
Secure Systems Engineering
and Management

A Data-driven Approach

Security analytics:
Intro to data analysis (part 2)

Michael Hicks
UPenn CIS 7000-003
Spring 2026

Hypothesis Testing, Effect Sizes, and Regression

Lecture 2: Regression Models —
Linear and Logistic

Lecture 2 Overview

Topics:

• Linear regression fundamentals

• Categorical predictors (dummy coding)

• Model comparison (likelihood-ratio tests)

• Logistic regression for binary outcomes

• Odds ratios and predicted probabilities

• Common regression pitfalls

Part 1: Linear Regression
Foundations

The Linear Model

Goal: Explain aspects of some empirical data
How? Model a continuous outcome (Y)

as a linear function of predictors (X)

Equation:
𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝜖

where

• β₀ = intercept

• βᵢ = slope (change in Y per unit X)

• ε = residual error

Ordinary Least Squares (OLS)

Objective: Fit data to a linear model

Approach: Find coefficients that minimize the sum of squared residuals

𝑅𝑆𝑆 =෍

𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖)
2

Real data Predicted by the model

Residual

Key Regression Outputs

Output Meaning

β̂ (coefficients) Estimated slopes and intercept

Standard errors Uncertainty in coefficient estimates

t-statistics β̂ / SE — tests if coefficient ≠ 0

p-values Significance of each coefficient

R² Proportion of variance explained

Adjusted R² penalizes for adding more predictors and is often preferred.

Interpreting Coefficients

Example: Predicting CVSS from subscores

𝐶𝑉𝑆𝑆 = 𝛽0 + 𝛽1 × 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝛽2 × 𝐼𝑚𝑝𝑎𝑐𝑡

Coefficient Interpretation

β₀ (Intercept) Predicted CVSS when Exploitability = 0 and Impact = 0

β₁ Expected change in CVSS for 1-unit increase in
Exploitability, holding Impact constant

β₂ Expected change in CVSS for 1-unit increase in Impact,
holding Impact constant

Actual CVSS: Not linear

For CVSS v2, the base score is computed as:

𝐶𝑉𝑆𝑆
= round((0.6 × Impact + 0.4 × Exploitability− 1.5) × 𝑓 Impact)

where:

• 𝑓 Impact = 1.176 if Impact > 0, otherwise 0

• The result is rounded to 1 decimal place

Linear Regression in Python

import statsmodels.formula.api as smf

Fit linear model using formula interface
model = smf.ols('cvss_base ~ exploitability + impact',
data=data).fit()

View comprehensive summary
print(model.summary())

Extract specific components
print("Coefficients:")
print(model.params) # Coefficients
print("\n95% CIs:")
print(model.conf_int()) # Confidence intervals
print(f"\nR² = {model.rsquared:.3f}")
print(f"Adjusted R² = {model.rsquared_adj:.3f}")

Running Linear Regression on Sample Data

Model: cvss_base ~ exploitability + impact
coef std err t P>|t| [0.025 0.975]

Intercept 0.4157 0.092 4.50 <0.001 0.235 0.597

exploitability 0.3698 0.011 34.38 <0.001 0.349 0.391

impact 0.3886 0.012 33.78 <0.001 0.366 0.411

R² = 0.588, Adjusted R² = 0.587

. . .

Interpretation:

• Each 1-point increase in exploitability → +0.37 CVSS (holding impact constant)

• Each 1-point increase in impact → +0.39 CVSS (holding exploitability constant)

• Model explains 59% of variance in CVSS

Part 2: Categorical Predictors

The Problem

Regression requires numeric predictors.

But CWE category is categorical:

• “Memory”

• “InputValidation”
. . .

• “Crypto”

• “Auth”

Solution: Convert to numeric using dummy coding

Dummy Coding (Treatment Coding)

Convert a k-level categorical variable into k−1 binary indicators:

CWE Category Is_InputVal Is_Memory Is_Crypto

Auth
(reference)

0 0 0

InputValidation 1 0 0

Memory 0 1 0

Crypto 0 0 1

Why k−1 Dummies?

Including all k dummies creates perfect multicollinearity:

If Is_InputVal = Is_Memory = Is_Crypto = 0, it must be Auth

The reference category is already fully determined by the others

Interpreting Dummy Coefficients

Model:
𝐶𝑉𝑆𝑆 = 𝛽0 + 𝛽1 × 𝐼𝑠_𝑀𝑒𝑚𝑜𝑟𝑦 + 𝛽2 × 𝐼𝑠_𝐶𝑟𝑦𝑝𝑡𝑜+. . .

