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ABSTRACT

Typical security contests foeus on breaking or mitigating the
impact of bugey svstems. We present the Build-it, Break-it,
Fix-it (BIBIFI) contest, which aims to assess the ability to
securely build software, not just break it. In BIBIFL, teams
build specified software with the goal of maximizing correct-

i, performance, and security. The latter is tested when
ns attempt to break other teams’ submissions. Win-

are chosen from among the best build and the best
BIBIFI was designed to be open-ended—teams
can use any language, tool, process, etc. that they like. As
such, contest outcomes shed light on factors that correlate

with sucoessfully building secure software and breaking inse-
cure software, During 2015, we ran three contests involving
a total of 116 teams and two different programming prob-
lems. Quantitative analysis from these contests found that
the most efficient build-it submissions used __,."{'_‘-I +, but
submissions coded in other statically-typed languages were
less likely to have a security faw; build-it teams with di-
verse programming-language knowledge also produced more
secure code, Shorter prograr ated with better sc

Break-it teams that were also s sful build-it teams were

significantly better at finding security bugs.

1. INTRODUCTION
[24, 25, 11, 27, 13] are popular
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experts have long advocated that achieving security in a
computer system requires treating security as a firs
design goal :32]. and is not something that can be added
after the fact. As such, we should not assume that good
breakers will necessarily be good builders [23], nor that top
coders necessarily produce secure systems.

This paper presents Build-it, Break-it, Fix-it (BIBIFI),

a new security contest with a focus on building secure sys-

~order

tesms, A BIBIFL contest has three phases, The first phase,
Build-il, asks small development teams to build software «
cording to a provided specification that includes ity
goE The software is scored for being correct, eflicient, and
feature-ful. The second phase, Break-if, asks teams to find
defects in other teams’ build-it submissions. Reported de-
fects, proved via test cases vetted by an oracle implementa-
tion, benefit a break-it team’s score and penalize the build-it
team's score; more points are assigned to security-relevant
problems. (A team’s break-it and build-it seores are inde-
pendent, with prizes for top scorers in each category.] The
final phase, Fix-il, asks builders to fix bugs and thereby get
points back if the process discovers that distinet break-it

test cases identify the same defect.

BIBIFI's design aims to minimize the manual effort of
running a conte helping it scale. BIBIFI's structure and
scoring system also aim to encourage meaningful outcomes,
e.g., Lo ensure that the top-scoring build-it teams really pro-
duce secure and eflicient software. Behaviors that would
thwart such outcomes are discouraged. For example, break-
it teams may submit a limited number of bug reports per
build-it submission, and will lose points during [x-it for test
that expose the same underlying defect or a defect also
identified by other teams. As h, Fed Lo

Ca

thev are encour

Understanding security mistakes developers make: Qualitative analysis from
Build It, Break It, Fix It

Daniel Votipka, Kelsey R. Fulton, James Parker,
Matthew Hou, Michelle L. Mazurek, and Michael Hicks
University of Maryland
{dvotipka,kfulton,jpriderl mhouwl mmazurek,mwh] @ cs.umd.edu

Abstract

Secure software development is a challenging task requir-
ing consideration of many possible threats and mitigations.
This paper investigates how and why programmers, despite a
baseline of security experience, make security-relevant errors.
To do this, we conducted an in-depth analysis of 94 submis-
sions to a secure-programming contest designed to mimic
real-world constraints: correctness, performance, and security.
In addition to writing secure code, participants were asked
to search for vulnerabilities in other teams’ programs; in to-
tal, teams submitted 866 exploits against the submissions we
considered. Over an intensive six-month period, we used itera-
tive open coding to manually, but systematically, characterize
cach submitted project and vulnerability (including vulnera-
bilities we identified ourselves). We labeled vulnerabilities
by type, attacker control allowed, and ease of exploitation,
and projects according to security implementation strategy.
Several patterns emerged. For example, simple mistakes were
least common: only 21% of projects introduced such an error.
Conversely, vulnerabilities arising from a misunderstanding
of security concepts were significantly more common, ap-
pearing in 78% of projects. Our results have implications for
improving secure-programming APIs, API documentation,
vulnerability-finding tools, and security education.

