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Lecture 1 Overview

Topics:

* Quick level set

* The logic of hypothesis testing

* Chi-square test of independence
 Student’s t-test (parametric)

* Mann-Whitney U test (non-parametric)

e Effect sizes (Cohen’s d, Vargha-Delaney A)
* Bootstrapped confidence intervals

« Common pitfalls



Sample Data for This Lecture

We’ll use synthetic vulnerability data throughout:

sample vuln data.csv (n = 2,000)

— cve id # CVE identifier

— pub_ year # Publication year (2018-2024)

— cwe category # Memory, InputValidation, Crypto, Auth, Other
— cvss_base # CVSS score (0-10)

—— impact # Impact subscore

—— exploitability # Exploitability subscore

—— severity # Low, Medium, High, Critical

L in kev # TRUE if actively exploited



Loading the Sample Data in R

# Load the sample vulnerability data
data ("sample vuln data.csv'")

# Convert categorical variables to factors
dataScwe category (dataScwe category)
dataSseverity (dataSseverity,

levels = ¢ ("Low", "Medium"
"High", "Critical"),

ordered = )

# Quick check
(data)
(dataScvss base)
(dataSin kevy)
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Loading the Sample Data in Python

pandas pd
numpy np

# Load the sample vulnerability data
data pd.read csv ( )

# Convert to categorical (optional but good practice)

datal ] pd.Categorical (data |

data| ] pd.Categorical (
datal ],
categories=| , , , 1,
ordered

)

# Quick check
(data.info ())
(data [ ] .describe ())
(datal[ ] .value counts())



Level setting: Terms you know

e Empirical data
* Observational vs. experimental

* Analysis
* Explanation vs. prediction

e Variable

* nominal / categorical / binary vs.

ordinal vs. metric

* Distribution and sample

* Central tendency
* Mean / average 4, median, mode
* Dispersion

* Variance, standard deviation o,
quantiles



Our friend: The normal distribution




Part 1: Hypothesis Testing
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Hypotheses

Null hypothesis (Ho): The default assumption
* Usually “no effect” or “no difference”

* Example: “CVSS scores are the same for exploited and non-exploited
vulnerabilities”

Alternative hypothesis (H1): What we’re testing for

* Example: “CVSS scores differ between exploited and non-exploited
vulnerabilities”



Test Statistics and Sampling Distributions
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The Frequentist Framework

Hypothesis Test: Difference in CVSS Scores

co re q u e stio n i Rejection region (2.5% each tail)

)

What would we expect
to see if there were no
real effect?
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If the observed data would be very unusual under the “no effect” assumption, we have
evidence against that assumption. (Note: graph is notional, not based on analysis.)



The p-value

Hypothesis Test: Difference in CVSS Scores

Definition:

The probability of observing data as
extreme as (or more extreme than)
ours, if Ho were true
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Correct interpretation:

p-value = 0.05: “If there were truly
no difference in CVSS scores, there
is only a 5% chance of seeing a
difference this large.”
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Difference in CVSS score




p-value Misinterpretations

Misuse, Misreporting, Misinterpretation of Statistical Methods
in Usable Privacy and Security Papers

Lujo Bauer Nicolas Christin
Meilon Uni Cari ellon Univers
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o o e . . )) . . ll‘:;—llml‘l\rrthud\ e _,..m tial sta-
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fects or diffe

. “The probability that H, is true is 1 -
¢ e
. “A significant result means the
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there’s no effect”
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Tang et al. found 26% of SOUPS papers had interpretation errors like these



Significance Threshold (o)

Convention: o = 0.05

What this means
* Wereject Hoifp<a
* We accept a 5% risk of false positives

Type | error: Rejecting Ho when it’s actually true (false positive)
Type Il error: Failing to reject Ho when it’s actually false (false negative)



Part 2: Chi-Square Test of
ndependence




When to Use Chi-Square

Purpose: Test (non)independence of two categorical variables

Example: Is vulnerability severity category (Low/Medium/High/Critical)
independent of CWE category (Memory/Crypto/Input Validation/...)?

Low

Medium

High

Critical




Building a Contingency Table

Observed counts

Memory Crypto Input Val Row Total

Low

Medium

High
Critical

Col Total




Expected Counts Under Independence

If no association exists (i.e., independent)

Expected count = (Row total x Column total) / Grand total
E(Low, Memory) = (245 / 1150) x 350 = 74.6

Low 45
Medium 90

High 130
Critical 85
Col Total 350

Under independence, we’d expect ~75, but we observed only 45.