Example output:

Coefficient Estimate p-value

Intercept 5.10 <0.001

Is_Memory 0.42 0.001

Is_Crypto -0.21 0.082

Interpretation:

• Auth vulnerabilities (reference) have mean CVSS = 5.10

• Memory vulnerabilities have CVSS 0.42 higher than Auth

• Crypto vulnerabilities do not significantly differ from Auth

Coefficient Estimate p-value

Intercept 5.10 <0.001

Is_Memory 0.42 0.001

Is_Crypto -0.21 0.082

Choosing the Reference Level

Defaults:

• R: Alphabetically first, or lowest numeric value

• Python (statsmodels): Same

Better approach: Choose a meaningful baseline

• Most common category

• Control/baseline condition

• Theoretically neutral category

Setting Reference Level in Python

import statsmodels.formula.api as smf

Method 1: Specify reference in formula using C()
model = smf.ols(

'cvss_base ~ exploitability + impact + C(cwe_category,
Treatment(reference="Auth"))',

data=data
).fit()

print(model.summary())

Method 2: Reorder categories in DataFrame first
data['cwe_category'] = pd.Categorical(

data['cwe_category'],
categories=['Auth', 'Crypto', 'InputValidation', 'Memory', 'Other']

)
model2 = smf.ols('cvss_base ~ exploitability + impact + cwe_category',

data=data).fit()

Running Linear Regression with Categorical Predictor

coef std err t p>|t| [0.025 0.975]

Intercept 0.4176 0.112 3.73 <0.001 0.198 0.637

cwe_category[Crypto] -0.0422 0.069 -0.61 0.539 -0.177 0.093

cwe_category[InputVal] -0.0202 0.060 -0.34 0.738 -0.139 0.098

cwe_category[Memory] 0.0495 0.061 0.82 0.415 -0.070 0.169

cwe_category[Other] 0.0671 0.071 0.95 0.343 -0.072 0.206

exploitability 0.3692 0.011 34.31 <0.001 0.348 0.390

impact 0.3871 0.013 30.71 <0.001 0.362 0.412

R² = 0.589, Adjusted R² = 0.588

Model: cvss_base ~ exploitability + impact + C(cwe_category, ref=“Auth”)

Pitfall: Forgetting the Reference Category

Bad:

Better:

Predictor Coefficient

Is_Memory 0.42

Is_Crypto -0.21

Predictor Coefficient

Is_Auth –

Is_Memory 0.42

Is_Crypto -0.21

. . .

Wrong: “Memory vulnerabilities have severity 0.42”

Also wrong: “Memory vulnerabilities are 0.63 more severe than
Crypto”

. . .

Right: “Memory vulnerabilities have CVSS 0.42 higher than the
reference (Auth). Crypto vulnerabilities have CVSS 0.21 lower than
Auth.”

Pitfall: Forgetting the Reference Category

Part 3: Model Comparison

The Problem

You’ve fit two models:

• Model 1 (simple): cvss ~ exploitability + impact

• Model 2 (complex): cvss ~ exploitability + impact + cwe_category

Question: Does adding CWE category significantly improve the model?

Likelihood-Ratio Test

Logic: Compare how well each model fits the data via their likelihoods

Test statistic:
𝐿𝑅 = 2 × (𝐿𝐿𝑓𝑢𝑙𝑙 − 𝐿𝐿𝑟𝑒𝑑𝑢𝑐𝑒𝑑)

Under H₀ (reduced model is adequate):

𝐿𝑅 ∼ 𝜒𝑑𝑓
2

where df = difference in number of parameters

LR Test in Python

import statsmodels.formula.api as smf

Fit nested models
model1 = smf.ols('cvss_base ~ exploitability + impact',
data=data).fit()
model2 = smf.ols('cvss_base ~ exploitability + impact +
C(cwe_category)',

data=data).fit()

Compare R² values
print(f"Model 1 R²: {model1.rsquared:.3f}")
print(f"Model 2 R²: {model2.rsquared:.3f}")

Likelihood-ratio test
lr_stat, p_value, df_diff = model2.compare_lr_test(model1)
print(f"LR = {lr_stat:.2f}, df = {df_diff}, p =
{p_value:.4f}")

Interpreting LR Test Results

Significant (p < 0.05):

• The additional predictors improve model fit

• Keep the fuller model

Non-significant (p ≥ 0.05):

• The simpler model is adequate

• Prefer parsimony (fewer predictors)

LR Test: Does CWE Category Improve Our Model?

