Secure Systems Engineering

and Management
A Data-driven Approach

i

Security analytics:
Intro to data analysis (part 2)

. . .) Michael Hicks
Hypothesis Testing, Effect Sizes, and Regression UPenn CIS 7000-003

Spring 2026

_ecture 2: Regression Models —
Linear and Logistic

Lecture 2 Overview

Topics:

* Linear regression fundamentals
 Categorical predictors (dummy coding)

* Model comparison (likelihood-ratio tests)
* Logistic regression for binary outcomes

* Odds ratios and predicted probabilities

« Common regression pitfalls

Part 1: Linear Regression
-oundations

The Linear Model

Goal: Explain aspects of some empirical data
How? Model a continuous outcome (Y)
as a linear function of predictors (X)

Equation:
Y = By + B1X1 + BrXo+... €
where
* Bo = intercept
* B; = slope (change in Y per unit X)
* € = residual error

Ordinary Least Squares (OLS)

Objective: Fit data to a linear model
Approach: Find coefficients that rplinimize the sum of squared residuals

RSS = E(yi — 371)2 Residual
i=1

Realdata Predicted by the model

@
—_
o
|

n
@
%))
©

m

n

n

=

O

Linear Regression: Minimizing Sum of Squared Residuals

(¢ = 2.55 + 0.44 x Impact

@ @

— Regression line

/

Impact Subscore

9

Residual
(y-y)

Key Regression Outputs

B (coefficients) Estimated slopes and intercept

Standard errors Uncertainty in coefficient estimates

t-statistics B / SE — tests if coefficient # 0

p-values Significance of each coefficient

Proportion of variance explained

Adjusted R? penalizes for adding more predictors and is often preferred.

Interpreting Coefficients

Example: Predicting CVSS from subscores

CVSS = B, + 1 X Exploitability + [, X Impact

Bo (Intercept) Predicted CVSS when Exploitability = 0 and Impact =0

B+ Expected change in CVSS for 1-unit increase in
Exploitability, holding Impact constant

B Expected change in CVSS for 1-unit increase in Impact,
holding Impact constant

Actual CVSS: Not linear

For CVSS v2, the base score is computed as:

CVSS
= round((0.6 X Impact + 0.4 X Exploitability — 1.5) X f(Impact))

where;:

* f(Impact) = 1.176 if Impact > 0, otherwise 0
* The result is rounded to 1 decimal place

Linear Regression in Python

statsmodels.formula.api smf
Fit linear model using formula interface .
model = smf.ols('cvss base ~ exploitability + impact',
data=data) .fit ()

View comprehensive summary
(model.summary ())

Extract specific components

f"\nR? = {model.rsquared:.3f}") .
f"Adjusted R? = {model.rsquared adj:.3f}")

("Coefficients:")

(model .params) # Coefficients

("\n95% CIs:")

(model.conf int()) # Confidence intervals
(

(

Running Linear Regression on Sample Data

Model: cvss_base ~ exploitability + impact

coef std err t P> t| [0.025 0.975]
Intercept 0.4157 0.092 4.50 <0.001 0.235 0.597
exploitability 0.3698 0.011 34.38 <0.001 0.349 0.391
impact 0.3886 0.012 33.78 <0.001 0.366 0.411

R? = 0.588, Adjusted R? = 0.587

Interpretation:

* Each 1-point increase in exploitability - +0.37 CVSS (holding impact constant)
* Each 1-pointincrease inimpact - +0.39 CVSS (holding exploitability constant)
* Model explains 59% of variance in CVSS

Part 2: Categorical Predictors

The Problem

Regression requires numeric predictors.
But CWE category is categorical:
* “Memory”

* “InputValidation”

* “Crypto”
° ”Auth”

Solution: Convert to numeric using dummy coding

Dummy Coding (Treatment Coding)

Convert a k-level categorical variable into k-1 binary indicators:

CWE Category | Is_InputVal | Is_Memory | Is_Crypto

Auth
(reference)

InputValidation

Memory

Crypto

Why k=1 Dummies?