The Chi-Square Test Statistic
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Chi-Square in Python

scipy.stats chi2 contingency

# Create contingency table
cont table pd.crosstab (datal ], datal

# Run chi-square test
chi2, p value, dof, expected chi2 contingency(cont table)

# Print results
(f"yx? = {chi?2 , df = {dof}, p = {p value ")

# Calculate standardized residuals manually
std residuals (cont table expected) np.sqgrt (expected)
(std residuals)



Running Chi-square on Sample Data

Expected output on sample_vuln_data.csv:
x? = 110.53, df = 12, p = 0.000000000000000

The chi-square test examines whether severity and CWE category are
independent.

* Null hypothesis: Severity distribution identical for all CWE categories
* Result: We reject Ho (p < 0.001) — there is a significant association



Interpreting Results: Where Is the Association?

A significant x? tells you that there’s an association, not where.
Standardized residuals: (O - E) / VE

Interpretation Meaning

Residual > +2 More than expected
(overrepresented)

Residual < -2 Fewer than expected
(underrepresented)




Sample data associations

Pattern Residual | Meaning

Memory + High Far more high-severity memory bugs
than expected

Memory + Low Far fewer low-severity memory bugs
than expected

Other + Low More low-severity “Other” bugs than
expected

Crypto + Low More low-severity crypto bugs than
expected




Chi-Square Assumptions

1. Independence: Each observation is independent
2. Expected count rule: Most cells should have E > 5
3. Categorical data: Both variables must be categorical

A Warning for large samples:
With thousands of vulnerabilities, even trivial associations are “significant”

— Always report effect sizes!



Part 3: Comparing Two Groups —
t-test and Mann-Whitney U




The Student’s t-Test

Purpose: Test whether the means of
two groups differ significantly

The question we’re asking:

Do exploited vulnerabilities have
different CVSS scores (on average) than
non-exploited vulnerabilities?

Ho: p_exploited = p_not_exploited
Hqi: 1_exploited # p_not_exploited

lave a

GUINNESS

when youre TIRED




t-Test: How It Works

t-Distribution (df = 40) with Two-Tailed Critical Regions

Test statistic: _
X1 — X

t =
SEdifference
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where SE depends on the
pooled standard deviation
and sample sizes

0
t statistic

Under Ho: t follows a t-
distribution withdf = n;+ n, -2



t-Test Assumptions

1. Independence: Observations are independent
2. Normality: Data in each group is normally distributed

3. Equal variance: Both groups have similar variance (for standard t-
test)

How important are these?

* Independence: Critical — violations cause serious problems

* Normality: Less critical with large samples (Central Limit Theorem)
e Equal variance: Use Welch’s t-test to relax this assumption



t-Test in Python

scipy.stats ttest ind
# Separate CVSS scores by exploitation status
exploited = data[datal['in kev'] == ]['cvss base']
not exploited = datal[datal'in kev'] == ][Tcvss base']

# Welch's t-test (equal var=False 1is safer) _
t stat, p value = ttest ind(exploited, not exploited,

equal var- )

# View results

(f"t = {t stat:.3f}, p = {p value:.41}")
(f"Mean (exploited): {exploited.mean():.2f}")
(f"Mean (not exploited): {not exploited.mean():.2f}")

(f"Difference: [exploited.mean () -
not exploited.mean () :.2L}")



Running t-Test on Sample Data

Expected output on sample_vuln_data.csv:
t = 5.098, p = 0.00001
Mean (exploited): 6.26
Mean (not exploited): 5.22
Difference: 1.04

Interpretation:

Exploited vulnerabilities have significantly higher CVSS scores (M =
6.26) than non-exploited ones (M =5.22), t(37.5) = 5.098, p < 0.00001.



Checking Normality

Distribution of CVSS Base Scores

Visual checks:

* Histogram — is it roughly bell-
shaped?




Q-Q Plot: CVSS Base Scores vs. Normal Distribution
CVSS Base Scores

Checking Normality - R oo

Visual checks:

e Histogram — is it roughly bell-
shaped?
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* Q-Q plot — do points follow
the diagonal?