Model 1 (reduced): cvss_base ~ exploitability + impact

Model 2 (full): cvss_base ~ exploitability + impact + cwe_category

Model 1 R²: 0.588 Model 2 R²: 0.589

LR = 4.68, df = 4, p = 0.3223

Result: Not significant (p = 0.32 >> 0.05)

• Adding CWE category does not significantly improve model fit

• The simpler model is adequate — prefer parsimony

• R² increase is negligible (0.588 → 0.589)

Part 4: Logistic Regression

Predicting Binary Outcomes

Goal: Predict whether a vulnerability is actively exploited (in KEV catalog)

Outcome: Binary (0 = not exploited, 1 = exploited)

Why linear regression fails:

• Can predict values outside [0, 1]

• Residuals cannot be normally distributed

• Violates constant variance assumption

The Logistic Model

Solution: Model the log-odds of the outcome as a linear function:

log
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . .

where p = P(Y = 1)

Logistic function maps log-odds to probabilities:

𝑝 =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+...)

Odds and Log-Odds

Odds:

odds =
𝑝

1 − 𝑝

If p = 0.75, odds = 0.75/0.25 = 3:1 (“3 to 1”)

Log-odds (logit):

logit(𝑝) = log(odds) = log
𝑝

1 − 𝑝

If p = 0.5, log-odds = 0
If p = 0.75, log-odds = 1.1

Interpreting Coefficients: Log-Odds

Log-odds coefficient (β):

“A one-unit increase in X is associated with a β change in the log-
odds of the outcome.”

Example:

β₁ = 0.5 for CVSS score

“Each 1-point increase in CVSS is associated with a 0.5 increase in
the log-odds of exploitation.”

Problem: This is not intuitive!

Interpreting Coefficients: Odds Ratios

Odds ratio (OR):
𝑂𝑅 = 𝑒𝛽

“A one-unit increase in X multiplies the odds by OR.”

Odds Ratio Interpretation

OR = 1 No association

OR > 1 Higher odds (positive association)

OR < 1 Lower odds (negative association)

Odds Ratio Example

Coefficient: βCVSS = 0.5

Odds ratio: e0.5 = 1.65

Interpretation:

“Each 1-point increase in CVSS is associated with 1.65 times
the odds of being exploited.”

Or equivalently:

“Each 1-point increase in CVSS increases the odds of
exploitation by 65%.”

Logistic Regression in Python

import statsmodels.formula.api as smf
import numpy as np
Fit logistic regression
log_model = smf.logit('in_kev ~ cvss_base + C(cwe_category)',

data=data).fit()
View summary (log-odds coefficients)
print(log_model.summary())
Convert to odds ratios
print("\nOdds Ratios:")
print(np.exp(log_model.params))
95% CIs for odds ratios
print("\n95% CIs for Odds Ratios:")
print(np.exp(log_model.conf_int()))

pd.DataFrame({

'OR': np.exp(log_model.params),

'2.5%': np.exp(log_model.conf_int()[0]),

'97.5%': np.exp(log_model.conf_int()[1])

})

Running Logistic Regression on Sample Data

Model: in_kev ~ cvss_base + cwe_category (reference = Auth)

coef OR [95% CI OR] p

Intercept -8.07 0.00 <0.001

cvss_base 0.60 1.82 [1.39, 2.39] <0.001

C(cwe_category)[Crypto] 0.74 2.10 [0.49, 8.96] 0.317

C(cwe_category)[InputVal] 0.72 2.06 [0.56, 7.59] 0.278

C(cwe_category)[Memory] 0.99 2.69 [0.77, 9.32] 0.119

C(cwe_category)[Other] -0.10 0.91 [0.15, 5.52] 0.915

Key interpretation:

Each 1-point increase in CVSS → 1.82× the odds of exploitation (p < 0.001)

Converting to Predicted Probabilities

Most interpretable: What’s the probability for a specific scenario?

ො𝑝 =
1

1 + 𝑒−(෡𝛽0+෡𝛽1𝑥1+...)

Example predictions from our model:

CVSS CWE Category P(exploitation)

4.0 Auth 0.3%

6.0 Auth 1.1%

8.0 Auth 3.6%

8.0 Memory 9.2%

Predicted Probabilities in Python

Create scenarios for prediction

new_data = pd.DataFrame({

'cvss_base': [4.0, 6.0, 8.0, 8.0],

'cwe_category': ['Auth', 'Auth', 'Auth', 'Memory']

})

Predict probabilities

predictions = log_model.predict(new_data)

Display

new_data['prob'] = predictions.round(3)

print(new_data)

Pitfall: Incorrect Scale in Logistic Regression

The coefficient is 0.52…

“Higher CVSS increases exploitation by 0.52”

“Higher CVSS increases exploitation by 52%”

