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Lecture 1: Hypothesis Testing, 
Non-Parametric Tests, and Effect 
Sizes



Lecture 1 Overview

Topics:

• Quick level set

• The logic of hypothesis testing

• Chi-square test of independence

• Student’s t-test (parametric)

• Mann-Whitney U test (non-parametric)

• Effect sizes (Cohen’s d, Vargha-Delaney A)

• Bootstrapped confidence intervals

• Common pitfalls



Sample Data for This Lecture

We’ll use synthetic vulnerability data throughout:
sample_vuln_data.csv (n = 2,000)

├── cve_id # CVE identifier

├── pub_year # Publication year (2018-2024)

├── cwe_category # Memory, InputValidation, Crypto, Auth, Other

├── cvss_base # CVSS score (0-10)

├── impact           # Impact subscore

├── exploitability   # Exploitability subscore

├── severity         # Low, Medium, High, Critical

└── in_kev # TRUE if actively exploited



Loading the Sample Data in R

# Load the sample vulnerability data
data <- read.csv("sample_vuln_data.csv")

# Convert categorical variables to factors
data$cwe_category <- factor(data$cwe_category)
data$severity <- factor(data$severity, 

levels = c("Low", "Medium", 
"High", "Critical"),

ordered = TRUE)

# Quick check
str(data)
summary(data$cvss_base)
table(data$in_kev)





Loading the Sample Data in Python

import pandas as pd
import numpy as np

# Load the sample vulnerability data
data = pd.read_csv("sample_vuln_data.csv")

# Convert to categorical (optional but good practice)
data['cwe_category'] = pd.Categorical(data['cwe_category'])
data['severity'] = pd.Categorical(

data['severity'], 
categories=["Low", "Medium", "High", "Critical"], 
ordered=True

)

# Quick check
print(data.info())
print(data['cvss_base'].describe())
print(data['in_kev'].value_counts())



Level setting: Terms you know

• Empirical data
• Observational vs. experimental

• Analysis
• Explanation vs. prediction

• Variable
• nominal / categorical / binary vs. 

ordinal vs. metric

• Distribution and sample

• Central tendency
• Mean / average μ, median, mode

• Dispersion
• Variance, standard deviation σ, 

quantiles



Our friend: The normal distribution



Part 1: Hypothesis Testing



The fundamental problem

How do we distinguish signal 
from noise in our data?

Why Hypothesis Testing?

Suppose
• Exploited vulnerabilities 

have mean CVSS = 6.26
• Non-exploited 

vulnerabilities have mean 
CVSS = 5.22

Is this a real difference, or just 
random variation?



Hypotheses

Null hypothesis (H₀): The default assumption

• Usually “no effect” or “no difference”

• Example: “CVSS scores are the same for exploited and non-exploited 
vulnerabilities”

Alternative hypothesis (H₁): What we’re testing for

• Example: “CVSS scores differ between exploited and non-exploited 
vulnerabilities”



Test Statistics and Sampling Distributions

Test statistic

An assessment of our experimental 
data, as it relates to H₀

Sampling distribution

The distribution of the test statistic 
if we repeated the experiment 
many times



The Frequentist Framework

Core question

What would we expect 
to see if there were no 
real effect?

If the observed data would be very unusual under the “no effect” assumption, we have 
evidence against that assumption. (Note: graph is notional, not based on analysis.)



The p-value

Definition:

The probability of observing data as 
extreme as (or more extreme than) 
ours, if H₀ were true

Correct interpretation:

p-value = 0.05: “If there were truly 
no difference in CVSS scores, there 
is only a 5% chance of seeing a 
difference this large.”



p-value Misinterpretations

Common mistakes

• “The probability that H₀ is true is p”

• “The probability that H₁ is true is 1 − 
p”

• “A significant result means the 
effect is large”

• “A non-significant result means 
there’s no effect”

Tang et al. found 26% of SOUPS papers had interpretation errors like these



Significance Threshold (α)

Convention: α = 0.05

What this means

• We reject H₀ if p < α

• We accept a 5% risk of false positives

Type I error: Rejecting H₀ when it’s actually true (false positive)

Type II error: Failing to reject H₀ when it’s actually false (false negative)



Part 2: Chi-Square Test of 
Independence



When to Use Chi-Square

Purpose: Test (non)independence of two categorical variables

Example: Is vulnerability severity category (Low/Medium/High/Critical) 
independent of CWE category (Memory/Crypto/Input Validation/…)?