Including all k dummies creates perfect multicollinearity:
If Is_InputVal = Is_Memory =Is_Crypto =0, it must be Auth

The reference category is already fully determined by the others

Interpreting Dummy Coefficients

Model:
CVSS = By + B1 X Is_Memory + [, X Is_Crypto+...

Example output:

Intercept

Is_Memory

Is_Crypto

Intercept

Is_Memory

Is_Crypto

Interpretation:

e Auth vulnerabilities (reference) have mean CVSS =5.10
 Memory vulnerabilities have CVSS 0.42 higher than Auth
* Crypto vulnerabilities do not significantly differ from Auth

Choosing the Reference Level

Defaults:
* R: Alphabetically first, or lowest numeric value

e Python (statsmodels): Same

Better approach: Choose a meaningful baseline
* Most common category
* Control/baseline condition

* Theoretically neutral category

Setting Reference Level in Python

statsmodels.formula.api smf

Method 1: Specify reference in formula using C/()
mode 1l smf.ols(

data=data
) LE1it ()

(model.summary ())

Method 2: Reorder categories in DataFrame first
data|] pd.Categorical (

datal 1,

categories=| , , ,

model?2 smf.ols(
data=data) .fit ()

Running Linear Regression with Categorical Predictor

Model: cvss_base ~ exploitability + impact + C(cwe_category, ref="Auth”)

coef std err t P>t [0.025 0.975]
Intercept 0.4176 0.112 3.73 <0.001 0.198 0.637
cwe category[Crypto] -0.0422 0.069 -0.61 0.539 -0.177 0.093
cwe category[InputVal] -0.0202 0.060 -0.34 0.738 -0.139 0.098
cwe category[Memory] 0.0495 0.061 0.82 0.415 -0.070 0.169
cwe category[Other] 0.0671 0.071 0.95 0.343 -0.072 0.206
exploitability 0.3692 0.011 34.31 <0.001 0.348 0.390
impact 0.3871 0.013 30.71 <0.001 0.362 0.412

R? = 0.589, Adjusted R? = 0.588

A Pitfall: Forgetting the Reference Category

Bad:

Is_Memory
Is_Crypto

Better:

Is_Auth
Is_Memory

Is_Crypto

A Pitfall: Forgetting the Reference Category

Wrong: “Memory vulnerabilities have severity 0.42”

Also wrong: “Memory vulnerabilities are 0.63 more severe than
Crypto”

Right: “Memory vulnerabilities have CVSS 0.42 higher than the

reference (Auth). Crypto vulnerabilities have CVSS 0.21 lower than
Auth.

Part 3: Model Comparison

The Problem

You’ve fit two models:
* Model 1 (simple): cvss ~ exploitability + impact

* Model 2 (complex): cvss ~ exploitability + impact + cwe_category

Question: Does adding CWE category significantly improve the model?

Likelihood-Ratio Test

Logic: Compare how well each model fits the data via their likelihoods

Test statistic:
LR =2 X (Lqull — LLyeguced)

Under Ho (reduced model is adequate):

LR ~ X&y

where df = difference in number of parameters

LR Test in Python

statsmodels.formula.apil smf

Fit nested models
modell = smf.ols('cvss base ~ exploitability + Impact',

data=data) .fit ()
model2 = smf.ols('cvss base ~ exploitability + Impact +

C(cwe category) ',
. data—-data) .fit ()

Compare R? values
(f"Model 1 R?: {modell.rsquared:.3f}")

(f"Model 2 R?: {modelZ.rsquared:.3f}")

Likelihood-ratio test
lr stat, p value, df diff = model2.compare 1lr test (modell)
ot (E"LR = {1r stat:.2f}, df = {(df diff}, p =

{p value: . 41}") —

Interpreting LR Test Results

Significant (p < 0.05):
* The additional predictors improve model fit
» Keep the fuller model

Non-significant (p = 0.05):
* The simpler model is adequate
* Prefer parsimony (fewer predictors)

LR Test: Does CWE Category Improve Our Model?

