
Secure Systems Engineering
and Management

A Data-driven Approach

Security analytics:
Intro to data analysis

Michael Hicks
UPenn CIS 7000-003
Spring 2026

Hypothesis Testing, Effect Sizes, and Regression

Lecture 1: Hypothesis Testing,
Non-Parametric Tests, and Effect
Sizes

Lecture 1 Overview

Topics:

• Quick level set

• The logic of hypothesis testing

• Chi-square test of independence

• Student’s t-test (parametric)

• Mann-Whitney U test (non-parametric)

• Effect sizes (Cohen’s d, Vargha-Delaney A)

• Bootstrapped confidence intervals

• Common pitfalls

Sample Data for This Lecture

We’ll use synthetic vulnerability data throughout:
sample_vuln_data.csv (n = 2,000)

├── cve_id # CVE identifier

├── pub_year # Publication year (2018-2024)

├── cwe_category # Memory, InputValidation, Crypto, Auth, Other

├── cvss_base # CVSS score (0-10)

├── impact # Impact subscore

├── exploitability # Exploitability subscore

├── severity # Low, Medium, High, Critical

└── in_kev # TRUE if actively exploited

Loading the Sample Data in R

Load the sample vulnerability data
data <- read.csv("sample_vuln_data.csv")

Convert categorical variables to factors
data$cwe_category <- factor(data$cwe_category)
data$severity <- factor(data$severity,

levels = c("Low", "Medium",
"High", "Critical"),

ordered = TRUE)

Quick check
str(data)
summary(data$cvss_base)
table(data$in_kev)

Loading the Sample Data in Python

import pandas as pd
import numpy as np

Load the sample vulnerability data
data = pd.read_csv("sample_vuln_data.csv")

Convert to categorical (optional but good practice)
data['cwe_category'] = pd.Categorical(data['cwe_category'])
data['severity'] = pd.Categorical(

data['severity'],
categories=["Low", "Medium", "High", "Critical"],
ordered=True

)

Quick check
print(data.info())
print(data['cvss_base'].describe())
print(data['in_kev'].value_counts())

Level setting: Terms you know

• Empirical data
• Observational vs. experimental

• Analysis
• Explanation vs. prediction

• Variable
• nominal / categorical / binary vs.

ordinal vs. metric

• Distribution and sample

• Central tendency
• Mean / average μ, median, mode

• Dispersion
• Variance, standard deviation σ,

quantiles

Our friend: The normal distribution

Part 1: Hypothesis Testing

The fundamental problem

How do we distinguish signal
from noise in our data?

Why Hypothesis Testing?

Suppose
• Exploited vulnerabilities

have mean CVSS = 6.26
• Non-exploited

vulnerabilities have mean
CVSS = 5.22

Is this a real difference, or just
random variation?

Hypotheses

Null hypothesis (H₀): The default assumption

• Usually “no effect” or “no difference”

• Example: “CVSS scores are the same for exploited and non-exploited
vulnerabilities”

Alternative hypothesis (H₁): What we’re testing for

• Example: “CVSS scores differ between exploited and non-exploited
vulnerabilities”

Test Statistics and Sampling Distributions

Test statistic

An assessment of our experimental
data, as it relates to H₀

Sampling distribution

The distribution of the test statistic
if we repeated the experiment
many times

The Frequentist Framework

Core question

What would we expect
to see if there were no
real effect?

If the observed data would be very unusual under the “no effect” assumption, we have
evidence against that assumption. (Note: graph is notional, not based on analysis.)

The p-value

Definition:

The probability of observing data as
extreme as (or more extreme than)
ours, if H₀ were true

Correct interpretation:

p-value = 0.05: “If there were truly
no difference in CVSS scores, there
is only a 5% chance of seeing a
difference this large.”

p-value Misinterpretations

Common mistakes

• “The probability that H₀ is true is p”

• “The probability that H₁ is true is 1 −
p”

• “A significant result means the
effect is large”

• “A non-significant result means
there’s no effect”

Tang et al. found 26% of SOUPS papers had interpretation errors like these

Significance Threshold (α)

Convention: α = 0.05

What this means

• We reject H₀ if p < α

• We accept a 5% risk of false positives

Type I error: Rejecting H₀ when it’s actually true (false positive)

Type II error: Failing to reject H₀ when it’s actually false (false negative)

Part 2: Chi-Square Test of
Independence

When to Use Chi-Square

Purpose: Test (non)independence of two categorical variables

Example: Is vulnerability severity category (Low/Medium/High/Critical)
independent of CWE category (Memory/Crypto/Input Validation/…)?