Memory Crypto Input Val

Low ? ? ?

Medium ? ? ?

High ? ? ?

Critical ? ? ?



Building a Contingency Table

Observed counts

Memory Crypto Input Val Row Total

Low 45 120 80 245

Medium 90 150 110 350

High 130 85 140 355

Critical 85 45 70 200

Col Total 350 400 400 1150

Memory Crypto Input Val

Low ? ? ?

Medium ? ? ?

High ? ? ?

Critical ? ? ?



Expected Counts Under Independence

If no association exists (i.e., independent) 

Expected count = (Row total × Column total) / Grand total

Memory Crypto Input Val Row Total

Low 45 120 80 245

Medium 90 150 110 350

High 130 85 140 355

Critical 85 45 70 200

Col Total 350 400 400 1150

E(Low, Memory) = (245 / 1150) × 350 = 74.6

Under independence, we’d expect ~75, but we observed only 45.



The Chi-Square Test Statistic

𝜒2 = ∑
(𝑂 − 𝐸)2

𝐸

• Sum over all cells in the table

• Large differences between O 
and E → large χ²

• Compare to χ² distribution 
with df = (rows − 1)(cols − 1)





Chi-Square in Python

from scipy.stats import chi2_contingency

# Create contingency table

cont_table = pd.crosstab(data['severity'], data['cwe_category'])

# Run chi-square test

chi2, p_value, dof, expected = chi2_contingency(cont_table)

# Print results

print(f"χ² = {chi2:.2f}, df = {dof}, p = {p_value:.4f}")

# Calculate standardized residuals manually

std_residuals = (cont_table - expected) / np.sqrt(expected)

print(std_residuals)



Running Chi-square on Sample Data

Expected output on sample_vuln_data.csv:

χ² = 110.53, df = 12, p = 0.000000000000000

The chi-square test examines whether severity and CWE category are 
independent.

• Null hypothesis: Severity distribution identical for all CWE categories

• Result: We reject H₀ (p < 0.001) — there is a significant association



Interpreting Results: Where Is the Association?

A significant χ² tells you that there’s an association, not where.

Standardized residuals: (O − E) / √E

Interpretation Meaning

Residual > +2 More than expected 
(overrepresented)

Residual < −2 Fewer than expected 
(underrepresented)



Sample data associations

Pattern Residual Meaning

Memory + High +5.37 Far more high-severity memory bugs 
than expected

Memory + Low -4.73 Far fewer low-severity memory bugs 
than expected

Other + Low +4.44 More low-severity “Other” bugs than 
expected

Crypto + Low +3.42 More low-severity crypto bugs than 
expected



Chi-Square Assumptions

1. Independence: Each observation is independent

2. Expected count rule: Most cells should have E ≥ 5

3. Categorical data: Both variables must be categorical

 Warning for large samples:

With thousands of vulnerabilities, even trivial associations are “significant”

→ Always report effect sizes!



Part 3: Comparing Two Groups —
t-test and Mann-Whitney U



The Student’s t-Test

Purpose: Test whether the means of 
two groups differ significantly

The question we’re asking:
Do exploited vulnerabilities have 
different CVSS scores (on average) than 
non-exploited vulnerabilities?

H₀: μ_exploited = μ_not_exploited
H₁: μ_exploited ≠ μ_not_exploited



t-Test: How It Works

Test statistic:

𝑡 =
᪄𝑋1 − ᪄𝑋2

𝑆𝐸𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

where SE depends on the 
pooled standard deviation 
and sample sizes

Under H₀: t follows a t-
distribution with df ≈ n₁ + n₂ − 2



t-Test Assumptions

1. Independence: Observations are independent

2. Normality: Data in each group is normally distributed

3. Equal variance: Both groups have similar variance (for standard t-
test)

How important are these?