Model 1 (reduced): cvss_base ~ exploitability + impact

Model 2 (full): cvss_base ~ exploitability + impact + cwe_category
Model 1 R?: 0.588 Model 2 R*: 0.589

LR =4.68, df =4, p =0.3223

Result: Not significant (p = 0.32 >> 0.05)

* Adding CWE category does not significantly improve model fit
* The simpler model is adequate — prefer parsimony

* R%2increase is negligible (0.588 - 0.589)

Part 4: Logistic Regression

Predicting Binary Outcomes

Goal: Predict whether a vulnerability is actively exploited (in KEV catalog)
Outcome: Binary (0 = not exploited, 1 = exploited)

Why linear regression fails:
e Can predict values outside [0, 1]
* Residuals cannot be normally distributed

* Violates constant variance assumption

The Logistic Model

Solution: Model the log-odds of the outcome as a linear function:

p
log (E) — ﬁo + ,31X1 + ﬁZXZ-I_' -

where p=P(Y=1)

Logistic function maps log-odds to probabilities:

P= 1 + e~ (Bot+B1X1+..)

—
I
s
o
>
-
=
(v}
0
(@]
—
o
o
Q
-t
o
Ko
Q
—_
o

The Logistic (S-Curve) Function

Low probability
region

Steepest change
(most sensitivity)

region

p = 0.5 when

linear predictor = 0

Ply=1)=

1

1+ ﬂ—{:"fu—."‘f].l'l+,3-_>:r.'_;—---

-2 0 2

Linear Predictor (Bo + BiX1 + B2Xz + ...)

)

Odds and Log-Odds

Odds:

odds = P

l1-p
If p=0.75, odds = 0.75/0.25 = 3:1 (“3 to 1”)

Log-odds (logit):

logit(p) = log(odds) = log (%p)
If p=0.5, log-odds =0
If p=0.75, log-odds =1.1

Interpreting Coefficients: Log-Odds

Log-odds coefficient (B):

“A one-unit increase in X is associated with a B change in the log-
odds of the outcome.”

Example:
B1= 0.5 for CVSS score

“Each 1-point increase in CVSS is associated with a 0.5 increase in
the log-odds of exploitation.”

Problem: This is not intuitive!

Interpreting Coefficients: Odds Ratios

Odds ratio (OR):
OR = eF

“A one-unit increase in X multiplies the odds by OR.”

No association

Higher odds (positive association)

Lower odds (negative association)

Odds Ratio Example

Coefficient: B, = 0.5
Odds ratio: e%> = 1.65

Interpretation:

“Each 1-point increase in CVSS is associated with 1.65 times
the odds of being exploited.”

Or equivalently:

“Each 1-point increase in CVSS increases the odds of
exploitation by 65%.”

Logistic Regression in Python

statsmodels.formula.api smf
numpy np
Fit logistic regression
log model smf.logit (
N data=data) .fit ()
View summary (log-odds coefficients)
(log model. summary())
i Conyert to odds ratlss
(np.exp (log model.params))
95% CIs for odds ratios

()
(np.exp (log model.conf int()))

pd.DataFrame ({
np.exp (log model.params),
np.exp(log model.conf int () [0])
np.exp (log model.conf int() [1]

)

Running Logistic Regression on Sample Data

Model: in_kev ~ cvss_base + cwe_category (reference = Auth)

coef OR [95% CI OR] P
Intercept -8.07 0.00 <0.001
cvss base 0.60 1.82 [1.39, 2.39] <0.001
C(cwe category) [Crypto] 0.74 2.10 [0.49, 8.96] 0.317
C(cwe category) [InputVal] 0.72 2.060 [0.56, 7.59] 0.278
C (cwe category) [Memory] 0.99 2.69 [0.77, 9.32] 0.119
C(cwe category) [Other] -0.10 0.91 [0.15, 5.52] 0.915

Key interpretation:
Each 1-point increase in CVSS - 1.82x the odds of exploitation (p < 0.001)

Converting to Predicted Probabilities

Most interpretable: What’s the probability for a specific scenario?