Memory Crypto Input Val

Low ? ? ?

Medium ? ? ?

High ? ? ?

Critical ? ? ?

Building a Contingency Table

Observed counts

Memory Crypto Input Val Row Total

Low 45 120 80 245

Medium 90 150 110 350

High 130 85 140 355

Critical 85 45 70 200

Col Total 350 400 400 1150

Memory Crypto Input Val

Low ? ? ?

Medium ? ? ?

High ? ? ?

Critical ? ? ?

Expected Counts Under Independence

If no association exists (i.e., independent)

Expected count = (Row total × Column total) / Grand total

Memory Crypto Input Val Row Total

Low 45 120 80 245

Medium 90 150 110 350

High 130 85 140 355

Critical 85 45 70 200

Col Total 350 400 400 1150

E(Low, Memory) = (245 / 1150) × 350 = 74.6

Under independence, we’d expect ~75, but we observed only 45.

The Chi-Square Test Statistic

𝜒2 = ∑
(𝑂 − 𝐸)2

𝐸

• Sum over all cells in the table

• Large differences between O
and E → large χ²

• Compare to χ² distribution
with df = (rows − 1)(cols − 1)

Chi-Square in Python

from scipy.stats import chi2_contingency

Create contingency table

cont_table = pd.crosstab(data['severity'], data['cwe_category'])

Run chi-square test

chi2, p_value, dof, expected = chi2_contingency(cont_table)

Print results

print(f"χ² = {chi2:.2f}, df = {dof}, p = {p_value:.4f}")

Calculate standardized residuals manually

std_residuals = (cont_table - expected) / np.sqrt(expected)

print(std_residuals)

Running Chi-square on Sample Data

Expected output on sample_vuln_data.csv:

χ² = 110.53, df = 12, p = 0.000000000000000

The chi-square test examines whether severity and CWE category are
independent.

• Null hypothesis: Severity distribution identical for all CWE categories

• Result: We reject H₀ (p < 0.001) — there is a significant association

Interpreting Results: Where Is the Association?

A significant χ² tells you that there’s an association, not where.

Standardized residuals: (O − E) / √E

Interpretation Meaning

Residual > +2 More than expected
(overrepresented)

Residual < −2 Fewer than expected
(underrepresented)

Sample data associations

Pattern Residual Meaning

Memory + High +5.37 Far more high-severity memory bugs
than expected

Memory + Low -4.73 Far fewer low-severity memory bugs
than expected

Other + Low +4.44 More low-severity “Other” bugs than
expected

Crypto + Low +3.42 More low-severity crypto bugs than
expected

Chi-Square Assumptions

1. Independence: Each observation is independent

2. Expected count rule: Most cells should have E ≥ 5

3. Categorical data: Both variables must be categorical

 Warning for large samples:

With thousands of vulnerabilities, even trivial associations are “significant”

→ Always report effect sizes!

Part 3: Comparing Two Groups —
t-test and Mann-Whitney U

The Student’s t-Test

Purpose: Test whether the means of
two groups differ significantly

The question we’re asking:
Do exploited vulnerabilities have
different CVSS scores (on average) than
non-exploited vulnerabilities?

H₀: μ_exploited = μ_not_exploited
H₁: μ_exploited ≠ μ_not_exploited

t-Test: How It Works

Test statistic:

𝑡 =
᪄𝑋1 − ᪄𝑋2

𝑆𝐸𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

where SE depends on the
pooled standard deviation
and sample sizes

Under H₀: t follows a t-
distribution with df ≈ n₁ + n₂ − 2

t-Test Assumptions

1. Independence: Observations are independent

2. Normality: Data in each group is normally distributed

3. Equal variance: Both groups have similar variance (for standard t-
test)

How important are these?

