Secure Systems Engineering
and Management

.JI A Data-driven Approach

A Science of Security
Michael Hicks

UPenn CIS 7000-003
Spring 2026

SoK: Science, Security, and the Elusive Goal of

Security as a Scientific Pursuit

Cormac Herley
Microsoft Research, Redmond, WA, USA
cormac @microsoft.com

Abstract—The past ten years has seen increasing calls to make
security research more “scientific”. On the surface, most agree
that this is desirable, given universal recognition of “science” as a
positive force. However, we find that there is little clarity on what
“scientific’ means in the context of computer security research,
or consensus on what a “Science of Security” should look like. We
selectively review work in the history and philosophy of science
and more recent work under the label “Science of Security”.
We explore what has been done under the theme of relating
science and security, put this in context with historical science,
and offer observations and insights we hope may motivate further
exploration and guidance. Among our findings are that practices
on which the rest of science has reached consensus appear little
used or recognized in security, and a pattern of methodological
errors continues unaddressed.

Index Terms—security research; science of security; history of
science; philosophy of science; connections between research and
observable world.

I. INTRODUCTION AND OVERVIEW

Security is often said to have unique challenges. Progress
can be harder to measure than in areas where, e.g., perfor-
mance metrics or capabilities point to visible steady improve-
ment. Supposedly unique factors, such as the presence of
active adversaries, complicate matters. Some even describe the
field in pessimistic terms. Multics warriors remind the young
that many of today’s problems were much better addressed
forty years ago [1]. Shamir, in accepting the 2002 Turing
award, described non-crypto security as “a mess” Schell, in
2001, described the field as being filled with “pseudo-science
and flying pigs” [2].

Perhaps in response to these negative views, over the last
decade there has been an effort in parts of the community to
develop a “Science of Security” (So8). In this paper we review
both work in the history/philosophy of science and, recently,
under this 808 banner. We wish to distinguish at the outset
between these two strands. The first is an exploration of the
techniques that the consensus from other fields suggest are
important to pursuing any problem scientifically. The second
is the activity and body of work that has resulted from external
nromotion of an aeenda by the name “Science of Security’”

C. van Qorschot
Carleton University, Ottawa, ON, Canada
paulv @scs.carleton.ca

research) in the light of consensus views of science and
scientific methods. We find that aspects from the philosophy
of science on which most other communities have reached
consensus appear surprisingly little used in security, including
in work done under the So8 label. For example, we do not
find that that work better adheres to scientific principles than
other security research in any readily identifiable way.

‘We identify several opportunities that may help drive secu-
rity research forward in a more scientific fashion, and on this
we are cautiously optimistic. While we see great benefit to
this, we also do not wish to argue that all of security must be
done on rigidly scientific principles. A significant component
of security is engineering; this shares with science the regular
contact with, and feedback from, observation, despite not
having as clearly articulated a definition or methods.

Section II selectively reviews literature on the history and
philosophy of science, with particular emphasis on three
things: 1) methodologies and positions on which practicing
scientists and philosophers of science have largely reached
consensus; 2) aspects highlighting opportunities to eliminate
confusion in security research; and 3) contributions pointing
to where security research might be made “more scientific”.
Section III selectively reviews literature relating “science”™ and
“security”, for examples of viewpoints within the community,
for context in later discussion, and as supporting evidence
for arguments; an exhaustive review of all security literature
attempting to determine which papers use scientific methods
in security research is not a goal. Section IV highlights areas
where the security community has failed to adopt accepted
lessons from the science literature. Section V provides insights
and offers observations and constructive suggestions. Section
VI conclud

II. HISTORY/PHILOSOPHY OF SCIENCE

This section highlights aspects from the history and phi-
losophy of science most relevant to security research. Our
roal here 1s not an encvelopedic review of science literature:

p——
° —

e ———

(optional)

o —— \

Blueprint for a science

of cybersecurity |

|
| L J

Fred B. Schneider |

1. Introduction

A secure system must defend against all possible at-
tacks—including those unknown to the defender. But
defenders, having limited resources, typically develop
defenses only for attacks they know about. New kinds
of attacks are then likely to succeed. So our growing
dependence on networked computing systems puts at
risk individuals, commercial enterprises, the public
sector, and our military.

