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_ecture 2: Regression Models —
Linear and Logistic




Lecture 2 Overview

Topics:

* Linear regression fundamentals
 Categorical predictors (dummy coding)

* Model comparison (likelihood-ratio tests)
* Logistic regression for binary outcomes

* Odds ratios and predicted probabilities

« Common regression pitfalls



Part 1: Linear Regression
-oundations




The Linear Model

Goal: Explain aspects of some empirical data
How? Model a continuous outcome (Y)
as a linear function of predictors (X)

Equation:
Y = By + B1X1 + BrXo+... €
where
* Bo = intercept
* B; = slope (change in Y per unit X)
* € = residual error



Ordinary Least Squares (OLS)

Objective: Fit data to a linear model
Approach: Find coefficients that rplinimize the sum of squared residuals

RSS = E(yi — 371)2 Residual
i=1

Realdata  Predicted by the model
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Linear Regression: Minimizing Sum of Squared Residuals

(¢ = 2.55 + 0.44 x Impact
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Key Regression Outputs

B (coefficients) Estimated slopes and intercept

Standard errors Uncertainty in coefficient estimates

t-statistics B / SE — tests if coefficient # 0

p-values Significance of each coefficient

Proportion of variance explained

Adjusted R? penalizes for adding more predictors and is often preferred.



Interpreting Coefficients

Example: Predicting CVSS from subscores

CVSS = B, + 1 X Exploitability + [, X Impact

Bo (Intercept) Predicted CVSS when Exploitability = 0 and Impact =0

B+ Expected change in CVSS for 1-unit increase in
Exploitability, holding Impact constant

B Expected change in CVSS for 1-unit increase in Impact,
holding Impact constant




Actual CVSS: Not linear

For CVSS v2, the base score is computed as:

CVSS
= round((0.6 X Impact + 0.4 X Exploitability — 1.5) X f(Impact))

where;:

* f(Impact) = 1.176 if Impact > 0, otherwise 0
* The result is rounded to 1 decimal place



Linear Regression in Python

statsmodels.formula.api smf
# Fit linear model using formula interface .
model = smf.ols('cvss base ~ exploitability + impact',
data=data) .fit ()

# View comprehensive summary
(model.summary () )

# Extract specific components

f"\nR? = {model.rsquared:.3f}") .
f"Adjusted R? = {model.rsquared adj:.3f}")

("Coefficients:")

(model .params) # Coefficients

("\n95% CIs:")

(model.conf int()) # Confidence intervals
(

(



Running Linear Regression on Sample Data

Model: cvss_base ~ exploitability + impact

coef std err t P> t| [0.025 0.975]
Intercept 0.4157 0.092 4.50 <0.001 0.235 0.597
exploitability 0.3698 0.011 34.38 <0.001 0.349 0.391
impact 0.3886 0.012 33.78 <0.001 0.366 0.411

R? = 0.588, Adjusted R? = 0.587

Interpretation:

* Each 1-point increase in exploitability - +0.37 CVSS (holding impact constant)
* Each 1-pointincrease inimpact - +0.39 CVSS (holding exploitability constant)
* Model explains 59% of variance in CVSS



Part 2: Categorical Predictors



The Problem

Regression requires numeric predictors.
But CWE category is categorical:
* “Memory”

* “InputValidation”

* “Crypto”
° ”Auth”

Solution: Convert to numeric using dummy coding



Dummy Coding (Treatment Coding)

Convert a k-level categorical variable into k-1 binary indicators:

CWE Category | Is_InputVal | Is_Memory | Is_Crypto

Auth
(reference)

InputValidation

Memory

Crypto



Why k=1 Dummies?

Including all k dummies creates perfect multicollinearity:
If Is_InputVal = Is_Memory =Is_Crypto =0, it must be Auth

The reference category is already fully determined by the others



Interpreting Dummy Coefficients

Model:
CVSS = By + B1 X Is_Memory + [, X Is_Crypto+...

Example output:

Intercept

Is_Memory

Is_Crypto



Intercept

Is_Memory

Is_Crypto

Interpretation:

e Auth vulnerabilities (reference) have mean CVSS =5.10
 Memory vulnerabilities have CVSS 0.42 higher than Auth
* Crypto vulnerabilities do not significantly differ from Auth



Choosing the Reference Level

Defaults:
* R: Alphabetically first, or lowest numeric value

e Python (statsmodels): Same

Better approach: Choose a meaningful baseline
* Most common category
* Control/baseline condition

* Theoretically neutral category



Setting Reference Level in Python

statsmodels.formula.api smf

# Method 1: Specify reference in formula using C/()
mode 1l smf.ols(

data=data
) LE1it ()

(model.summary () )

# Method 2: Reorder categories in DataFrame first
data| ] pd.Categorical (

datal 1,

categories=| , , ,

model?2 smf.ols(
data=data) .fit ()



Running Linear Regression with Categorical Predictor

Model: cvss_base ~ exploitability + impact + C(cwe_category, ref="Auth”)

coef std err t P>t [0.025 0.975]
Intercept 0.4176 0.112 3.73 <0.001 0.198 0.637
cwe category[Crypto] -0.0422 0.069 -0.61 0.539 -0.177 0.093
cwe category[InputVal] -0.0202 0.060 -0.34 0.738 -0.139 0.098
cwe category[Memory] 0.0495 0.061 0.82 0.415 -0.070 0.169
cwe category[Other] 0.0671 0.071 0.95 0.343 -0.072 0.206
exploitability 0.3692 0.011 34.31 <0.001 0.348 0.390
impact 0.3871 0.013 30.71 <0.001 0.362 0.412

R? = 0.589, Adjusted R? = 0.588



A Pitfall: Forgetting the Reference Category

Bad:

Is_Memory
Is_Crypto

Better:

Is_Auth
Is_Memory

Is_Crypto




A Pitfall: Forgetting the Reference Category

Wrong: “Memory vulnerabilities have severity 0.42”

Also wrong: “Memory vulnerabilities are 0.63 more severe than
Crypto”

Right: “Memory vulnerabilities have CVSS 0.42 higher than the

reference (Auth). Crypto vulnerabilities have CVSS 0.21 lower than
Auth.