• Independence: Critical — violations cause serious problems

• Normality: Less critical with large samples (Central Limit Theorem)

• Equal variance: Use Welch’s t-test to relax this assumption

t-Test in Python

from scipy.stats import ttest_ind

Separate CVSS scores by exploitation status
exploited = data[data['in_kev'] == True]['cvss_base']
not_exploited = data[data['in_kev'] == False]['cvss_base']

Welch's t-test (equal_var=False is safer)
t_stat, p_value = ttest_ind(exploited, not_exploited,
equal_var=False)

View results
print(f"t = {t_stat:.3f}, p = {p_value:.4f}")
print(f"Mean (exploited): {exploited.mean():.2f}")
print(f"Mean (not exploited): {not_exploited.mean():.2f}")
print(f"Difference: {exploited.mean() -
not_exploited.mean():.2f}")

Running t-Test on Sample Data

Expected output on sample_vuln_data.csv:

t = 5.098, p = 0.00001

Mean (exploited): 6.26

Mean (not exploited): 5.22

Difference: 1.04

Interpretation:

Exploited vulnerabilities have significantly higher CVSS scores (M =
6.26) than non-exploited ones (M = 5.22), t(37.5) = 5.098, p < 0.00001.

Checking Normality

Visual checks:

• Histogram — is it roughly bell-
shaped?

Checking Normality

Visual checks:

• Histogram — is it roughly bell-
shaped?

• Q-Q plot — do points follow
the diagonal?

Statistical tests: Shapiro-Wilk
test (but sensitive with large n)

The Shapiro-Wilk test shows:
 - Statistic: 0.9985 (suggests normality)
 - p-value: 0.062 (rejects NH – appear normal)

Data visualized, according to KEV status

Parametric vs. Non-Parametric Tests

Criterion Parametric (t-test) Non-Parametric (Mann-Whitney)

Assumption Normal distribution (or
n is large)

No distributional assumption

Data type Continuous, interval Ordinal or continuous

Sensitivity More powerful if
assumptions met

Robust to outliers, skewness

Measures Compares means Compares ranks/distributions

Use t test when you can, Mann-Whitney when you must

Mann-Whitney U Test

Also called: Wilcoxon rank-sum test

Purpose: Test whether one group tends to have larger values than another

How it works:

1. Combine both samples and rank all values (1 = smallest)

2. Sum the ranks for each group

3. The U statistic measures overlap between groups

H₀: The distributions are identical
H₁: One group tends to have larger values

Mann-Whitney: Visual Intuition

High overlap → U statistic near expected value → large p

Low overlap → U statistic far from expected → small p

Mann-Whitney in Python

from scipy.stats import mannwhitneyu

Separate groups
exploited = data[data['in_kev'] == True]['cvss_base']
not_exploited = data[data['in_kev'] == False]['cvss_base']

Mann-Whitney U test
u_stat, p_value = mannwhitneyu(exploited, not_exploited,

alternative='two-sided')

View results
print(f"U = {u_stat:.0f}, p = {p_value:.4f}")
print(f"Median (exploited): {exploited.median():.2f}")
print(f"Median (not exploited):
{not_exploited.median():.2f}")

Running Both Tests on Sample Data

t-test:

t = 5.098, p < 0.00001

Mean difference = 1.04

Mann-Whitney U:

U = 52580, p < 0.000003

Median (exploited) = 6.40, Median (not exploited) = 5.2

Both agree: Strong evidence that exploited vulnerabilities have higher CVSS scores

Pitfall: Unclear Test Specification

Ambiguous: “We used a Wilcoxon test”

This could mean:

• Mann-Whitney U (Wilcoxon rank-sum) — independent samples

• Wilcoxon signed-rank — paired samples

Clear: “We used a Mann-Whitney U test (Wilcoxon rank-sum) to
compare CVSS scores between exploited and non-exploited
vulnerabilities.”

Part 4: Effect Sizes

Why p-values Are Not Enough

The problem: With large samples, even
trivial differences become “significant”

Example: With 200,000+ CVEs, a difference
of 0.1 CVSS points might suggest a p < 0.001
statistically significant different frequency of
exploitability

Is that difference practically meaningful for
security prioritization?