The obvious alternative is to build systems whose
security follows from first principles. Unfortunately,
we know little about those principles. We need a
science of cybersecurity (see box 1) that puts the con-
struction of secure systems onto a firm foundation
by giving developers a body of laws for predicting the
consequences of design and implementation choices.
The laws should

» transcend specific technologies and attacks, yet

still be applicable in real settings,

introduce new models and abstractions, thereby
bringing pedagogical value besides predictive
power, and

facilitate discovery of new defenses as well as de-

SO TN e

S SSRGS

vulnerabilities in deployed systems and beyond the de-
velopment of defenses for specific attacks. Yet, use of a
science of cybersecurity when implementing a system
should not be equated with implementing absolute
security or even with concluding that security requires
perfection in design and implementation. Rather, a
science of cybersecurity would provide—independent
of specific systems—a principled account for tech-
niques that work, including assumptions they require
and ways one set of assumptions can be transformed
or discharged by another. It would articulate and or-
ganize a set of abstractions, principles, and trade-offs
for building secure systems, given the realities of the
threats and of our cybersecurity needs.

BOX 1. What is a science?

The term science has evolved in meaning since Aristotle used it
to describe a body of knowledge. To many, it connotes knowl-
edge obtained by systematic experimentation, so they take that
process as the defining characteristic of a science. The natural
sciences satisfy this definition.

Experimentation helps in forming and then affirming
theories or laws that are intended to offer verifiable predictions
about man-made and natural phenomena. It is but a small step
from science as experimentation to science as laws that ac-
curately predict phenomena. The status of the natural sciences

Can we escape the security mess?

“In 10 years non-crypto security will remain a mess.”
— Adi Shamir (co-inventor of RSA), in 2002

How to improve this state of affairs?

Maybe: Seek to develop cybersecurity science

What is science?

Science is a
Observation/ body of knowledge

question

Report Research topic ’
conclusions area

Science is a process

Analyze data Hypothesis

Test with
experiment

The opening question

“In what ways is cybersecurity (not) a science?”

Induction: generalizing

What is the scientific process? from observation,

constructing or refining
a consistent model

Observation/
guestion

Report Research topic

Falsification: conclusions area

Confirming or .

refuting a & Deduction:

" making a

prediction Analyze data Hypothesis) g,

against reality prediction from
the model

Test with
experiment

Karl Popper’s view: Falsifiability is critical

“A theory which is not refutable by any
conceivable event is non-scientific.
Irrefutability is not a virtue of a theory
(as people often think) but a vice”

2008
Context: Silver bullets, not lemons

Extends Anderson:

The Market for Goods,
as described by Information
and by Party

Seller .. Lemons
Knows Efficient Goods el

* Security is a ggad

 Security § hard to assess

* Leads to inTC
insufficiency on both sides

Seller Limes Silver Bullets

Lacks empirical basis, Lacks (Insurance) (Security)
i.e., falsifiability

NSA Science of Security Re * + 4 Gemini

% sos-vo.org/NSA_SoS_research a2 tj: New Chrome available $

— Smen(fe O:f Secunty Virtual RESEARCH COMPETITIONS MEETINGS LOGIN ~ Q
Organization

#% / NSA Science of Security Research Initiative

NSA Science of Security Research Initiative

The Science of Security and Privacy (SoS) Initiative at the National Security Agency Research Directorate
promotes foundational cybersecurity science that is needed to mature the cybersecurity discipline and to
underpin advances in cyberdefense. Beginning in 2012, one part of the initiative is to fund foundational research
at "Lablets." With emphasis on building a community, each lablet created partnerships with other universities
called "Sub-Lablets." Science of Security researchers often freely collaborated with researchers in other
institutions worldwide. The SURE project was founded to investigate cybersecurity in the cyber-physical systems
realm and ran from 2014 to 2018. In 2018, CPS research was folded into the Lablet Research.

The SoS Initiative has defined 5 Hard Problems as the research areas for the initiative and community to work
on. The problems are: 1) Resilience Architectures, 2) Scalability and Composability, 3) Metrics, 4) Secure
Collaboration and 5) Human Behavior.