1 Introduction

Developing secure software is a challenging task, as evi-
denced by the fact that vulnerabilities are still discovered.

developers [16,44,77] is evidence of the intense pressure to
produce new services and software quickly and efficiently. As
such, we must be careful to choose interventions that work
best in the limited time they are allotted. To do this, we must
understand the general type, attacker control allowed, and
case of exploitation of different software vulnerabilities, and
the reasons that developers make them. That way, we can
examine how different approaches address the landscape of
vulnerabilities.

This paper presents a systematic, in-depth examination {(us-
ing best practices developed for qualitative assessments) of
vulnerabilities present in software projects. In particular, we
looked at 94 project submissions to the Build it, Break it, Fix it
(BIBIFI) secure-coding competition series [66]. In each com-
petition, participating teams (many of which were enrolled
in a series of online security courses [34]) first developed
programs for either a secure event-logging system, a secure
communication system simulating an ATM and a bank, or a
scriptable key-value store with role-based access control poli-
cies. Teams then attempted to exploit the project submissions
of other teams. Scoring aimed to match real-world develop-
ment constraints: teams were scored based on their project’s
performance, its feature set (above a minimum baseline), and
its ultimate resilience to attack. Our six-month examination
considered each project’s code and 866 total exploit submis-
sions, corresponding to 182 unique security vulnerabilities
associated with those projects.

The BIBIFI competition provides a unique and valuable
vantaee point for examimne the vulnerabilitv landscape. com=
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Overview

Must satisfy
basic correctness
requirements;
optional features
and good
performance for
more points

Round 2: Break-it
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Doing so may
wipe out many
bug reports in
one go: all count
as the same bug

Last: Judges tally final results



Scoring System

Gains points for good performance
Gains points for implementing optional features
Loses points for unique bugs found

More points for (obviously) security-relevant bugs

Gains points for unique bugs found
Scaled by how many other teams found the same bug

* Winners in both categories



Build-it Round

 Build software according to the posted specification

 Make it correct, feature-ful, efficient, and secure

* The first three are assessed by (our) test cases (build-it round score)
* The lastis assessed by Break-it teams in round 2

* For many elements of the task, teams may choose
* The software’s internal design and algorithms

Which optional features to implement

What programming language to use

What development and testing tools to use
How to divide tasks among team members, etc.



Break-it Round

* Find bugs and vulnerabilities in submitted code
* Provide an exploit, as defined by particular problem

* Teams will be given access to the source code

* We provide scripts that teams can use to test projects against the standard
tests, using a VM

* How teams go about this task is up to them, e.g.,
* How to divide up the task among team members, and
 whether (or how much) testing to use,

* manual code reviews,
* automated dynamic/static analysis, etc.



Fix-it Round

* Different teams may submit different test cases that identify the
same underlying bug

void foo(char *str) { - str ="thisis too long”
char buf[10]; . str = “this is too long too”
strcpy (buf, str); str = “and so is this string”

}

 Build-it teams should only lose points for each bug, not for each test
case that reveals it

e How to tell that test cases are “the same” ?



Fix-it Round

* Teams will receive the test cases during the fix-it round, and they can
then fix each bug identified

void foo(char *str) { . str ="thisis too long”

char buf[10]; . str = “this is too long too”

strlcpy (buf,str,10); str = “and so is this string”

}

* All test cases that pass are unified to be the same underlying bug

* Judges consider whether the fix is to a single bug
* If not, the affected test cases will be scored individually



Builder score, as the contest progresses
Build-it Break-it Fix-it
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Contest problems

* Secure log of events at an art gallery
« Commands to append records and query the log contents

* Threat model:
» Attacker has access to the log
* Should be tamperproof and protect confidentiality

* Secure ATM

 ATM communicates with Bank server to carry out transactions
* Threat model: MITM can observe, send, drop messages, and simulate the ATM

* Multi-user DB [in extended version of paper]
 Scriptable key-value store with RBAC policies with delegation
* Threat model: Attacker as client; writes scripts to try to break RBAC implementation