80% of papers had incomplete scientific significance reporting

Effect Sizes: The Solution

Effect size
A standardized measure of the magnitude of a difference or association

Two key effect sizes for comparing groups

Effect Size Use Case

Cohen’s d Parametric (with t-test)

Vargha-Delaney A Non-parametric (with Mann-Whitney)

Cohen’s d (Parametric Effect Size)

Formula

𝑑 =
᪄𝑋1 − ᪄𝑋2
𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑

Interpretation: How many standard deviations apart are the means?

d

0.2 Small

0.5 Medium

0.8 Large

Cohen’s d: Visual

Cohen’s d in Python

import pingouin as pg # Install: pip install pingouin

Compute Cohen's d
d_value = pg.compute_effsize(exploited, not_exploited,
eftype='cohen')
print(f"Cohen's d = {d_value:.2f}")

Interpretation
if abs(d_value) < 0.2:

magnitude = "negligible"
elif abs(d_value) < 0.5:

magnitude = "small"
elif abs(d_value) < 0.8:

magnitude = "medium"
else:

magnitude = "large"
print(f"Magnitude: {magnitude}")

Vargha-Delaney A (Non-Parametric Effect Size)

What it measures: The probability that a randomly selected value from
group A exceeds a randomly selected value from group B

Interpretation A value Meaning

0.50 No difference (coin flip)

0.56 Small effect

0.64 Medium effect

0.71 Large effect

→ 1.0 A always exceeds B

Vargha-Delaney A: Visual

A = 0.50: Complete overlap A = 0.64: Moderate separation
A = 0.85: Clear separation

Vargha-Delaney A in Python

import pingouin as pg

Method 1: Get A directly from Mann-Whitney test
mw_result = pg.mwu(exploited, not_exploited,
alternative='two-sided')
print(mw_result)
Look at the 'CLES' column — this is Vargha-Delaney A

Method 2: Compute manually (CLES = Common Language
Effect Size)
A = U / (n1 * n2) where U is Mann-Whitney U statistic
from scipy.stats import mannwhitneyu
u_stat, _ = mannwhitneyu(exploited, not_exploited)
n1, n2 = len(exploited), len(not_exploited)
vd_a = u_stat / (n1 * n2)
print(f"Vargha-Delaney A = {vd_a:.2f}")

Running Effect Sizes on Sample Data

Cohen’s d (parametric):

Cohen's d = 0.81

Magnitude: large

Vargha-Delaney A (non-parametric):

Vargha-Delaney A = 0.72 (large effect)

Interpretation:

Both effect sizes indicate a large effect. Exploited vulnerabilities have
substantially higher CVSS scores than non-exploited ones.

Pitfall: Conflating Statistical and Practical
Significance

Scenario

With n = 100,000 vulnerabilities:

• Mean CVSS (exploited) = 7.15

• Mean CVSS (non-exploited) = 7.05

• p < 0.001, d = 0.08

Statistically significant? Yes

Practically significant? Probably not!

Part 5: Bootstrapped Confidence
Intervals

Confidence Intervals

Problem: We are computing a value on a sample from a broader
population. How close is our estimate to the true value?

Solution: Confidence interval (CI)

The CI is a range; the confidence level (e.g., 95%) of it indicates how
often the true value falls within the CI over repeated sampling (i.e., in
the sampling distribution)

Challenge: How to compute CI?

The Bootstrap Idea

Problem: We want a confidence interval for a statistic (e.g., median
difference), but we don’t know its sampling distribution

Solution: Simulate the sampling distribution by resampling our data

Bootstrap Procedure

1. Draw a sample of size n with replacement from your data (which
itself has n elements)

2. Compute the statistic of interest (e.g., median difference)

3. Repeat 10,000 times

4. Use the 2.5th and 97.5th percentiles as the 95% CI

Bootstrap Procedure

Why Bootstrap?

• No distributional assumptions — works for any statistic

• Works for complex statistics — medians, ratios, custom quantities

• Intuitive interpretation — “we’re 95% confident the true value lies in
this range”

Bootstrap in Python

import numpy as np

def bootstrap_median_diff(data, n_boot=10000):
"""Bootstrap 95% CI for median difference."""
Separate groups
exploited = data[data['in_kev'] == True]['cvss_base'].values
not_exploited = data[data['in_kev'] == False]['cvss_base'].values

Store bootstrap statistics
diffs = []
for _ in range(n_boot):

Resample each group with replacement
e_sample = np.random.choice(exploited, size=len(exploited), replace=True)
n_sample = np.random.choice(not_exploited, size=len(not_exploited), replace=True)
Compute median difference
diffs.append(np.median(e_sample) - np.median(n_sample))

Return 2.5th and 97.5th percentiles
return np.percentile(diffs, [2.5, 97.5])

ci = bootstrap_median_diff(data)
print(f"95% CI for median difference: [{ci[0]:.2f}, {ci[1]:.2f}]")

Running Bootstrap on Sample Data

Bootstrap 95% CI for median difference: [0.50, 1.50]

Interpretation

“The median CVSS of exploited vulnerabilities is 0.90 points higher than
non-exploited vulnerabilities, 95% CI [0.50, 1.50].”