-1 0 1 2
Theoretical Quantiles (Normal Distribution)

Statistical tests: Shapiro-Wilk The Shapiro-Wilk test shows:

test (but sensitive with large n) - Statistic: 0.9985 (syggests normality)
- p-value: 0.062 (rejects NH —appear normal)



Data visualized, according to KEV status

Distribution of CVSS Scores by Exploitation Status

Not Exploited (n=1963)
| Exploited (n=37) Mdn=5.2

CVSS Base Score




Parametric vs. Non-Parametric Tests

Assumption Normal distribution (or
nis large)

Data type Continuous, interval

Sensitivity More powerful if
assumptions met

Measures Compares means

Use t test when you can, Mann-Whitney when you must



Mann-Whitney U Test

Also called: Wilcoxon rank-sum test
Purpose: Test whether one group tends to have larger values than another

How it works:

1. Combine both samples and rank all values (1 = smallest)
2. Sum the ranks for each group

3. The U statistic measures overlap between groups

Ho: The distributions are identical
Hi: One group tends to have larger values



Mann-Whitney: Visual Intuition

Step 1: Original Data Step 2: Combine & Rank

Rank 1
Rank 2
Rank 3
Rank 4
Rank 5
Rank 6
Rank 7
Rank 8
Rank 9
Rank 10
Rank 11
Rank 12

Exploited
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Not Exploited
" [ Exploited (Group A)
Rank sum (Exploited) = 65 ! :
14 Rank sum (Not Exploited) =40 _ B Not EXplOItEd (Group B)

4 6
CVSS Score CVSS Score

High overlap - U statistic near expected value = large p
Low overlap = U statistic far from expected - small p



Mann-Whitney in Python

scipy.stats mannwhitneyu
# Separate groups
exploited = datal[datal['in kev'] == ]['cvss base']
not exploited = datal[datal'in kev'] == ][Tcvss base']

# Mann-Whitney U test
u stat, p value = mannwhitneyu(exploited, not exploited,
- - alternative="Two-sided")

# View results
(f"U = {u stat:.0f}, p = {p value:.41}")
(f"Median (exploited): {exploited.median():.2f}")
(f"Median (not exploited) :

{not exploited.median() :.2f}")



Running Both Tests on Sample Data

t-test:
t = 5.098, p < 0.00001
Mean difference = 1.04

Mann-Whitney U:
U = 52580, p < 0.000003
Median (exploited) = 6.40, Median (not exploited) = 5.2

Both agree: Strong evidence that exploited vulnerabilities have higher CVSS scores



A Pitfall: Unclear Test Specification

Ambiguous: “We used a Wilcoxon test”

This could mean:
 Mann-Whitney U (Wilcoxon rank-sum) — independent samples
* Wilcoxon signed-rank — paired samples

Clear: “We used a Mann-Whitney U test (Wilcoxon rank-sum) to
compare CVSS scores between exploited and non-exploited
vulnerabilities.”



Part 4: Effect Sizes



Why p-values Are Not Enough

The problem: With large samples, even
trivial differences become “significant”

Example: With 200,000+ CVEs, a difference
of 0.1 CVSS points might suggest a p < 0.001
statistically significant different frequency of
exploitability

Is that difference practically meaningful for
security prioritization?

80% of papers had incomplete scientific significance reporting

reporting, Misinterpretation of Statistical
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Jenny Tang Lujo Bauer Nicolas Christin
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Effect Sizes: The Solution

Effect size
A standardized measure of the magnitude of a difference or association

Two key effect sizes for comparing groups

Cohen’s d Parametric (with t-test)

Vargha-Delaney A Non-parametric (with Mann-Whitney)




Cohen’s d (Parametric Effect Size)

Formula R
X1 — X3

d =
SDpooled

Interpretation: How many standard deviations apart are the means?

