d) Variant (f²) Power analysis

LR test (model comparison) AIC instead Model selection

Pseudo-R² Nagelkerke, not 
McFadden

Table 7

Multiple comparisons Not applied —
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Approach

• Examined each project and vulnerability in detail
• 94 projects

• Breaker-identified (866 submitted exploits) and researcher-identified (manual 
analysis)

• In total, 182 distinct vulnerabilities

• Iterative open and axial coding

• Qual and quant analysis on resulting categories 



What Is Qualitative Coding?

• A code is a word or short phrase that captures the meaning of a piece 
of data — it is “primarily an interpretive act” (Saldaña, Ch. 1)

• Coding is cyclical: first cycle codes emerge from the data, then get 
refined, reorganized, and consolidated into categories and themes 
through second cycle coding

• The BIBIFI paper used iterative open coding (codes emerge from 
data, not predetermined) and axial coding (grouping codes into 
higher-level types)



Further reading: 
Saldaña, The Coding 
Manual for Qualitative 
Researchers, Ch. 1; 
Strauss & Corbin, Basics 
of Qualitative Research 
(1990)



How BIBIFI Applied It

1. Two researchers cooperatively examined 11 projects (42 
vulnerabilities) to build an initial codebook

2. Then coded independently in rounds of ~30 breaks, meeting after 
each round to discuss disagreements and refine the codebook

3. Process continued for ~6 months until inter-rater reliability 
exceeded α > 0.80 (Krippendorff’s α) on all variables

4. Remaining 34 projects divided and coded separately

Result: 182 unique vulnerabilities coded across four variables (Type, 
Attacker Control, Discovery Difficulty, Exploit Difficulty)



The Codebook

Each vulnerability was labeled on four variables with defined levels:

Axial coding then grouped the 23 specific issues into three high-level types:

• No Implementation — didn’t attempt a necessary security mechanism

• Misunderstanding — attempted it but made a conceptual error

• Mistake — had the right idea but made a programming slip



Why This Approach?

• Qualitative coding lets researchers systematically characterize
unstructured data (source code, exploits) in a reproducible way

• The codebook with inter-rater reliability ensures findings aren’t just 
one person’s opinion

• Coded categories then become variables for quantitative analysis
(Chi-squared tests, Poisson regression) — the two approaches are 
complementary

Saldaña (Ch. 1): “Quantitative analysis calculates the mean. Qualitative 
analysis calculates meaning.”



No Implementation Misunderstanding Mistake

Intuitive Unintuitive
Bad 

Choice

Conceptual 

Error

Vulnerability classes



No Implementation

Intuitive

Missed something “Intuitive”
• No encryption 
• No access control

Vulnerability classes



Missed something “Unintuitive”
• No MAC
• Side channel leakage
• No replay prevention

45% of projects

No Implementation

Unintuitive

Vulnerability classes



Made a “bad choice”
• Weak algorithms
• Homemade encryption
• strcpy()

Misunderstanding

Bad 

Choice

Vulnerability classes



Made a “conceptual error”
• Insufficient randomness
• Disabling default protections

44% of projects

Misunderstanding

Conceptual 

Error

Vulnerability classes



Made a programming “mistake”
• Control flow error
• Skipped algorithmic step

21% of projects

Mistake

Vulnerability classes



Summary of data analysis

• No implementation & misunderstanding more common (78%) than mistake (21%)
• Mistake: control error, skipped step

• Unintuitive requirements missed or implemented incorrectly much more often 
(45%) than intuitive ones
• Unintuitive: MAC; avoiding side channels and/or replays
• Intuitive: Encryption for privacy; access control

• Implementation complexity breeds mistakes
• Failure to localize functionality, minimize TCB, completely mediate

• Mistakes readily exploited
• Almost always result in contestant attacks



Recommendations

• Simplify API design
• Build in security primitives and focus on common use-cases

• Indicate security impact of non-default use in API documentation
• Explain the negative effects of turning off certain things

• Expand capabilities of vulnerability analysis tools
• More emphasis on design-level conceptual issues
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