
Secure Systems Engineering
and Management

A Data-driven Approach

Measuring Secure
Development Practices

Michael Hicks
UPenn CIS 7000-003
Spring 2026

Readings
(optional)

Readings

Round 2: Break-it
Teams report

bugs in
submissions

2 weeks

Round 1: Build-it
Teams build
software to

specification

2 weeks

Must satisfy
basic correctness
requirements;
optional features
and good
performance for
more points

Round 3: Fix-it
Teams fix bugs
found in their

software

1 week

Doing so may
wipe out many
bug reports in
one go: all count
as the same bug

Bug reports are
(failing)
executable test
cases, including
exploits

Last: Judges tally final results

Overview

Scoring System

Build-it Score

Break-it Score

• Build-it Score

• Break-it Score

• Winners in both categories

• Gains points for unique bugs found

• Scaled by how many other teams found the same bug

• Gains points for good performance

• Gains points for implementing optional features

• Loses points for unique bugs found

• More points for (obviously) security-relevant bugs

Build-it Round

• Build software according to the posted specification
• Make it correct, feature-ful, efficient, and secure

• The first three are assessed by (our) test cases (build-it round score)

• The last is assessed by Break-it teams in round 2

• For many elements of the task, teams may choose
• The software’s internal design and algorithms

• Which optional features to implement

• What programming language to use

• What development and testing tools to use

• How to divide tasks among team members, etc.

Break-it Round

• Find bugs and vulnerabilities in submitted code
• Provide an exploit, as defined by particular problem

• Teams will be given access to the source code
• We provide scripts that teams can use to test projects against the standard

tests, using a VM

• How teams go about this task is up to them, e.g.,
• How to divide up the task among team members, and

• whether (or how much) testing to use,

• manual code reviews,

• automated dynamic/static analysis, etc.

Fix-it Round

• Different teams may submit different test cases that identify the
same underlying bug

• Build-it teams should only lose points for each bug, not for each test
case that reveals it

• How to tell that test cases are “the same” ?

void foo(char *str) {

char buf[10];

strcpy(buf,str);

}

• str = “this is too long”

• str = “this is too long too”

• str = “and so is this string”

Fix-it Round

• Teams will receive the test cases during the fix-it round, and they can
then fix each bug identified

• All test cases that pass are unified to be the same underlying bug
• Judges consider whether the fix is to a single bug

• If not, the affected test cases will be scored individually

void foo(char *str) {

char buf[10];

strcpy(buf,str);

}

• str = “this is too long”

• str = “this is too long too”

• str = “and so is this string”

void foo(char *str) {

char buf[10];

strlcpy(buf,str,10);

}

• str = “this is too long”

• str = “this is too long too”

• str = “and so is this string”

10

Build-it Break-it Fix-it

Builder score, as the contest progresses

Contest problems

• Secure log of events at an art gallery
• Commands to append records and query the log contents

• Threat model:
• Attacker has access to the log

• Should be tamperproof and protect confidentiality

• Secure ATM
• ATM communicates with Bank server to carry out transactions

• Threat model: MITM can observe, send, drop messages, and simulate the ATM

• Multi-user DB [in extended version of paper]
• Scriptable key-value store with RBAC policies with delegation

• Threat model: Attacker as client; writes scripts to try to break RBAC implementation

Participant demographics

• Worldwide participant
pool (mostly non-US)
• 156 teams, 406 people

• Average 9 years
programming experience
• 1/3 have CS degree

• Most participants part of
MOOC
• Four courses of security

training

• Average team size: ~2

Submission features

• Count by language
• Grouped by category

• Statically type-safe (49)

• Dynamically typed (60)
• 54 are Python!