✓ “The log-odds coefficient is 0.52, corresponding to an odds ratio of
1.68”

✓ “Each 1-point CVSS increase is associated with 1.68× the odds of
exploitation”

✓ “Predicted probability rises from 1.5% at CVSS=6 to 4% at CVSS=8”

Part 5: Regression Pitfalls

Caution: Class Imbalance in Your Data

KEV catalog: ~1,200 actively exploited CVEs
Total CVEs: ~250,000+

Exploitation rate: < 0.5%

In our sample data: 37 exploited out of 2,000 (1.8%)

Why Rare Events Are Challenging

1. Accuracy is misleading: Predicting “not exploited” for everything
gives 98%+ accuracy

2. Coefficients may be unstable: Few positive cases → high variance

3. Predicted probabilities may be miscalibrated: Systematically
under- or over-estimated

Better Metrics for Rare Events

Metric Meaning

Sensitivity (Recall) Of exploited CVEs, what % did we catch?

Precision Of CVEs we flagged, what % are actually exploited?

F1 score Harmonic mean of precision and recall

AUC-ROC Overall discriminative ability

✓ Practical Guidance

• Report sensitivity and specificity, not just accuracy

• Consider whether the base rate makes prediction meaningful

• Acknowledge class imbalance as a limitation

• Use the logistic model to understand associations, not for
operational prediction

Pitfall: Not Reporting Model Fit

The problem: Coefficients can be “significant” even if the model
explains almost nothing.

Example of misleading results:

“CWE category significantly predicts CVSS (p < 0.001)”

But if R² = 0.02… the model explains only 2% of variance!

Always report
Model Type Report

Linear R², Adjusted R²

Logistic Pseudo-R² (McFadden),
comparison to null model

Pitfall: Unclear Model Specification

Ambiguous: “We ran a logistic regression to predict exploitation.”

Clear: “We fit a logistic regression predicting KEV inclusion (1 = in
catalog, 0 = not) from:

• CVSS base score (continuous)

• CWE category (dummy-coded, reference = Auth)

• Publication year (continuous, centered at 2020)

No interactions were included.”

Pitfall: Regression ≠ Causation

The problem: Regression shows association, not causation.

“Our regression shows that higher CVSS scores cause
vulnerabilities to be exploited.”

✓ “Higher CVSS scores are associated with greater likelihood of
exploitation. However, this association may reflect confounding factors
rather than a causal relationship.”

Pitfall: Selectively Reporting Coefficients

The problem: Reporting only “significant” predictors gives incomplete picture.

Wrong:

“We found that Memory vulnerabilities (p = 0.02) predict higher CVSS.”

Better:

“We report all coefficients in Table 3. Memory (+0.42, p = 0.001) showed
significantly higher CVSS than Auth (reference). Crypto (-0.21, p = 0.08)
and InputValidation (-0.08, p = 0.52) did not significantly differ.”

Regression Reporting Checklist

Model Specification:

☐ All predictors listed

☐ Reference categories specified

☐ Transformations described

☐ Interactions noted

Model Fit:

☐ R² or pseudo-R² reported

☐ Comparison to null model

Coefficients:

☐ All coefficients reported
(not just significant ones)

☐ Odds ratios for logistic regression

☐ Confidence intervals for key estimates

Interpretation:

☐ Coefficients interpreted relative to ref.

☐ Association, not causation, language

Complete Regression Reporting Example

“We fit a logistic regression predicting KEV inclusion from CVSS base score
and CWE category (dummy-coded, reference = Auth). Results are shown
in Table 2.

The model significantly outperformed the null model (LR = 28.5, df = 5, p <
0.001), though McFadden’s pseudo-R² was modest (0.08). Higher CVSS
was associated with increased exploitation odds (OR = 1.68 per point, 95%
CI [1.34, 2.12]). CWE categories did not significantly differ from the Auth
reference (all p > 0.10), though Memory showed a trend toward higher
odds (OR = 2.07, 95% CI [0.85, 5.06]).

These associations do not imply causation; unmeasured confounders may
explain the observed relationships.”

Lecture 2 Summary
Concept Key Takeaway Example Use

Linear regression Model continuous outcome from
predictors

CVSS ~ subscores

Dummy coding Convert categorical to numeric CWE category

Reference level Coefficients are differences from reference Specify explicitly

LR test Compare nested models Does CWE help?