• Independence: Critical — violations cause serious problems

• Normality: Less critical with large samples (Central Limit Theorem)

• Equal variance: Use Welch’s t-test to relax this assumption



t-Test in Python

from scipy.stats import ttest_ind

# Separate CVSS scores by exploitation status
exploited = data[data['in_kev'] == True]['cvss_base']
not_exploited = data[data['in_kev'] == False]['cvss_base']

# Welch's t-test (equal_var=False is safer)
t_stat, p_value = ttest_ind(exploited, not_exploited, 
equal_var=False)

# View results
print(f"t = {t_stat:.3f}, p = {p_value:.4f}")
print(f"Mean (exploited): {exploited.mean():.2f}")
print(f"Mean (not exploited): {not_exploited.mean():.2f}")
print(f"Difference: {exploited.mean() -
not_exploited.mean():.2f}")



Running t-Test on Sample Data

Expected output on sample_vuln_data.csv:

t = 5.098, p = 0.00001

Mean (exploited): 6.26

Mean (not exploited): 5.22

Difference: 1.04

Interpretation:

Exploited vulnerabilities have significantly higher CVSS scores (M = 
6.26) than non-exploited ones (M = 5.22), t(37.5) = 5.098, p < 0.00001.



Checking Normality

Visual checks:

• Histogram — is it roughly bell-
shaped?



Checking Normality

Visual checks:

• Histogram — is it roughly bell-
shaped?

• Q-Q plot — do points follow 
the diagonal?

Statistical tests: Shapiro-Wilk 
test (but sensitive with large n)

The Shapiro-Wilk test shows:                                                                                
  - Statistic: 0.9985 (suggests normality)                                                               
  - p-value: 0.062  (rejects NH – appear normal)                                                                                



Data visualized, according to KEV status



Parametric vs. Non-Parametric Tests

Criterion Parametric (t-test) Non-Parametric (Mann-Whitney)

Assumption Normal distribution (or 
n is large)

No distributional assumption

Data type Continuous, interval Ordinal or continuous

Sensitivity More powerful if 
assumptions met

Robust to outliers, skewness

Measures Compares means Compares ranks/distributions

Use t test when you can, Mann-Whitney when you must



Mann-Whitney U Test

Also called: Wilcoxon rank-sum test

Purpose: Test whether one group tends to have larger values than another

How it works:

1. Combine both samples and rank all values (1 = smallest)

2. Sum the ranks for each group

3. The U statistic measures overlap between groups

H₀: The distributions are identical
H₁: One group tends to have larger values



Mann-Whitney: Visual Intuition

High overlap → U statistic near expected value → large p

Low overlap → U statistic far from expected → small p



Mann-Whitney in Python

from scipy.stats import mannwhitneyu

# Separate groups
exploited = data[data['in_kev'] == True]['cvss_base']
not_exploited = data[data['in_kev'] == False]['cvss_base']

# Mann-Whitney U test
u_stat, p_value = mannwhitneyu(exploited, not_exploited, 

alternative='two-sided')

# View results  
print(f"U = {u_stat:.0f}, p = {p_value:.4f}")
print(f"Median (exploited): {exploited.median():.2f}")
print(f"Median (not exploited): 
{not_exploited.median():.2f}")



Running Both Tests on Sample Data

t-test:

t = 5.098, p < 0.00001

Mean difference = 1.04

Mann-Whitney U:

U = 52580, p < 0.000003 

Median (exploited) = 6.40, Median (not exploited) = 5.2

Both agree: Strong evidence that exploited vulnerabilities have higher CVSS scores



Pitfall: Unclear Test Specification

Ambiguous: “We used a Wilcoxon test”

This could mean:

• Mann-Whitney U (Wilcoxon rank-sum) — independent samples

• Wilcoxon signed-rank — paired samples

Clear: “We used a Mann-Whitney U test (Wilcoxon rank-sum) to 
compare CVSS scores between exploited and non-exploited 
vulnerabilities.”



Part 4: Effect Sizes



Why p-values Are Not Enough

The problem: With large samples, even 
trivial differences become “significant”

Example: With 200,000+ CVEs, a difference 
of 0.1 CVSS points might suggest a p < 0.001 
statistically significant different frequency of 
exploitability

Is that difference practically meaningful for 
security prioritization?

80% of papers had incomplete scientific significance reporting 



Effect Sizes: The Solution

Effect size
A standardized measure of the magnitude of a difference or association

Two key effect sizes for comparing groups

Effect Size Use Case

Cohen’s d Parametric (with t-test)

Vargha-Delaney A Non-parametric (with Mann-Whitney)



Cohen’s d (Parametric Effect Size)

Formula

𝑑 =
᪄𝑋1 − ᪄𝑋2
𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑

Interpretation: How many standard deviations apart are the means?

d

0.2 Small

0.5 Medium

0.8 Large



Cohen’s d: Visual



Cohen’s d in Python

import pingouin as pg # Install: pip install pingouin

# Compute Cohen's d
d_value = pg.compute_effsize(exploited, not_exploited, 
eftype='cohen')
print(f"Cohen's d = {d_value:.2f}")