Small

Medium

Large



Cohen’s d: Visual

Cohen's d — Visualising Effect Size

d = 0.0 (None) d =0.2 (Small) d = 0.5 (Medium)

Overlap 100% Overlap 92% Overlap 80%

-lo [ a 30 o - -3 10 3
Standard deviations Standard 15 Standard deviations

d = 0.8 (Large) d =1.2 (Very large) = 2.0 (Huge)

Overlap 69% Overlap 55% Overlap 32%

£\
/

10 00 - 3 -2 - 1o
Standard deviations Standard deviations Standard deviations

[ Group A (e.g. Not Exploited) [ Group B (e.g. Exploited)




Cohen’s d in Python

pingouln pg # Install: pip install pingouin

# Compute Cohen's d
d value = pg.compute effsize(exploited, not exploited,

eftype="cohen')
(f"Cohen's d = {d value:.2f}")

# Interpretation
(d value) < 0.2:

magnitude = "negligible"”
(d value) < 0.5:
magnitude = "smal L"
(d value) < 0.8:
magnitude = "medium"
magnitude = "large"

(f"Magnitude: {magnitude}'")



Vargha-Delaney A (Non-Parametric Effect Size)

What it measures: The probability that a randomly selected value from
group A exceeds a randomly selected value from group B

Interpretation A value Meaning
No difference (coin flip)
Small effect
Medium effect

Large effect

A always exceeds B




Vargha-Delaney A: Visual

A = 0.50: Complete overlap A =0.64: Moderate separation
A = 0.85: Clear separation

No Effect Medium Effect Large Effect

Not Exploited

Exploited A = 0_50

{eoin flip)

2 4 2 4
CVSS Score CVSS Score CVSS Score




Vargha-Delaney A in Python

pingouin Pg

# Method 1: Get A directly from Mann-Whitney test
mw result = pg.mwu(exploited, not exploited,
alternative="two-sided") _
(mw result)
# Look at the 'CLES' column — this is Vargha-Delaney A

# Method 2: Compute manually (CLES = Common Language

Effect Size)
# A = U / (nl * n2) where U is Mann-Whitney U statistic

scipy.stats mannwhitneyu
u stat, = mannwhitneyu (exploited, not exploited)
nl, n2 = (exploited), (not exploited)

vd'a - u stat / (nl © n2)
Int (f"Vargha-Delaney A = {vd a:.2f}")



Running Effect Sizes on Sample Data

Cohen’s d (parametric):
Cohen's d = 0.81
Magnitude: large

Vargha-Delaney A (non-parametric):
Vargha-Delaney A = 0.72 (large effect)

Interpretation:

Both effect sizes indicate a large effect. Exploited vulnerabilities have
substantially higher CVSS scores than non-exploited ones.



A Pitfall: Conflating Statistical and Practical
Significance

Scenario

With n = 100,000 vulnerabilities:

* Mean CVSS (exploited) = 7.15

* Mean CVSS (non-exploited) = 7.05
*p<0.001,d=0.08

Statistically significant? Yes
Practically significant? Probably not!



Part 5;
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Confidence Intervals

Problem: We are computing a value on a sample from a broader
population. How close is our estimate to the true value?

Solution: Confidence interval (Cl)

The Cl is a range; the confidence level (e.g., 95%) of it indicates how
often the true value falls within the Cl over repeated sampling (i.e., in
the sampling distribution)

Challenge: How to compute CI?



The Bootstrap Idea

Problem: We want a confidence interval for a statistic (e.g., median
difference), but we don’t know its sampling distribution

Solution: Simulate the sampling distribution by resampling our data



Bootstrap Procedure

1. Draw a sample of size n with replacement from your data (which
itself has n elements)

2. Compute the statistic of interest (e.g., median difference)
3. Repeat 10,000 times
4. Use the 2.5th and 97.5th percentiles as the 95% Cl



Bootstrap Procedure

Bootstrap #2

0 2 4 6 8

Observation

Original Sample (n=10) Bootstrap #1

Median = 6.5

CVSS Score
CVSS Score
CVSS Score

6 4 6

4
Observation

Observation

Bootstrap #3

Bootstrap Distribution

Repeat
10,000x

CVSS Score

Observation Bootstrap Median




Why Bootstrap?

* No distributional assumptions — works for any statistic
* Works for complex statistics — medians, ratios, custom quantities

* Intuitive interpretation — “we’re 95% confident the true value lies in
this range”



Bootstrap in Python

numpy np

bootstrap median diff (data, n boot=10000) :
"""Bootstrap 95% CI for median difference."""
# Separate groups

exploited = data[datal['in kev'] == ]['cvss base'].values
not exploited = datal[datal'in kev'] == ][ Tcvss base'].values
# Store bootstrap statistics
diffs = []
(n boot) :
# Resample each group with replacement
e sample = np.random.choice(exploited, size= (exploited), replace=
n sample np.random.choice (not exploited, size-= (not_exploited), replace-= )
# Compute median difference
diffs.append(np.median (e sample) - np.median(n sample))

# Return 2.5th and 97.5th percentiles
np.percentile(diffs, [2.5, 97.5])

ci = bootstrap median diff (data)
(£f"95% CI for median difference: [{ci[0]:.2f}, {ci[l]l:.2f}]1™)



Running Bootstrap on Sample Data

Bootstrap 95% CI for median difference: [0.50, 1.50]

Interpretation

“The median CVSS of exploited vulnerabilities is 0.90 points higher than
non-exploited vulnerabilities, 95% Cl [0.50, 1.50].