1
1 + e~ Bo+B1x1+.)

p =

Example predictions from our model:

CVSS CWE Category P(exploitation)

Predicted Probabilities in Python

Create scenarios for prediction

new data pd.DataFrame ({
[4.0, 6.0, 8.0, 8.01],

[’ ’

})

Predict probabilities

predictions log model.predict (new data)
Display
new data]|] predictions. (3)

(new data)

A Pitfall: Incorrect Scale in Logistic Regression

The coefficient is 0.52...

“Higher CVSS increases exploitation by 0.52”
“Higher CVSS increases exploitation by 52%”

v “The log-odds coefficient is 0.52, corresponding to an odds ratio of
1.68”

v/ “Each 1-point CVSS increase is associated with 1.68x the odds of
exploitation”

v “Predicted probability rises from 1.5% at CVSS=6 to 4% at CVSS=8"

Part 5: Regression Pitfalls

A Caution: Class Imbalance in Your Data

KEV catalog: ~1,200 actively exploited CVEs
Total CVEs: ~250,000+

Exploitation rate: < 0.5%

In our sample data: 37 exploited out of 2,000 (1.8%)

Why Rare Events Are Challenging

1. Accuracy is misleading: Predicting “not exploited” for everything
gives 98%+ accuracy

2. Coefficients may be unstable: Few positive cases = high variance

3. Predicted probabilities may be miscalibrated: Systematically
under- or over-estimated

Better Metrics for Rare Events

Sensitivity (Recall)
Precision

F1 score

AUC-ROC

Of exploited CVEs, what % did we catch?

Of CVEs we flagged, what % are actually exploited?

Harmonic mean of precision and recall

Overall discriminative ability

V' Practical Guidance

* Report sensitivity and specificity, not just accuracy
* Consider whether the base rate makes prediction meaningful
* Acknowledge class imbalance as a limitation

* Use the logistic model to understand associations, not for
operational prediction

A Pitfall: Not Reporting Model Fit

The problem: Coefficients can be “significant” even if the model
explains almost nothing.

Example of misleading results:

“CWE category significantly predicts CVSS (p < 0.001)”
But if R> = 0.02... the model explains only 2% of variance!

Model Type Report

Always report Linear R?, Adjusted R?

Logistic Pseudo-R? (McFadden),
comparison to null model

A Pitfall: Unclear Model Specification

Ambiguous: “We ran a logistic regression to predict exploitation.”

Clear: “We fit a logistic regression predicting KEV inclusion (1 = in
catalog, O = not) from:

e CVSS base score (continuous)
* CWE category (dummy-coded, reference = Auth)
* Publication year (continuous, centered at 2020)

No interactions were included.”

A Pitfall: Regression # Causation

The problem: Regression shows association, not causation.

“Our regression shows that higher CVSS scores cause
vulnerabilities to be exploited.”

v “Higher CVSS scores are associated with greater likelihood of
exploitation. However, this association may reflect confounding factors
rather than a causal relationship.”

A Pitfall: Selectively Reporting Coefficients
The problem: Reporting only “significant” predictors gives incomplete picture.

Wrong:
“We found that Memory vulnerabilities (p = 0.02) predict higher CVSS.”