Participant demographics

Worldwide participant
pool (mostly non-US)
* 156 teams, 406 people

Average 9 years

programming experience

* 1/3 have CS degree

Most participants part of

\v[e]e]e

* Four courses of security
training

Average team size: ~2

Contest

Fall 2015
Fall 2016

Contest

Problem

# Contestants

% Male

% Female

Age (mean/min/max)

% with CS degrees

Years programming

# Build-it teams

Build-it team size

# Break-it teams (that also built)

Break-it team size

# PLs known per team
% MOOC

Spring 2015

USA

30
64
44

Spring 15

Secure Log
156

91 %

5 %
34.8/20/61
35 %
9.6/0/30
61

2.2/1/5

65 (58)
2.4/1/5
6.8/1/22
100 %

India

Russia

7

14
13

Fall 15

ATM
145

91 %

8 %
32.2/17/69
35 %
9.4/0/37
40
3.1/1/6
43 (35)
3.1/1/6
9.1/1/20
84 %

Brazil

Fall 16

Multiuser DB
105

84 %

4 %
29.9/18/55
39 %
9.0/0/36
29

2.5/1/8

33 (22)
2.6/1/8
7.8/1/17
65 %




Contest

pentel SUbmMmission features

B Multiuser DB

. Count by language
. Grouped by category

Statically type-safe (49)

Dynamically typed (60)
. 54 are Python!
C/C++ (21)
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The Four Core Analyses

Outcome Variable Model Type Table
Ship score (continuous) Linear regression Table 5
Security bug found? (binary) Logistic regression  Table 7

Break-it score (continuous) Linear regression Table 10

H
1
2
3
4

Security bug count (continuous)  Linear regression Table 11

All four use the same general approach: select candidate factors, test
all subsets, pick the best model via AlIC



Ship Score Model (Table 5)

Outcome: Build-it team’s ship score (continuous, points-based)

C/C++ teams scored
~113-133 points higher

than other language
categories

Factor

Secure Log
ATM
Multiuser DB

C/C++
Statically typec
Dynamically typed

# Languages known

Lines of code

Coef.

-47.708
-163.901

-112.912
-133.057

6.272
-0.023

CI

[-110.34, 14.92]
[-234.2, -93.6]

[-192.07, -33.75]
[-215.26, -50.86]

[-0.06, 12.6]
[-0.05, 0.01]

p-value




Security Bug Model (Table 7)

Outcome: Was a security bug found in this team’s submission?

So: logistic regression

ATM contest: vastly
more security bugs
than Secure Log

C/C++ submissions were
~11x more likely to
have a security bug
(1/0.089 = 11.2)

Factor

Secure Log —
ATM 4 639
Multiuser DB 3.462

C/C++ —
Statically typed -2.422
Dynamicg et -0.99

# Team members -0.35
Knowledge of C -1.44
Lines of code 0.001

Coef. Exp(coef)

103.415
31.892

0.089
0.372

0.705
0.237
1.001

Exp CI p-value

[18, 594.11] <0.001*
[7.06, 144.07] <0.001*

[0.02,0.51] 0.006*

[0.07,2.12]  0.266
[0.5, 1 0.051

0.064

]
[0.05, 1.09]
]

[1,1 0.090

Nagelkerke R* = 0.619



Odds Ratios and Exponential Coefficients

Recall:

* Odds ratios (eP) — The paper reports Exp(coef) and Exp Cl columns:
exponentiated coefficients and their confidence intervals

* Interpreting direction — Exp(coef) < 1 means lower likelihood

* Confidence intervals on odds ratios — Statically typed: [0.02, 0.51],
entirely below 1, confirming the protective effect

Recall our pitfall: “Higher CVSS increases exploitation by 0.52”
The paper correctly says “11x more likely” and not the raw coefficient



Break-it Models (Tables 10 and 11)

Two more linear regressions, now for the breaking phase

Break-it score More team members (+387 pts each, p = 0.028);
(Table 10) ATM teams scored lower

Security bug More team members (+1.2 bugs each, p = 0.006);
count (Table 11)  Build participants found +4 more bugs (p = 0.045)