# Interpretation
if abs(d_value) < 0.2:

magnitude = "negligible"
elif abs(d_value) < 0.5:

magnitude = "small"
elif abs(d_value) < 0.8:

magnitude = "medium"
else:

magnitude = "large"
print(f"Magnitude: {magnitude}")



Vargha-Delaney A (Non-Parametric Effect Size)

What it measures: The probability that a randomly selected value from 
group A exceeds a randomly selected value from group B

Interpretation A value Meaning

0.50 No difference (coin flip)

0.56 Small effect

0.64 Medium effect

0.71 Large effect

→ 1.0 A always exceeds B



Vargha-Delaney A: Visual

A = 0.50: Complete overlap    A = 0.64: Moderate separation
A = 0.85: Clear separation



Vargha-Delaney A in Python

import pingouin as pg

# Method 1: Get A directly from Mann-Whitney test
mw_result = pg.mwu(exploited, not_exploited, 
alternative='two-sided')
print(mw_result)
# Look at the 'CLES' column — this is Vargha-Delaney A

# Method 2: Compute manually (CLES = Common Language 
Effect Size)
# A = U / (n1 * n2) where U is Mann-Whitney U statistic
from scipy.stats import mannwhitneyu
u_stat, _ = mannwhitneyu(exploited, not_exploited)
n1, n2 = len(exploited), len(not_exploited)
vd_a = u_stat / (n1 * n2)
print(f"Vargha-Delaney A = {vd_a:.2f}")



Running Effect Sizes on Sample Data

Cohen’s d (parametric):

Cohen's d = 0.81

Magnitude: large

Vargha-Delaney A (non-parametric):

Vargha-Delaney A = 0.72 (large effect)

Interpretation:

Both effect sizes indicate a large effect. Exploited vulnerabilities have 
substantially higher CVSS scores than non-exploited ones.



Pitfall: Conflating Statistical and Practical 
Significance

Scenario

With n = 100,000 vulnerabilities:

• Mean CVSS (exploited) = 7.15

• Mean CVSS (non-exploited) = 7.05

• p < 0.001, d = 0.08

Statistically significant? Yes

Practically significant? Probably not!



Part 5: Bootstrapped Confidence 
Intervals



Confidence Intervals

Problem: We are computing a value on a sample from a broader 
population. How close is our estimate to the true value?

Solution: Confidence interval (CI)

The CI is a range; the confidence level (e.g., 95%) of  it indicates how 
often the true value falls within the CI over repeated sampling (i.e., in 
the sampling distribution)

Challenge: How to compute CI?



The Bootstrap Idea

Problem: We want a confidence interval for a statistic (e.g., median 
difference), but we don’t know its sampling distribution

Solution: Simulate the sampling distribution by resampling our data



Bootstrap Procedure

1. Draw a sample of size n with replacement from your data (which 
itself has n elements)

2. Compute the statistic of interest (e.g., median difference)

3. Repeat 10,000 times

4. Use the 2.5th and 97.5th percentiles as the 95% CI



Bootstrap Procedure



Why Bootstrap?

• No distributional assumptions — works for any statistic

• Works for complex statistics — medians, ratios, custom quantities

• Intuitive interpretation — “we’re 95% confident the true value lies in 
this range”



Bootstrap in Python

import numpy as np

def bootstrap_median_diff(data, n_boot=10000):
"""Bootstrap 95% CI for median difference."""
# Separate groups
exploited = data[data['in_kev'] == True]['cvss_base'].values
not_exploited = data[data['in_kev'] == False]['cvss_base'].values

# Store bootstrap statistics
diffs = []
for _ in range(n_boot):

# Resample each group with replacement
e_sample = np.random.choice(exploited, size=len(exploited), replace=True)
n_sample = np.random.choice(not_exploited, size=len(not_exploited), replace=True)
# Compute median difference
diffs.append(np.median(e_sample) - np.median(n_sample))

# Return 2.5th and 97.5th percentiles
return np.percentile(diffs, [2.5, 97.5])

ci = bootstrap_median_diff(data)
print(f"95% CI for median difference: [{ci[0]:.2f}, {ci[1]:.2f}]")



Running Bootstrap on Sample Data

Bootstrap 95% CI for median difference: [0.50, 1.50]

Interpretation

“The median CVSS of exploited vulnerabilities is 0.90 points higher than 
non-exploited vulnerabilities, 95% CI [0.50, 1.50].”