Better:

“We report all coefficients in Table 3. Memory (+0.42, p = 0.001) showed
significantly higher CVSS than Auth (reference). Crypto (-0.21, p = 0.08)
and InputValidation (-0.08, p = 0.52) did not significantly differ”

Regression Reporting Checklist

Model Specification:
L1 All predictors listed

[1 Reference categories specified
[J Transformations described

[] Interactions noted

Model Fit:
[1 R? or pseudo-R? reported

[J Comparison to null model

Coefficients:

L1 All coefficients reported
(not just significant ones)

[J Odds ratios for logistic regression

[Confidence intervals for key estimates

Interpretation:

[Coefficients interpreted relative to ref.

[] Association, not causation, language

Complete Regression Reporting Example

“We fit a logistic regression predicting KEV inclusion from CVSS base score
and CWE category (dummy-coded, reference = Auth). Results are shown
in Table 2.

The model significantly outperformed the null model (LR = 28.5, df =5, p <
0.001), though McFadden’s pseudo-R? was modest (0.08). Higher CVSS
was associated with increased exploitation odds (OR = 1.68 per point, 95%
Cl [1.34, 2.12]). CWE categories did not significantly differ from the Auth
reference (all p > 0.10), though Memory showed a trend toward higher
odds (OR =2.07, 95% CI [0.85, 5.06]).

These associations do not imply causation; unmeasured confounders may
explain the observed relationships.”

Lecture 2 Summary

Concept

Linear regression

Dummy coding
Reference level

LR test

Logistic regression
Odds ratios

Rare events

Key Takeaway

Model continuous outcome from
predictors

Convert categorical to numeric
Coefficients are differences from reference

Compare nested models

Model binary outcome via log-odds

eB — multiplicative effect

Accuracy misleading; use sensitivity

Example Use

CVSS ~ subscores

CWE category
Specify explicitly
Does CWE help?
Predict exploitation
Interpret coefficients

KEV prediction

Appendix: Quick Reference

Sample Data Summary

File: sample vuln data.csv

Variable Type Description

cve_id string CVE identifier

pub_year int Publication year (2018-2024)

cwe_category categorical Memory, InputValidation, Crypto, Auth, Other
cvss_base numeric CVSS score (0-10)

impact numeric Impact subscore

exploitability numeric Exploitability subscore

severity ordered Low < Medium < High < Critical

in_kev boolean TRUE if actively exploited

Python Function Reference

Python Function

Chi-square test scipy.stats.chi2 contingency ()
t-test scipy.stats.ttest ind()
Mann-Whitney U scipy.stats.mannwhitneyu ()
Mann-Whitney + effect size pingouin.mwu ()

Cohen’s d pingouin.compute effsize ()

Linear regression statsmodels.formula.api.ols ()
Logistic regression statsmodels.formula.api.logit ()
LR test model.compare lr test ()

Multiple comparison correction statsmodels.stats.multitest.multipletests ()

Effect Size Interpretation Guide

Cohen’s d (parametric):

Small

Medium

Large

Vargha-Delaney A (non-parametric):

Small

Medium

Large

Recommended Readings

Primary Textbook (Franke):

(Seltman better)
Secondary Textbook (Seltman):

isreporting, Misinterpretation of Statistical Methods
in Usable Privacy and Security Papers

Lujo Bauer Nicolas Christin
M

g on the resulting p-
We conduct a systematic review of papers publish
tions of the Symposium on Usable Privacy and S

a span of 20 years to evaluate the fil

T. Most problematically,
of papers inadequately account or non-indepes
umples, leading to potentially invalid claims. 5
jpers lack information 1o verif
supported, such as imprecise
cted. Many papers contain m
st practice.
mendations for statistical reporting and
g in the field

ct of scientific significance (c.g., some

)
thesis signil-

make digitalor basd

lon University Carnegie Mellon Unive

NHST, also known as statistical
s, methods using p-values from int
tistical tests as evidence to reject a mull hypoth
the dominant form of statistical analysis and e
ply dichotimizing resuls into “sigaificant” and
d p-values without