Annual Reports: Index | 201512016 1 201712018 120191 2021 | 2022

Memory Trace Oblivious Program Execution

Chang Liu, Michael Hicks, and Elaine Shi
The University of Maryland, College Park, USA

Abstract—Cloud computing allows users to delegate data
and computation to cloud service providers, at the cost of
giving up physical control of their computing infrastructure.
An attacker (e.g., insider) with physical access to the computing
platform can perform various physical attacks, incloding prob-
ing memory buses and cold-boot style attacks. Previous work on
secure (co-)processors provides hardware support for memory
encryption and prevents direct leakage of semsitive data over
the memory bus. However, an adversary snooping on the bus
can still infer sensitive information from the memory access
traces. Existing work on Oblivious RAM (ORAM) provides a
solution for users to put all data in an ORAM; and accesses
to an ORAM are obfuscated such that no information leaks
through memory access traces. This method, however, incurs
significant memory access overhead.

This work is the first to leverage programming language
techniques to offer efficient memory-trace oblivious program
execution, while providing formal security guarantees. We
formally define the notion of memory-trace obliviousness, and
provide a type system for verifying that a program satisfies
this property. We also describe a compiler that transforms a
program intoe a structurally similar one that satisfies memory
trace ol usness. To achieve optimal efficiency, our compiler
partitions variables into several small ORAM banks rather
than one large one, without risking security. We use several
example programs to demonstrate the efficiency gains our
compiler achieves in comparison with the naive method of
placing all variables in the same ORAM.

I. INTRODUCTION

Cloud computing allows users to delegate their data
and computation to computing service providers, and thus
relieves users from the necessity to purchase and maintain
requisite computing infrastructure. The value proposition
is appealing to both cloud providers and clients: market
research predicts a 50% compound annual growth rate on
public cloud workloads [23].

Despite its increasing popularity, privacy concerns have
become a major barrier in furthering cloud adoption. Cloud
customers offloading computations transfer both their code
and their data to the provider, and thereby relinquish control
over both their intellectual property and their private infor-
mation. While various existing works have considered how

to secure sensitive data in the cloud against remote software
- B g

Previous work has proposed the idea of using memory
encryption to ensure confidentiality of sensitive memory
contents [33, 39, 40, 43, 44]. However, as memory addresses
are transferred in cleartext over the memory buses, an
adversary can gain sensitive information by observing the
memory addresses accessed. For example, address disclosure
can leak implicit program execution flows, resulting in the
leakage of sensitive code or data [50]

Oblivious RAM (ORAM), first proposed by Goldreich
and Ostrovsky [17], can be used to protect memory access
patterns. In particular, we can place sensitive code and data
into ORAM, and doing so has the effect of hiding the
access pattern. Roughly speaking, this works by issuing
many physical reads/writes for each logical one in the
program, and by shuffling the mapping between the logical
data and its actual physical location. Unfortunately, placing
all code and sensitive data in ORAM leads to significant
memory access overhead in practice [12, 42, 47], and can
still leak information, e.g., according to the length of the
memory trace. On the other hand, customized data-oblivious
algorithms have been suggested for specific algorithms, to
achieve asymptotically better overhead than generic ORAM
simulation [11, 20]. This appreach, however, does not scale
in terms of human effort.

Contributions. We make four main contributions. First, we
define memory trace obliviousness, a property that accounts
for leaks via the memory access trace. We present a formal
semantics for a simple programming language that allocates
its secret data and instructions in ORAM, and define the
trace of data readswrites and instruction fetches during
execution. We define memory trace obliviousness as an
extension of termination-sensitive noninterference [2, 34]
that accounts for the memory trace as a channel of informa-
tion. Note that memory trace obliviousness is stronger than
the notion used in the traditional ORAM literature [17]—it
ensures the content and length of the memory access pattern
are independent of sensitive inputs, while traditional ORAM
security does not provide the latter guarantee.