The CI doesn’t include zero → significant difference in medians.



Bootstrap on our data, visualized



Part 6: Common Pitfalls



Tang et al. Findings

• 97% of papers had at least one statistical issue

• 23% had incorrect tests (e.g., non-independence violations)

• 86% had incomplete statistical significance reporting

• 80% had incomplete practical significance reporting

• 26% had misinterpretations



The Multiple Comparisons Problem

The problem: At α = 0.05, expect 1 false positive per 20 tests by chance

Example

Testing whether CVSS differences across 10 CWE categories = 45 
pairwise comparisons

Expected false positives by chance: ~2-3



Solutions: Bonferroni Correction

Bonferroni: Divide α by the number of tests

𝛼𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
0.05

𝑘

For 10 tests: 𝛼𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.005

Pros: Simple, conservative
Cons: Very conservative — increases false negatives



Solutions: Benjamini-Hochberg (FDR)

FDR (False Discovery Rate): Controls the expected proportion of false 
positives among rejected hypotheses

Procedure:

1. Order p-values smallest to largest

2. Compare each p-value to (rank / k) × α

3. Reject all hypotheses up to the largest one that passes

Less conservative than Bonferroni — better for exploratory analysis



Multiple Comparisons in Python

from statsmodels.stats.multitest import multipletests
import numpy as np

# P-values from multiple tests
p_values = np.array([0.001, 0.01, 0.03, 0.04, 0.08, 0.12])

# Bonferroni correction
reject_bonf, p_bonf, _, _ = multipletests(p_values, 
method='bonferroni')

# Benjamini-Hochberg (FDR) correction  
reject_fdr, p_fdr, _, _ = multipletests(p_values, 
method='fdr_bh')

# Display results
for i, p in enumerate(p_values):

print(f"p={p:.3f} -> Bonf: {p_bonf[i]:.3f}
(sig={reject_bonf[i]}), "

f"FDR: {p_fdr[i]:.3f} (sig={reject_fdr[i]})")



Pitfall: Ignoring Non-Independence

The problem: Most tests assume independent observations

Common violations in security research:

• Multiple vulnerabilities from the same vendor

• Multiple CVEs from the same software product

• Vulnerabilities discovered by the same researcher

Ask yourself: “Could any two data points be more similar to each other 
than to a random pair?”



Pitfall: Reporting Only p-values

Insufficient: “There was a significant difference (p = 0.02).”

Complete reporting includes:

1. The exact test name

2. Test statistic and degrees of freedom

3. Exact p-value (or p < 0.001)

4. Effect size

5. Descriptive statistics for each group



Complete Reporting Example

Bad:

“There was a significant difference (p = 0.02).”

Good:

“Exploited vulnerabilities had significantly higher CVSS scores 
(Mdn = 6.30, IQR = 1.85) than non-exploited vulnerabilities 
(Mdn = 5.30, IQR = 2.40), Mann-Whitney U = 56,789, p < 
0.001, Vargha-Delaney A = 0.74 (large effect).”



Lecture 1 Checklist

Statistical Validity:

• ☐ Is my test appropriate for my data type?

• ☐ Have I accounted for non-independence?

• ☐ Am I using paired tests for paired data?

Multiple Comparisons:

• ☐ Have I corrected for multiple comparisons?

Reporting:

• ☐ Test name, statistic, df, p-value?

• ☐ Effect size?

• ☐ Descriptive statistics with variability?



Lecture 1 Summary
Concept Key Takeaway Project Use

p-values P(data | H₀), not P(H₀ is true)

Chi-square Association between categorical variables Severity × CWE

t-test Parametric comparison of means When data is normal

Mann-Whitney U Non-parametric group comparison Exploited vs. not

Cohen’s d Parametric effect size With t-test

Vargha-Delaney A Non-parametric effect size With Mann-Whitney

Bootstrapping CIs without assumptions Median differences

Multiple comparisons Correct when running many tests Post-hoc tests



Recommended Readings

Primary Textbook (Franke):

• Section 16.2 — p-values

• Section 16.6.1 — Chi-square

• Section 12.1 — Linear regression

• Section 15.2 — Logistic regression

Secondary Textbook (Seltman):

• Chapter 6.2 — Hypothesis testing

• Chapter 9 — Linear regression

• Chapter 16.2-16.3 — Chi-square and logistic
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