Logistic regression Model binary outcome via log-odds Predict exploitation

Odds ratios e^β — multiplicative effect Interpret coefficients

Rare events Accuracy misleading; use sensitivity KEV prediction

Appendix: Quick Reference

Sample Data Summary

File: sample_vuln_data.csv

Variable Type Description

cve_id string CVE identifier

pub_year int Publication year (2018-2024)

cwe_category categorical Memory, InputValidation, Crypto, Auth, Other

cvss_base numeric CVSS score (0-10)

impact numeric Impact subscore

exploitability numeric Exploitability subscore

severity ordered Low < Medium < High < Critical

in_kev boolean TRUE if actively exploited

Python Function Reference

Task Python Function

Chi-square test scipy.stats.chi2_contingency()

t-test scipy.stats.ttest_ind()

Mann-Whitney U scipy.stats.mannwhitneyu()

Mann-Whitney + effect size pingouin.mwu()

Cohen’s d pingouin.compute_effsize()

Linear regression statsmodels.formula.api.ols()

Logistic regression statsmodels.formula.api.logit()

LR test model.compare_lr_test()

Multiple comparison correction statsmodels.stats.multitest.multipletests()

Effect Size Interpretation Guide

Cohen’s d (parametric):

d Interpretation

0.2 Small

0.5 Medium

0.8 Large

A Interpretation

0.56 Small

0.64 Medium

0.71 Large

Vargha-Delaney A (non-parametric):

Recommended Readings

Primary Textbook (Franke):

• Section 16.2 — p-values

• Section 16.6.1 — Chi-square

• Section 12.1 — Linear regression

• Section 15.2 — Logistic regression
(Seltman better)

Secondary Textbook (Seltman):

• Chapter 6.2 — Hypothesis testing

• Chapter 9 — Linear regression

• Chapter 16.2-16.3 — Chi-square and logistic regression

https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf

	Slide 1: Secure Systems Engineering and Management
	Slide 2: Lecture 2: Regression Models — Linear and Logistic
	Slide 3: Lecture 2 Overview
	Slide 4: Part 1: Linear Regression Foundations
	Slide 5: The Linear Model
	Slide 6: Ordinary Least Squares (OLS)
	Slide 7
	Slide 8: Key Regression Outputs
	Slide 9: Interpreting Coefficients
	Slide 10: Actual CVSS: Not linear
	Slide 12: Linear Regression in Python
	Slide 13: Running Linear Regression on Sample Data
	Slide 14: Part 2: Categorical Predictors
	Slide 15: The Problem
	Slide 16: Dummy Coding (Treatment Coding)
	Slide 17: Why k−1 Dummies?
	Slide 18: Interpreting Dummy Coefficients
	Slide 19
	Slide 20: Choosing the Reference Level
	Slide 22: Setting Reference Level in Python
	Slide 23: Running Linear Regression with Categorical Predictor
	Slide 24: ⚠️ Pitfall: Forgetting the Reference Category
	Slide 25: ⚠️ Pitfall: Forgetting the Reference Category
	Slide 26: Part 3: Model Comparison
	Slide 27: The Problem
	Slide 28: Likelihood-Ratio Test
	Slide 30: LR Test in Python
	Slide 31: Interpreting LR Test Results
	Slide 32: LR Test: Does CWE Category Improve Our Model?
	Slide 33: Part 4: Logistic Regression
	Slide 34: Predicting Binary Outcomes
	Slide 35: The Logistic Model
	Slide 36
	Slide 37: Odds and Log-Odds
	Slide 38: Interpreting Coefficients: Log-Odds
	Slide 39: Interpreting Coefficients: Odds Ratios
	Slide 40: Odds Ratio Example
	Slide 42: Logistic Regression in Python
	Slide 43: Running Logistic Regression on Sample Data
	Slide 44: Converting to Predicted Probabilities
	Slide 46: Predicted Probabilities in Python
	Slide 47: ⚠️ Pitfall: Incorrect Scale in Logistic Regression
	Slide 48: Part 5: Regression Pitfalls
	Slide 49: ⚠️ Caution: Class Imbalance in Your Data
	Slide 50: Why Rare Events Are Challenging
	Slide 51: Better Metrics for Rare Events
	Slide 52: ✓ Practical Guidance
	Slide 53: ⚠️ Pitfall: Not Reporting Model Fit
	Slide 54: ⚠️ Pitfall: Unclear Model Specification
	Slide 55: ⚠️ Pitfall: Regression ≠ Causation
	Slide 56: ⚠️ Pitfall: Selectively Reporting Coefficients
	Slide 57: Regression Reporting Checklist
	Slide 58: Complete Regression Reporting Example
	Slide 59: Lecture 2 Summary
	Slide 60: Appendix: Quick Reference
	Slide 61: Sample Data Summary
	Slide 63: Python Function Reference
	Slide 64: Effect Size Interpretation Guide
	Slide 65: Recommended Readings