• C/C++ (21)

The Four Core Analyses

All four use the same general approach: select candidate factors, test
all subsets, pick the best model via AIC

Outcome Variable Model Type Table

1 Ship score (continuous) Linear regression Table 5

2 Security bug found? (binary) Logistic regression Table 7

3 Break-it score (continuous) Linear regression Table 10

4 Security bug count (continuous) Linear regression Table 11

Ship Score Model (Table 5)

Outcome: Build-it team’s ship score (continuous, points-based)

R² = 0.232

C/C++ teams scored
~113–133 points higher
than other language
categories

Security Bug Model (Table 7)

Outcome: Was a security bug found in this team’s submission?

So: logistic regression

Nagelkerke R² = 0.619

C/C++ submissions were
~11× more likely to
have a security bug
(1/0.089 ≈ 11.2)

ATM contest: vastly
more security bugs
than Secure Log

Odds Ratios and Exponential Coefficients

Recall:

• Odds ratios (eβ) — The paper reports Exp(coef) and Exp CI columns:
exponentiated coefficients and their confidence intervals

• Interpreting direction — Exp(coef) < 1 means lower likelihood

• Confidence intervals on odds ratios — Statically typed: [0.02, 0.51],
entirely below 1, confirming the protective effect

Recall our pitfall: “Higher CVSS increases exploitation by 0.52”

The paper correctly says “11× more likely” and not the raw coefficient

Break-it Models (Tables 10 and 11)

Two more linear regressions, now for the breaking phase

R² = 0.15 and R² = 0.203 respectively

Model Key Significant Factors

Break-it score
(Table 10)

More team members (+387 pts each, p = 0.028);
ATM teams scored lower

Security bug
count (Table 11)

More team members (+1.2 bugs each, p = 0.006);
Build participants found +4 more bugs (p = 0.045)

Factors That Didn’t Make the Cut

Notably absent from final models:

• Advanced techniques (fuzzing, static analysis) — dropped during model
selection, not significant

• MOOC participation — security education didn’t significantly help

But: Non-significant results are still informative! The paper discusses these:

“Making use of advanced analysis techniques did not factor into the final
model… such techniques tend to find generic errors such as crashes,
bounds violations… Security violations for our problems are more often
semantic”

Model Selection via AIC (new)

What the paper does: “We test models with all possible combinations of our
chosen potential factors and select the model with the minimum Akaike
Information Criterion (AIC)”

• AIC is an information-theoretic criterion: AIC = 2k − 2 ln(L), where k =
number of parameters and L = likelihood
• Lower AIC = better balance of fit and parsimony

• In lecture, we used likelihood-ratio (LR) tests to compare nested models
(reduced vs. full)

Key difference: LR tests compare two specific nested models; AIC can be
used to rank any set of models, including non-nested ones

The Iterative Model-Building Process

1. Select candidate factors based on domain knowledge (Tabs 4 and 9)

2. Limit the number of factors based on power analysis

3. Test all possible combinations of factors

4. Select the model with minimum AIC

5. Report the final model

What Is Power Analysis?

Problem: How many factors can we include in our model without overfitting?

Statistical power = the probability of detecting a real effect if one exists (i.e.,
correctly rejecting H₀)

• Convention: aim for power ≥ 0.75 or 0.80

• Recall: failing to reject H₀ when it’s false = Type II error

• Power = 1 − P(Type II error)

Power depends on three things:
Factor Effect on Power

Sample size (N) Larger N → more power

Effect size (f²) Larger effect → easier to detect

Number of
parameters (k)

More parameters → less power
per parameter

How the Paper Uses Power Analysis

Power analysis in the paper:

1. Given: N = 130 build-it teams

2. Goal: “medium” effect size or Cohen’s f² = 0.15 (equivalent to R² ≈ 0.13)

3. Goal: power = 0.75,

Result: We are limited to 10 degrees of freedom (i.e., k = ~10 parameters)
So we pre-commit to a small set of factors (Table 4) before looking at results —
this prevents overfitting and data mining (“p hacking”)

Contrast with a naïve approach:

• Throw 30 variables into a regression with 130 observations → spurious
results

• Power analysis says: with N = 130, you can responsibly test ~10 factors for
medium effects