R?=0.15 and R% = 0.203 respectively



Factors That Didn’t Make the Cut

Notably absent from final models:

* Advanced techniques (fuzzing, static analysis) — dropped during model
selection, not significant

* MOOC participation — security education didn’t significantly help

But: Non-significant results are still informative! The paper discusses these:

“Making use of advanced analysis techniques did not factor into the final
model... such techniques tend to find generic errors such as crashes,
bounds violations... Security violations for our problems are more often

semantic”



Model Selection via AIC (new)

What the paper does: “We test models with all possible combinations of our

chosen potential factors and select the model with the minimum Akaike
Information Criterion (AIC)”

e AICis an information-theoretic criterion: AIC = 2k = 2 In(L), where k =
number of parameters and L = likelihood

e Lower AIC = better balance of fit and parsimony

* In lecture, we used likelihood-ratio (LR) tests to compare nested models
(reduced vs. full)

Key difference: LR tests compare two specific nested models; AIC can be
used to rank any set of models, including non-nested ones



The Iterative Model-Building Process

Select candidate factors based on domain knowledge (Tabs 4 and 9)
Limit the number of factors based on power analysis

Test all possible combinations of factors

Select the model with minimum AIC

Al S

Report the final model



What Is Power Analysis?

Problem: How many factors can we include in our model without overfitting?

Statistical power = the probability of detecting a real effect if one exists (i.e.,
correctly rejecting Ho)

* Convention: aim for power > 0.75 or 0.80
* Recall: failing to reject Ho when it’s false = Type Il error

 Power =1 - P(Type Il error)

Factor Effect on Power

Power depends on three things: Sample size (N) Larger N - more power

Effect size (f?) Larger effect - easier to detect

Number of More parameters - less power
parameters (k) per parameter




How the Paper Uses Power Analysis

Power analysis in the paper:

1. Given: N =130 build-it teams

2. Goal: “medium” effect size or Cohen’s f2 = 0.15 (equivalent to R? = 0.13)
3. Goal: power =0.75,

Result: We are limited to 10 degrees of freedom (i.e., k = ~10 parameters)

So we pre-commit to a small set of factors (Table 4) before looking at results —
this prevents overfitting and data mining (“p hacking”)

Contrast with a naive approach:

. 'Irhrow 30 variables into a regression with 130 observations = spurious
results

« ¥ Power analysis says: with N = 130, you can responsibly test ~10 factors for
medium effects



A Different Effect Size: Cohen’s f2

From our lectures: Cohen’s d for comparing two group means
In the paper: Cohen’s f* for regression effect sizes
“Our modeling was designed for a

prospective effect size roughly Measure Context “Medium”
equivalent to Cohen’s medium threshold
effect heuristic, f* = 0.15” Cohen’sd | Two-group

This corresponds to R =0.13 — comparison

the model needs to explain at Cohen’s 2 Regression

least 13% of variance to be models

detectable



Pitfalls avoided

e Correlation # Causation

* “This was not a completely controlled experiment (e.g., we do not use
random assignment), so our models demonstrate correlation rather than
causation.”

* Independent samples
* Build it and Break it participants overlap (Ok — not combined in analysis)
* Overlap in participants between contests? Added "Contest” as factor

* Honest about limitations
* Resilience score issue, limitations of self reported data



Survivor Bias in Resilience Scores
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Pitfall: Multiple Models, No Correction

From our lecture: Running many tests inflates false positive rates

The paper fits four separate regression models, each testing multiple factors

* No explicit correction for multiple comparisons across models

* The all-subsets AIC approach tests many model specifications within each analysis
Mitigating factors:

* AIC inherently penalizes model complexity (acts as a soft correction)

* The factors were pre-specified based on domain knowledge, not data-mined

* Power analysis limits the number of factors tested

But: with enough model combinations, some “significant” factors may be false
positives



Mapping to Our Lectures

Lecture Topic Used in Paper? _

Linear regression

Logistic regression

Dummy coding / reference
levels

Odds ratios (e”B)
Confidence intervals
R? / model fit

Effect sizes (Cohen’s d) /\ Variant (f?)