the scientific importance of the
ollected f

tion: cads
anding statistical and scientific

As a result, complete reliance on p-values is increasingl
frowned upon, with some jourmals banning the reporting of
. . [75, 61]. Mast other current guidancy
c commends using statistical hypothe
tarting point and providing sufficient
ves, confidence intervals, and und
the claims [2
aluate whether the
assertions made on the basis of NHST in usable privacy and
ity (UPS) arc accompanied by sufficient reporting for
o validat these assertions are supported by
the information pre: We
is still faily youn,
a considerable amount of quantitati

rior work has also examined the transparency, reporting,
and validity of statistical methods in HCI and vasious sub-

negati
(such as fro
significance 10 ex-
whether the chosen test is suitable
for the data or
porting transpares

475

https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-p-values.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ch-03-05-hypothesis-testing-tests.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/ordinary-least-squares-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://michael-franke.github.io/intro-data-analysis/logistic-regression.html
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf

	Slide 1: Secure Systems Engineering and Management
	Slide 2: Lecture 2: Regression Models — Linear and Logistic
	Slide 3: Lecture 2 Overview
	Slide 4: Part 1: Linear Regression Foundations
	Slide 5: The Linear Model
	Slide 6: Ordinary Least Squares (OLS)
	Slide 7
	Slide 8: Key Regression Outputs
	Slide 9: Interpreting Coefficients
	Slide 10: Actual CVSS: Not linear
	Slide 12: Linear Regression in Python
	Slide 13: Running Linear Regression on Sample Data
	Slide 14: Part 2: Categorical Predictors
	Slide 15: The Problem
	Slide 16: Dummy Coding (Treatment Coding)
	Slide 17: Why k−1 Dummies?
	Slide 18: Interpreting Dummy Coefficients
	Slide 19
	Slide 20: Choosing the Reference Level
	Slide 22: Setting Reference Level in Python
	Slide 23: Running Linear Regression with Categorical Predictor
	Slide 24: ⚠️ Pitfall: Forgetting the Reference Category
	Slide 25: ⚠️ Pitfall: Forgetting the Reference Category
	Slide 26: Part 3: Model Comparison
	Slide 27: The Problem
	Slide 28: Likelihood-Ratio Test
	Slide 30: LR Test in Python
	Slide 31: Interpreting LR Test Results
	Slide 32: LR Test: Does CWE Category Improve Our Model?
	Slide 33: Part 4: Logistic Regression
	Slide 34: Predicting Binary Outcomes
	Slide 35: The Logistic Model
	Slide 36
	Slide 37: Odds and Log-Odds
	Slide 38: Interpreting Coefficients: Log-Odds
	Slide 39: Interpreting Coefficients: Odds Ratios
	Slide 40: Odds Ratio Example
	Slide 42: Logistic Regression in Python
	Slide 43: Running Logistic Regression on Sample Data
	Slide 44: Converting to Predicted Probabilities
	Slide 46: Predicted Probabilities in Python
	Slide 47: ⚠️ Pitfall: Incorrect Scale in Logistic Regression
	Slide 48: Part 5: Regression Pitfalls
	Slide 49: ⚠️ Caution: Class Imbalance in Your Data
	Slide 50: Why Rare Events Are Challenging
	Slide 51: Better Metrics for Rare Events
	Slide 52: ✓ Practical Guidance
	Slide 53: ⚠️ Pitfall: Not Reporting Model Fit
	Slide 54: ⚠️ Pitfall: Unclear Model Specification
	Slide 55: ⚠️ Pitfall: Regression ≠ Causation
	Slide 56: ⚠️ Pitfall: Selectively Reporting Coefficients
	Slide 57: Regression Reporting Checklist
	Slide 58: Complete Regression Reporting Example
	Slide 59: Lecture 2 Summary
	Slide 60: Appendix: Quick Reference
	Slide 61: Sample Data Summary
	Slide 63: Python Function Reference
	Slide 64: Effect Size Interpretation Guide
	Slide 65: Recommended Readings