The Cl doesn’t include zero - significant difference in medians.



Bootstrap on our data, visualized
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Part 6: Common Pitfalls



Tang et al. Findings

* 97% of papers had at least one statistical issue
* 23% had incorrect tests (e.g., non-independence violations)
* 86% had incomplete statistical significance reporting
* 80% had incomplete practical significance reporting
* 26% had misinterpretations




The Multiple Comparisons Problem
The problem: At a = 0.05, expect 1 false positive per 20 tests by chance

Example

Testing whether CVSS differences across 10 CWE categories = 45
pairwise comparisons

Expected false positives by chance: ~2-3



Solutions: Bonferroni Correction

Bonferroni: Divide a by the number of tests

0.05
Xadjusted — T

For 10 tests: a4y steq = 0-005

Pros: Simple, conservative
Cons: Very conservative — increases false negatives



Solutions: Benjamini-Hochberg (FDR)

FDR (False Discovery Rate): Controls the expected proportion of false
positives among rejected hypotheses

Procedure:

1. Order p-values smallest to largest

2. Compare each p-value to (rank / k) x a

3. Reject all hypotheses up to the largest one that passes

Less conservative than Bonferroni — better for exploratory analysis



Multiple Comparisons in Python

statsmodels.stats.multitest multipletests
numpy np

# P-values from multiple tests
p values np.array([0.001, 0.01, 0.03, 0.04, 0.08, 0.12])

# Bonferroni correction

reject bonf, p bonf, , multipletests (p values,
method= T I o
# Benjamini-Hochberg (FDR) correction
reject fdr, p fdr, r multipletests (p values,
method= nn) o
# Display results

i, p (p values):

(f"p={p -> Bonf: {p bonf[1i]

]

(sig={reject bonf |

i11),
f"FDR: (p fdr[i] (sig={reject fdr[i]})")



A Pitfall: Ignoring Non-Independence
The problem: Most tests assume independent observations

Common violations in security research:

e Multiple vulnerabilities from the same vendor

* Multiple CVEs from the same software product

* Vulnerabilities discovered by the same researcher

Ask yourself: “Could any two data points be more similar to each other
than to a random pair?”



A Pitfall: Reporting Only p-values

Insufficient: “There was a significant difference (p = 0.02).

Complete reporting includes:

1. The exact test name

. Test statistic and degrees of freedom
Exact p-value (or p < 0.001)

Effect size

Gos W N

Descriptive statistics for each group



Complete Reporting Example

Bad:
“There was a significant difference (p = 0.02).”

Good:

“Exploited vulnerabilities had significantly higher CVSS scores
(Mdn =6.30, IQR = 1.85) than non-exploited vulnerabilities
(Mdn =5.30, IQR = 2.40), Mann-Whitney U = 56,789, p <
0.001, Vargha-Delaney A = 0.74 (large effect).”



Lecture 1 Checklist

Statistical Validity:

e [11s my test appropriate for my data type?

* [ 1 Have | accounted for non-independence?

e [1 Am | using paired tests for paired data?
Multiple Comparisons:

e [1 Have | corrected for multiple comparisons?
Reporting:

» [ Test name, statistic, df, p-value?

[ Effect size?

» [ Descriptive statistics with variability?



Lecture 1 Summary

Concept

p-values
Chi-square

t-test
Mann-Whitney U
Cohen’s d
Vargha-Delaney A
Bootstrapping

Multiple comparisons

Key Takeaway

P(data | Ho), not P(Ho is true)

Association between categorical variables
Parametric comparison of means
Non-parametric group comparison
Parametric effect size

Non-parametric effect size

Cls without assumptions

Correct when running many tests

Project Use

Severity x CWE
When data is normal
Exploited vs. not
With t-test

With Mann-Whitney

Median differences

Post-hoc tests
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