The CI doesn’t include zero → significant difference in medians.

Bootstrap on our data, visualized

Part 6: Common Pitfalls

Tang et al. Findings

• 97% of papers had at least one statistical issue

• 23% had incorrect tests (e.g., non-independence violations)

• 86% had incomplete statistical significance reporting

• 80% had incomplete practical significance reporting

• 26% had misinterpretations

The Multiple Comparisons Problem

The problem: At α = 0.05, expect 1 false positive per 20 tests by chance

Example

Testing whether CVSS differences across 10 CWE categories = 45
pairwise comparisons

Expected false positives by chance: ~2-3

Solutions: Bonferroni Correction

Bonferroni: Divide α by the number of tests

𝛼𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
0.05

𝑘

For 10 tests: 𝛼𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.005

Pros: Simple, conservative
Cons: Very conservative — increases false negatives

Solutions: Benjamini-Hochberg (FDR)

FDR (False Discovery Rate): Controls the expected proportion of false
positives among rejected hypotheses

Procedure:

1. Order p-values smallest to largest

2. Compare each p-value to (rank / k) × α

3. Reject all hypotheses up to the largest one that passes

Less conservative than Bonferroni — better for exploratory analysis

Multiple Comparisons in Python

from statsmodels.stats.multitest import multipletests
import numpy as np

P-values from multiple tests
p_values = np.array([0.001, 0.01, 0.03, 0.04, 0.08, 0.12])

Bonferroni correction
reject_bonf, p_bonf, _, _ = multipletests(p_values,
method='bonferroni')

Benjamini-Hochberg (FDR) correction
reject_fdr, p_fdr, _, _ = multipletests(p_values,
method='fdr_bh')

Display results
for i, p in enumerate(p_values):

print(f"p={p:.3f} -> Bonf: {p_bonf[i]:.3f}
(sig={reject_bonf[i]}), "

f"FDR: {p_fdr[i]:.3f} (sig={reject_fdr[i]})")

Pitfall: Ignoring Non-Independence

The problem: Most tests assume independent observations

Common violations in security research:

• Multiple vulnerabilities from the same vendor

• Multiple CVEs from the same software product

• Vulnerabilities discovered by the same researcher

Ask yourself: “Could any two data points be more similar to each other
than to a random pair?”

Pitfall: Reporting Only p-values

Insufficient: “There was a significant difference (p = 0.02).”

Complete reporting includes:

1. The exact test name

2. Test statistic and degrees of freedom

3. Exact p-value (or p < 0.001)

4. Effect size

5. Descriptive statistics for each group

Complete Reporting Example

Bad:

“There was a significant difference (p = 0.02).”

Good:

“Exploited vulnerabilities had significantly higher CVSS scores
(Mdn = 6.30, IQR = 1.85) than non-exploited vulnerabilities
(Mdn = 5.30, IQR = 2.40), Mann-Whitney U = 56,789, p <
0.001, Vargha-Delaney A = 0.74 (large effect).”

Lecture 1 Checklist

Statistical Validity:

• ☐ Is my test appropriate for my data type?

• ☐ Have I accounted for non-independence?

• ☐ Am I using paired tests for paired data?

Multiple Comparisons:

• ☐ Have I corrected for multiple comparisons?

Reporting:

• ☐ Test name, statistic, df, p-value?

• ☐ Effect size?

• ☐ Descriptive statistics with variability?