LR test (model comparison) /\ AIC instead
Pseudo-R? /\ Nagelkerke, not

Tables 5, 10, 11
Table 7

Language category, Contest

Table 7

All tables

All models
Power analysis

Model selection
Table 7
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Approach

* Examined each project and vulnerability in detail
* 94 projects

* Breaker-identified (866 submitted exploits) and researcher-identified (manual
analysis)

* |n total, 182 distinct vulnerabilities

* lterative open and axial coding

* Qual and quant analysis on resulting categories



What Is Qualitative Coding?

* A code is a word or short phrase that captures the meaning of a piece
of data — it is “primarily an interpretive act” (Saldafa, Ch. 1)

* Coding is cyclical: first cycle codes emerge from the data, then get
refined, reorganized, and consolidated into categories and themes
through second cycle coding

* The BIBIFI paper used iterative open coding (codes emerge from
data, not predetermined) and axial coding (grouping codes into
higher-level types)
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How BIBIFI Applied It

1. Two researchers cooperatively examined 11 projects (42
vulnerabilities) to build an initial codebook

2. Then coded independently in rounds of ~¥30 breaks, meeting after
each round to discuss disagreements and refine the codebook

3. Process continued for ~¥6 months until inter-rater reliability
exceeded a > 0.80 (Krippendorff’s a) on all variables

4. Remaining 34 projects divided and coded separately

Result: 182 unique vulnerabilities coded across four variables (Type,
Attacker Control, Discovery Difficulty, Exploit Difficulty)



The Codebook

Each vulnerability was labeled on four variables with defined levels:

Variable Levels

(See Table 2)

Full / Partial
Execution / Source /
Deep Insight
Single step / Few steps /
Many steps / Probabilistic

Type
Attacker Control
Discovery Difficulty

Exploit Difficulty

Description Alpha [38]

0.85, 0.82
0.82
0.80

What caused the vulnerability to be introduced
What amount of the data is impacted by an exploit
What level of sophistication would an attacker
need to find the vulnerability

How hard would it be for an attacker to exploit 1
the vulnerability once discovered

Axial coding then grouped the 23 specific issues into three high-level types:

* No Implementation — didn’t attempt a necessary security mechanism

* Misunderstanding — attempted it but made a conceptual error

* Mistake — had the right idea but made a programming slip



Why This Approach?

* Qualitative coding lets researchers systematically characterize
unstructured data (source code, exploits) in a reproducible way

* The codebook with inter-rater reliability ensures findings aren’t just
one person’s opinion

* Coded categories then become variables for quantitative analysis
(Chi-squared tests, Poisson regression) — the two approaches are
complementary

Saldana (Ch. 1): “Quantitative analysis calculates the mean. Qualitative
analysis calculates meaning.”



Vulnerability classes




Vulnerability classes

Missed something “Intuitive”
* No encryption
* No access control




Vulnerability classes

Missed something “Unintuitive”
* No MAC

e Side channel leakage

* No replay prevention

45% of projects




Vulnerability classes

Made a “bad choice”
* Weak algorithms
* Homemade encryption

* strcpy()




Vulnerability classes

Made a “conceptual error”
* Insufficient randomness
* Disabling default protections

44% of projects




Vulnerability classes

Made a programming “mistake”
e Control flow error
» Skipped algorithmic step

21% of projects



Summary of data analysis

No implementation & misunderstanding more common (78%) than mistake (21%)
* Mistake: control error, skipped step

Unintuitive requirements missed or implemented incorrectly much more often
(45%) than intuitive ones

* Unintuitive: MAC; avoiding side channels and/or replays

* Intuitive: Encryption for privacy; access control

Implementation complexity breeds mistakes
* Failure to localize functionality, minimize TCB, completely mediate

Mistakes readily exploited
* Almost always result in contestant attacks



Recommendations

e Simplify API design

* Build in security primitives and focus on common use-cases

* Indicate security impact of non-default use in APl documentation
* Explain the negative effects of turning off certain things

* Expand capabilities of vulnerability analysis tools
* More emphasis on design-level conceptual issues
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