Second, we present a novel type system for enforcing
memory trace obliviousness, building on standard type sys-
e B . rmaq P N

*

Session 10D: VulnDet 2 + Side Channels 2

CC5"18, October 15-19, 2018, Toronto, ON, Canada

Evaluating Fuzz Testing

George Klees, Andrew Ruef,
Benji Cooper
University of Maryland

ABSTRACT

Fuzz testing has enjoyed great success at discovering security crit
cal bugs in real software. Recently, rescarchers have devoted sig
nificant effort to devising new fuzzing techniques, strategies, and
algorithms. Such new ideas are primarily evaluated experimentally
s0 an important question is: What experimental setup is needed
to produce trustworthy results? We surv
literature and assessed the experimental evaluations carried out

d the recent research

by 32 fuzzing papess. We found problems in every cvaluation we
considered. We then performed our own extensive experimental
evaluation using an cxisting fuzzer. Our results showed that the
general problems we found in existing experimental evaluations
can indeed translate to actual wrong or misleading assessments. We
conclude with same guidelines that we hope will help improve ex
perimental evaluations of fuzz testing algorithms, making reported
results more robust.

CCS CONCEPTS
+ Security and privacy — Software and application security;

KEYWORDS

fuzzing, evaluation, security

ACM Reference Format:

George Klees, Andrew Ruef, Benji Cooper, Shiyi
2018, Evaluating Fuzz Tes
puter and Communicatians 5 8), October 1
ON, Canada. ACM, New Yok, NY, USA, 16 pages. htt
AT 343804

Wei, and Michael Hicks.

doi.org/10.1145)

1 INTRODUCTION

A fuzz tester (or fuzzer) is a tool that iteratively and randomly gener-
ates inputs with which it tests a target program. Despite appearing
*naive” when compared to more sophisticated tools involving SMT
salvers, symbolic execution, and static analysis, fuzzers are sur
prisingly effective. For example, the popular fuzzer AFL has been
used to find hundreds of bugs in popular programs [1). Comparing
AFL head-to-head with the symbolic executor angr, AFL found 76%
more bugs (68 vs. 16) in the same corpus over a 24-hour period [50]
The success of fuzzers has made them a popular topic of research

pies bear this nc
o this work owne

Shiyi Wei Michael Hicks
University of Texas at Dallas

University of Maryland

Why do we think fuzzers work? While inspiration for new ideas
may be drawn from mathematical analysis, fuzzers are primarily
evaluated experimentally. When a researcher develops a new fuzzer
algorithm (call it A), they must empirically demonstrate that it
provides an advantage over the status quo. To do this, they must
choose:

« & compelling baseline Fuzzer B to compare against;

» & sample of target programs—the benchmark suife:

® a performance metric to measure when A and B are run on
the benchmark suite; ideally, this is the number of {possibly
exploitable) bugs identified by crashing inpuls;

® a meaningful set of configuration parameters, e.g., the seed
file (or files) to start fuzzing with, and the timeout (i, the
duration) of a fuzzing run.

An evaluation should also account for the fundamentally random
nature of furzing: Each fuzzing run on a target program may pro
duce different results than the last due to the use of randomness.
As such, an evaluation should measure sufficiently many trials to
sample the overall distribution that represents the fuzzer’s perfor
mance, using a statistical fest [38] to determine that A's
improvement over B is real, rather than due to chance.

Failure to perform one of these steps, or failing to follow rec
ommended practice when carrying it out, could lead to misleading

ns. Such concl waste Hme for practi
tioners, who might profit more from using alternative methods
or configurations. They also waste the time of researchers, who
make averly strong assumptions based on an arbitrary tuning of
evaluation parameters.

We examined 32 recently published papers on fizz testing (see
Table 1) located by perusing top-conference proceedings and other
quality venues, and studied their experimental evaluations. We
found that no fuzz testing evaluation carries out all of the above
steps properly (though some get close). This is bad news in theory,
and after carrying out more than 50000 CPU hours of experiments,
we believe it is bad news in practice, too. Using AFLFast [6] (as A)
and AFL (as bascline B), we carried out a variety of tests of their
performance. We chose AFLFast as it was a recent advance over
the state of the art; its code was publicly available; and we were
confident in our ability to rerun the experiments described by the
authors in their own evaluation and expand these experiments by
varying parameters that the original experimenters did not. This
chaice was also driven by the importance of AFL in the literature:
14 out of 32 papers we examined used AFL as a baseline in their
evaluation We taroeted three binutile nracrame (nm obiduma and

or incorrect conc

Cybersecurity science

Why do we want or need this?