Lecture 1 Summary
Concept Key Takeaway Project Use

p-values P(data | H₀), not P(H₀ is true)

Chi-square Association between categorical variables Severity × CWE

t-test Parametric comparison of means When data is normal

Mann-Whitney U Non-parametric group comparison Exploited vs. not

Cohen’s d Parametric effect size With t-test

Vargha-Delaney A Non-parametric effect size With Mann-Whitney

Bootstrapping CIs without assumptions Median differences

Multiple comparisons Correct when running many tests Post-hoc tests

Recommended Readings

Primary Textbook (Franke):

• Section 16.2 — p-values

• Section 16.6.1 — Chi-square

• Section 12.1 — Linear regression

• Section 15.2 — Logistic regression

Secondary Textbook (Seltman):

• Chapter 6.2 — Hypothesis testing

• Chapter 9 — Linear regression

• Chapter 16.2-16.3 — Chi-square and logistic

https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf

	Slide 1: Secure Systems Engineering and Management
	Slide 2: Lecture 1: Hypothesis Testing, Non-Parametric Tests, and Effect Sizes
	Slide 3: Lecture 1 Overview
	Slide 4: Sample Data for This Lecture
	Slide 5: Loading the Sample Data in R
	Slide 6
	Slide 7: Loading the Sample Data in Python
	Slide 8: Level setting: Terms you know
	Slide 9: Our friend: The normal distribution
	Slide 10: Part 1: Hypothesis Testing
	Slide 11: Why Hypothesis Testing?
	Slide 12: Hypotheses
	Slide 13: Test Statistics and Sampling Distributions
	Slide 14: The Frequentist Framework
	Slide 15: The p-value
	Slide 16: p-value Misinterpretations
	Slide 17: Significance Threshold (α)
	Slide 18: Part 2: Chi-Square Test of Independence
	Slide 19: When to Use Chi-Square
	Slide 20: Building a Contingency Table
	Slide 21: Expected Counts Under Independence
	Slide 22: The Chi-Square Test Statistic
	Slide 23
	Slide 25: Chi-Square in Python
	Slide 26: Running Chi-square on Sample Data
	Slide 27: Interpreting Results: Where Is the Association?
	Slide 29: Sample data associations
	Slide 30: Chi-Square Assumptions
	Slide 31: Part 3: Comparing Two Groups — t-test and Mann-Whitney U
	Slide 32: The Student’s t-Test
	Slide 33: t-Test: How It Works
	Slide 34: t-Test Assumptions
	Slide 36: t-Test in Python
	Slide 37: Running t-Test on Sample Data
	Slide 38: Checking Normality
	Slide 39: Checking Normality
	Slide 40: Data visualized, according to KEV status
	Slide 41: Parametric vs. Non-Parametric Tests
	Slide 42: Mann-Whitney U Test
	Slide 43: Mann-Whitney: Visual Intuition
	Slide 45: Mann-Whitney in Python
	Slide 46: Running Both Tests on Sample Data
	Slide 47: ⚠️ Pitfall: Unclear Test Specification
	Slide 48: Part 4: Effect Sizes
	Slide 49: Why p-values Are Not Enough
	Slide 50: Effect Sizes: The Solution
	Slide 51: Cohen’s d (Parametric Effect Size)
	Slide 53: Cohen’s d: Visual
	Slide 55: Cohen’s d in Python
	Slide 56: Vargha-Delaney A (Non-Parametric Effect Size)
	Slide 57: Vargha-Delaney A: Visual
	Slide 59: Vargha-Delaney A in Python
	Slide 60: Running Effect Sizes on Sample Data
	Slide 61: ⚠️ Pitfall: Conflating Statistical and Practical Significance
	Slide 62: Part 5: Bootstrapped Confidence Intervals
	Slide 63: Confidence Intervals
	Slide 64: The Bootstrap Idea
	Slide 65: Bootstrap Procedure
	Slide 66: Bootstrap Procedure
	Slide 67: Why Bootstrap?
	Slide 69: Bootstrap in Python
	Slide 70: Running Bootstrap on Sample Data
	Slide 71: Bootstrap on our data, visualized
	Slide 72: Part 6: Common Pitfalls
	Slide 73: Tang et al. Findings
	Slide 74: The Multiple Comparisons Problem
	Slide 75: Solutions: Bonferroni Correction
	Slide 76: Solutions: Benjamini-Hochberg (FDR)
	Slide 78: Multiple Comparisons in Python
	Slide 79: ⚠️ Pitfall: Ignoring Non-Independence
	Slide 80: ⚠️ Pitfall: Reporting Only p-values
	Slide 81: Complete Reporting Example
	Slide 82: Lecture 1 Checklist
	Slide 83: Lecture 1 Summary
	Slide 84: Recommended Readings