A Different Effect Size: Cohen’s f²

From our lectures: Cohen’s d for comparing two group means

In the paper: Cohen’s f² for regression effect sizes

“Our modeling was designed for a
prospective effect size roughly
equivalent to Cohen’s medium
effect heuristic, f² = 0.15”

This corresponds to R² = 0.13 —
the model needs to explain at
least 13% of variance to be
detectable

Measure Context “Medium”
threshold

Cohen’s d Two-group
comparison

0.5

Cohen’s f² Regression
models

0.15

Pitfalls avoided

• Correlation ≠ Causation
• “This was not a completely controlled experiment (e.g., we do not use

random assignment), so our models demonstrate correlation rather than
causation.”

• Independent samples
• Build it and Break it participants overlap (Ok – not combined in analysis)

• Overlap in participants between contests? Added ”Contest” as factor

• Honest about limitations
• Resilience score issue, limitations of self reported data

Survivor Bias in Resilience Scores

A measurement problem the paper discovered:

• Resilience scores depend on teams fixing bugs during the fix-it phase

• But most teams didn’t fix any bugs — especially low-scoring teams

Consequence: The paper abandons resilience score as an outcome
variable and switches to the binary “any security bug found?” model
instead

Lesson: Sometimes your planned outcome variable doesn’t work, and
you need to adapt

So: The paper abandons resilience
score as an outcome variable

Pitfall: Multiple Models, No Correction

From our lecture: Running many tests inflates false positive rates

The paper fits four separate regression models, each testing multiple factors

• No explicit correction for multiple comparisons across models

• The all-subsets AIC approach tests many model specifications within each analysis

Mitigating factors:

• AIC inherently penalizes model complexity (acts as a soft correction)

• The factors were pre-specified based on domain knowledge, not data-mined

• Power analysis limits the number of factors tested

But: with enough model combinations, some “significant” factors may be false
positives

Mapping to Our Lectures

Lecture Topic Used in Paper? Where

Linear regression Tables 5, 10, 11

Logistic regression Table 7

Dummy coding / reference
levels

Language category, Contest

Odds ratios (e^β) Table 7

Confidence intervals All tables

R² / model fit All models

Effect sizes (Cohen’s d) Variant (f²) Power analysis

LR test (model comparison) AIC instead Model selection

Pseudo-R² Nagelkerke, not
McFadden

Table 7

Multiple comparisons Not applied —

Readings
(optional)

Approach

• Examined each project and vulnerability in detail
• 94 projects

• Breaker-identified (866 submitted exploits) and researcher-identified (manual
analysis)

• In total, 182 distinct vulnerabilities

• Iterative open and axial coding

• Qual and quant analysis on resulting categories

What Is Qualitative Coding?

• A code is a word or short phrase that captures the meaning of a piece
of data — it is “primarily an interpretive act” (Saldaña, Ch. 1)

• Coding is cyclical: first cycle codes emerge from the data, then get
refined, reorganized, and consolidated into categories and themes
through second cycle coding

• The BIBIFI paper used iterative open coding (codes emerge from
data, not predetermined) and axial coding (grouping codes into
higher-level types)

Further reading:
Saldaña, The Coding
Manual for Qualitative
Researchers, Ch. 1;
Strauss & Corbin, Basics
of Qualitative Research
(1990)

How BIBIFI Applied It

1. Two researchers cooperatively examined 11 projects (42
vulnerabilities) to build an initial codebook

2. Then coded independently in rounds of ~30 breaks, meeting after
each round to discuss disagreements and refine the codebook

3. Process continued for ~6 months until inter-rater reliability
exceeded α > 0.80 (Krippendorff’s α) on all variables

4. Remaining 34 projects divided and coded separately

Result: 182 unique vulnerabilities coded across four variables (Type,
Attacker Control, Discovery Difficulty, Exploit Difficulty)

The Codebook

Each vulnerability was labeled on four variables with defined levels:

Axial coding then grouped the 23 specific issues into three high-level types:

• No Implementation — didn’t attempt a necessary security mechanism

• Misunderstanding — attempted it but made a conceptual error

• Mistake — had the right idea but made a programming slip

Why This Approach?