* Science helps us understand reality; missing that for security
* Would like durable understanding — laws (like motion, entropy, etc.)

* Science is successful, current cybersecurity practice is not

Sciences like physics, chemistry, medicine speak about natysa
 Security is about human-made systems — science of t

Big part of the challenge!

What is applied science?

a) the application of the scientific
method for achieving practical
goals, rather than purely for
knowledge discovery, and

b) the use of accumulated scientific
theories, knowledge, methods, and
techniques to that end

Louis Pasteur

What are the practical goals for security?

Model: Cryptography

» Schneider: “The field of cryptography comes close to exemplifying
the kind of science base we seek.”

“Is cryptography scientific?”

Model: Cryptography

» Schneider: “The field of cryptography comes close to exemplifying
the kind of science base we seek.”

* Krawczyk: “By its very nature, there is no (and cannot be) empirical
evidence for the security of a design. Indeed, no concrete
measurements or simulations can show that attacks against a
cryptographic scheme are not feasible. The only way to do so is to
develop a formal mathematical model and language in which to
reason about such schemes”

The Fundamental Asymmetry

We can observe:

« ¥ Insecurity (attacks succeed, systems fail)
We cannot observe:

. Security (absence of attacks # security)
This is not a temporary limitation.

It’s a fundamental asymmetry.

Provable security

* Cryptography achieved what
Schneider wants for all security:

* Formal security definitions (e.g.,
semantic security)

* Adversary models (what the
attacker can do)

e Computational assumptions
(e.g., factoringis hard)

* Reduction proofs showing:
"break scheme - break
assumption”

e Result: Mathematically
grounded confidence in
cryptographic constructions

Reprinted from JOURNAL OF COMPUTER aND SYSTEM SciEnCES

Vol. 2
All Rights Reserved by Academic Press, New York and London ol. 28, No. 2. April 1984

Printed in Belgum

Probabilistic Encryption*

SHAFI GOLDWASSER AND SILVIO MICAL]

Laboratory of Computer Science. Massachusetts Institute of Technology.
Cambridge, Massachusetts 02139

Received February 3. 1983; revised November 8, 1983

A new probabilistic model of data encryption is introduced. For this model. under suitable
complexity assumptions, it is proved that extracting any information about the cleartext from
the cyphertext is hard on the average for an adversary with polynomially bounded
computational resources. The proof holds for any message space with any probability
distribution. The first implementation of this model is presented. The security of this
implementation is proved under the intractability assumption of deciding Quadratic
Residuosity modulo composite numbers whose factorization is unknown.

1. INTRODUCTION

This paper proposes an encryption scheme that possesses the following property:

Whatever is efficiently computable about the cleartext given the
cyphertext, is also efficiently computable without the cypherrext.

The security of our encryption scheme is based on complexity theory. Thus, when
we say that it is “impossible™ for an adversary to compute any information about the
cleartext from the cyphertext we mean that it is not computationally feasible.

The relatively young field of complexity theory has not yet been able to prove a
nonlinear lower bound for even one natural NP-complete problem. At the same time,
despite the enormous mathematical effort, some problems in number theory have for
centuries refused any “domestication.” Thus, for concretely implementing our
scheme, we assume the intractability of some problems in number theory such as
factoring or deciding quadratic residuosity with respect to composite moduli. In this
context, proving that a problem is hard means to prove it equivalent to one of the
above mentioned problems. In other words, any threat to the security of the concrete

lementation of our encrvption scheme will result in an ient aleorithmr. for

Proofs are only as good as their assumptions

Component
Security definition

Attacker model

Computational assumption

Reduction

Can Fail When...

Doesn’t capture real attack goals

Real attackers have more
capabilities

Assumption turns out false

Gap between model and
implementation

Deduction vs. Induction

“Deduction in itself is quite powerful as a method of scientific discovery...”

e But with a useful model, you can deduce surprising and useful results
* Shannon's channel capacity theorem (1948)
* Godel'sincompleteness theorems (1931)
* Deductions from Euclidean geometry (e.g., Pythagorean theorem)

* Schneider’s examples
* Execution monitoring
* Byzantine fault tolerance

Schneider’s view: laws and principles

A science should provide first principles that allow developers
to predict the consequences of desigh and implementation
choices.