• Qualitative coding lets researchers systematically characterize
unstructured data (source code, exploits) in a reproducible way

• The codebook with inter-rater reliability ensures findings aren’t just
one person’s opinion

• Coded categories then become variables for quantitative analysis
(Chi-squared tests, Poisson regression) — the two approaches are
complementary

Saldaña (Ch. 1): “Quantitative analysis calculates the mean. Qualitative
analysis calculates meaning.”

No Implementation Misunderstanding Mistake

Intuitive Unintuitive
Bad

Choice

Conceptual

Error

Vulnerability classes

No Implementation

Intuitive

Missed something “Intuitive”
• No encryption
• No access control

Vulnerability classes

Missed something “Unintuitive”
• No MAC
• Side channel leakage
• No replay prevention

45% of projects

No Implementation

Unintuitive

Vulnerability classes

Made a “bad choice”
• Weak algorithms
• Homemade encryption
• strcpy()

Misunderstanding

Bad

Choice

Vulnerability classes

Made a “conceptual error”
• Insufficient randomness
• Disabling default protections

44% of projects

Misunderstanding

Conceptual

Error

Vulnerability classes

Made a programming “mistake”
• Control flow error
• Skipped algorithmic step

21% of projects

Mistake

Vulnerability classes

Summary of data analysis

• No implementation & misunderstanding more common (78%) than mistake (21%)
• Mistake: control error, skipped step

• Unintuitive requirements missed or implemented incorrectly much more often
(45%) than intuitive ones
• Unintuitive: MAC; avoiding side channels and/or replays
• Intuitive: Encryption for privacy; access control

• Implementation complexity breeds mistakes
• Failure to localize functionality, minimize TCB, completely mediate

• Mistakes readily exploited
• Almost always result in contestant attacks

Recommendations

• Simplify API design
• Build in security primitives and focus on common use-cases

• Indicate security impact of non-default use in API documentation
• Explain the negative effects of turning off certain things

• Expand capabilities of vulnerability analysis tools
• More emphasis on design-level conceptual issues

	Slide 1: Secure Systems Engineering and Management
	Slide 2: Readings
	Slide 3: Readings
	Slide 4: Overview
	Slide 5: Scoring System
	Slide 6: Build-it Round
	Slide 7: Break-it Round
	Slide 8: Fix-it Round
	Slide 9: Fix-it Round
	Slide 10
	Slide 12: Contest problems
	Slide 14: Participant demographics
	Slide 15: Submission features
	Slide 16: The Four Core Analyses
	Slide 17: Ship Score Model (Table 5)
	Slide 18: Security Bug Model (Table 7)
	Slide 19: Odds Ratios and Exponential Coefficients
	Slide 20: Break-it Models (Tables 10 and 11)
	Slide 21: Factors That Didn’t Make the Cut
	Slide 22: Model Selection via AIC (new)
	Slide 23: The Iterative Model-Building Process
	Slide 24: What Is Power Analysis?
	Slide 25: How the Paper Uses Power Analysis
	Slide 26: A Different Effect Size: Cohen’s f²
	Slide 28: Pitfalls avoided
	Slide 29: Survivor Bias in Resilience Scores
	Slide 30: Pitfall: Multiple Models, No Correction
	Slide 31: Mapping to Our Lectures
	Slide 32: Readings
	Slide 33: Approach
	Slide 34: What Is Qualitative Coding?
	Slide 35
	Slide 36: How BIBIFI Applied It
	Slide 37: The Codebook
	Slide 38: Why This Approach?
	Slide 39: Vulnerability classes
	Slide 40: Vulnerability classes
	Slide 41: Vulnerability classes
	Slide 42: Vulnerability classes
	Slide 43: Vulnerability classes
	Slide 44: Vulnerability classes
	Slide 45: Summary of data analysis
	Slide 46: Recommendations