The Cryptography Analogy:

* Cryptography developed laws — mathematical foundations
 Information theory gives provable bounds

* Question: Can we do the same for security broadly?

Formal methods

* Formally verified
replacement for existing
AWS authorizer

* Deduction: the
implementation matches
the specification

* Induction: The
specification does what we
want it to do ...

* defined by existing reality ...

* confirmed by further
deductions!

Formally Verified Cloud-Scale Authorization

Aleks Chakarov Jaco Geldenhuys Matthew Heck Michael Hicks Sam Huang Georges-Axel Jaloyan

Amazon Amazon Amazon
aleksach@ jgeldenh@ mcheck @

Amazon Amazon Amazon
mwhicks@ srhuang @ gjaloyan@

Anjali Joshi K. Rustan M. Leino Mikael Mayer Sean McLaughlin Akhilesh Mritunjai Clement Pit-Claudel

Amazon Amazon Amazon
anjalijs@ leino@ mimayere @

Amazon Amazon Amazon
seanmel @ amritun@

pitclauc@amazon.ch

Sorawee Porncharoenwase Florian Rabe Marianna Rapoport Giles Reger Cody Roux Neha Rungta
Amazon Amazon Amazon Amazon Amazon Amazon

soraweep@ florrabe @ rapopor@ reggiles@

codyroux@ rungta@

Robin Salkeld Matthias Schlaipfer Daniel Schoepe Johanna Schwartzentruber Serdar Tasiran Aaron Tomb

Amazon Amazon Amazon
salkeldr@ schlaipf@ schoeped @

Amazon Amazon Amazon
jisch@ tasirans @ aarotomb@

Emina Torlak Jean-Baptiste Tristan Lucas Wagner Michael W. Whalen Remy Willems Tongtong Xiang

Amazon Amazon Amazon
torlaket@ trjohnb@ lgwagner@

Tae Joon Byun Joshua Cohen
Meta Princeton University
tagjoon @umn.edu jmel6@cs.princeton.edu

Jakob Rath Hira Taqdees Syeda
TU Wien University of Melbourne
jakob.rath@tuwien.ac.at hira.syeda@unimelb.edu.au

Abstraci—All critical systems must evolve to meet the needs
of a growing and diversifying user base. But supporting that
evolution is challenging at increasing scale: Maintainers must find
a way to ensure that each change does only what is intended, and
will not inadvertently change behavior for existing users. This
paper presents how we addressed this challenge for the Amazon
Web Services (AWS) authorization engine, invoked 1 billion times
per second, by using formal verification. Over a period of four
years, we built a new authorization engine, one that behaves func-
tionally the same as its predecessor, using the verification-aware
programming language Dafny. We can now confidently deploy
enhancements and optimizations while maintainine the hichest

University of Texas at Austin
rif @abstractpredicates.org

dominik.wagner@cs.ox.ac.uk

Amazon Amazon Amazon
mww@ rwillems@ ttx@
Ruijie Fang Junyoung Jang
McGill University
junyoung.jang @mail.megill.ca

Dominik Wagner
NTU Singapore

Yongwei Yuan
Purdue University
yuan311@purdue.edu

Jfrom the ground up, and then compile the result to Java. 2)
To ensure performance, debuggability, and to gain trust from
stakeholders, we needed to generate readable, idiomatic Java
code, essentially a transliteration of the source Dafny. 3) To ensure
that the specification matches the system’s actual behavior, we
performed extensive differential and shadow testing throughout
the development process, ultimately comparing against 10'°
production samples prior to deployment.

Our approach demonstrates how formal verification can be
effectively applied to evolve critical legacy software at scale.

I. INTRODUCTION
To control access to their data and resources. AWS cus-

Key challenge: Specifying security

To know if a system is secure, we have to

* Develop a model for it

* Describe what the model should (and should not) do

* Prove the model satisfies our description

* Establish that the model, and its assumptions, represent reality

What do security specifications look like?

Schneider: Hyperproperties

Cybersecurity practice: Anti-patterns

* Unfalsifiable claims

* Confusing sufficient with necessary
* Can never argue anything out

* Implicit assumptions

* Data sparsity

Unfalsifiable Claims

Claim: “You must do X to be secure”

To prove this wrong, you need:

1. Something that doesn’t do X

2. Thatis provably secure

But you can never prove something is secure.
Therefore: Necessity claims are unfalsifiable.

Confusing Sufficient for Necessary

Sufficient: X is enough to achieve Y

Necessary: You can’t achieve Y without X

In security, we often confuse these:

» “Avoiding password reuse is sufficient to counter some attacks”

* Gets interpreted as: “Avoiding password reuse is necessary for
security”

* But it’s impossible to achieve across 100 accounts!

The Password Portfolio Impossibility

Standard advice:

1. Passwords should be random and strong (~40 bits)
2. Never reuse passwords across accounts

For N = 100 accounts:

N x log,(S) + log(N!) = 4,000 + 524 = 4,524 random bits
Equivalent to memorizing:

* 1,361 digits of pi

* Order of 17 shuffled card decks

Implicit Assumptions

Morris & Thompson (1979): Password security paper

* Made reasonable assumptions for 1979

* Conclusions persisted long after assumptions changed
When assumptions are implicit:

* Can’t assess if conclusions still hold

* Can’t argue changed circumstances

* Old advice becomes immune to critique

The One-Sided Ratchet

Science advances through self-correction:
Wrong ideas get falsified and abandoned.

In security:

« ¥ New attacks argue countermeasures IN

. Nothing argues countermeasures OUT
Result: A ratchet that only goes one direction
* Requirements accumulate endlessly

* Resources spread across ever more defenses
* Old measures become “received wisdom”

'®)) @ Artifact Evaluation: About X + 4 Gemini

& 25 artifact-eval.org/about.html

About Artifact Evaluation

In 2011, ESEC/FSE initiated a novel experiment for a major software conference: giving authors the opportunity to submit for evaluation any artifacts
that accompany their papers. A similar experiment has since run successfully for several more conferences. This document describes the goals and

general mechanics of this process.
If you're just looking for the packaging guidelines, go directly to them.

The rest of this document contains general guidelines about artifact evaluation.
Individual conferences are welcome and encouraged to copy this prose to explain the goals, process, and design to their communities.

To make things clear to conferences:

This text is © Shriram Krishnamurthi and made available through a Creative Commons CC-BY license.
With attribution, linking to this page, and an indication of whether you made any changes, you can use it as you wish.

Data Sparsity Problem

Attack frequency varies enormously:

* Password Guessing: 1072 to 10' per user

* Spam: 10~ to 1073

* Intrusion Detection: 1077 to 107>

* D0S: 107 to 1077

When data is sparse, iterative feedback is harder.
Obscuring/denying uncertainty is harmful.

	Slide 1: Secure Systems Engineering and Management
	Slide 2
	Slide 3: Can we escape the security mess?
	Slide 4: What is science?
	Slide 5: The opening question
	Slide 6: What is the scientific process?
	Slide 7: Karl Popper’s view: Falsifiability is critical
	Slide 8: Context: Silver bullets, not lemons
	Slide 9
	Slide 10
	Slide 11: Cybersecurity science
	Slide 12: What is applied science?
	Slide 13: Model: Cryptography
	Slide 14: Model: Cryptography
	Slide 15: The Fundamental Asymmetry
	Slide 16: Provable security
	Slide 17: Proofs are only as good as their assumptions
	Slide 18: Deduction vs. Induction
	Slide 19: Schneider’s view: laws and principles
	Slide 20: Formal methods
	Slide 21: Key challenge: Specifying security
	Slide 22: Cybersecurity practice: Anti-patterns
	Slide 23: Unfalsifiable Claims
	Slide 24: Confusing Sufficient for Necessary
	Slide 25: The Password Portfolio Impossibility
	Slide 26: Implicit Assumptions
	Slide 27: The One-Sided Ratchet
	Slide 28
	Slide 29: Data Sparsity Problem