Part 3: Model Comparison



The Problem

You’ve fit two models:
* Model 1 (simple): cvss ~ exploitability + impact

* Model 2 (complex): cvss ~ exploitability + impact + cwe_category

Question: Does adding CWE category significantly improve the model?



Likelihood-Ratio Test

Logic: Compare how well each model fits the data via their likelihoods

Test statistic:
LR =2 X (Lqull — LLyeguced)

Under Ho (reduced model is adequate):

LR ~ X&y

where df = difference in number of parameters



LR Test in Python

statsmodels.formula.apil smf

# Fit nested models
modell = smf.ols('cvss base ~ exploitability + Impact',

data=data) .fit ()
model2 = smf.ols('cvss base ~ exploitability + Impact +

C(cwe category) ',
. data—-data) .fit ()

# Compare R? values
(f"Model 1 R?: {modell.rsquared:.3f}")

(f"Model 2 R?: {modelZ.rsquared:.3f}")

# Likelihood-ratio test
lr stat, p value, df diff = model2.compare 1lr test (modell)
ot (E"LR = {1r stat:.2f}, df = {(df diff}, p =

{p value: . 41}") —



Interpreting LR Test Results

Significant (p < 0.05):
* The additional predictors improve model fit
» Keep the fuller model

Non-significant (p = 0.05):
* The simpler model is adequate
* Prefer parsimony (fewer predictors)



LR Test: Does CWE Category Improve Our Model?

Model 1 (reduced): cvss_base ~ exploitability + impact

Model 2 (full): cvss_base ~ exploitability + impact + cwe_category
Model 1 R?: 0.588 Model 2 R*: 0.589

LR =4.68, df =4, p =0.3223

Result: Not significant (p = 0.32 >> 0.05)

* Adding CWE category does not significantly improve model fit
* The simpler model is adequate — prefer parsimony

* R%2increase is negligible (0.588 - 0.589)



Part 4: Logistic Regression



Predicting Binary Outcomes

Goal: Predict whether a vulnerability is actively exploited (in KEV catalog)
Outcome: Binary (0 = not exploited, 1 = exploited)

Why linear regression fails:
e Can predict values outside [0, 1]
* Residuals cannot be normally distributed

* Violates constant variance assumption



The Logistic Model

Solution: Model the log-odds of the outcome as a linear function:

p
log (E) — ﬁo + ,31X1 + ﬁZXZ-I_' -

where p=P(Y=1)

Logistic function maps log-odds to probabilities:

P= 1 + e~ (Bot+B1X1+..)
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Odds and Log-Odds

Odds:

odds = P

l1-p
If p=0.75, odds = 0.75/0.25 = 3:1 (“3 to 1”)

Log-odds (logit):

logit(p) = log(odds) = log (%p)
If p=0.5, log-odds =0
If p=0.75, log-odds =1.1



Interpreting Coefficients: Log-Odds

Log-odds coefficient (B):

“A one-unit increase in X is associated with a B change in the log-
odds of the outcome.”

Example:
B1= 0.5 for CVSS score

“Each 1-point increase in CVSS is associated with a 0.5 increase in
the log-odds of exploitation.”

Problem: This is not intuitive!



Interpreting Coefficients: Odds Ratios

Odds ratio (OR):
OR = eF

“A one-unit increase in X multiplies the odds by OR.”

No association

Higher odds (positive association)

Lower odds (negative association)




Odds Ratio Example

Coefficient: B, = 0.5
Odds ratio: e%> = 1.65

Interpretation:

“Each 1-point increase in CVSS is associated with 1.65 times
the odds of being exploited.”

Or equivalently:

“Each 1-point increase in CVSS increases the odds of
exploitation by 65%.”



Logistic Regression in Python

statsmodels.formula.api smf
numpy np
# Fit logistic regression
log model smf.logit (
N data=data) .fit ()
# View summary (log-odds coefficients)
(log model. summary())
i Conyert to odds ratlss
(np.exp (log model.params))
# 95% CIs for odds ratios

( )
(np.exp (log model.conf int()))

pd.DataFrame ({
np.exp (log model.params),
np.exp(log model.conf int () [0])
np.exp (log model.conf int() [1]

)




Running Logistic Regression on Sample Data

Model: in_kev ~ cvss_base + cwe_category (reference = Auth)

coef OR [95% CI OR] P
Intercept -8.07 0.00 <0.001
cvss base 0.60 1.82 [1.39, 2.39] <0.001
C(cwe category) [Crypto] 0.74 2.10 [0.49, 8.96] 0.317
C(cwe category) [InputVal] 0.72 2.060 [0.56, 7.59] 0.278
C (cwe category) [Memory] 0.99 2.69 [0.77, 9.32] 0.119
C(cwe category) [Other] -0.10 0.91 [0.15, 5.52] 0.915

Key interpretation:
Each 1-point increase in CVSS - 1.82x the odds of exploitation (p < 0.001)



Converting to Predicted Probabilities

Most interpretable: What’s the probability for a specific scenario?

1
1 + e~ Bo+B1x1+.)

p =

Example predictions from our model:

CVSS CWE Category P(exploitation)




Predicted Probabilities in Python

# Create scenarios for prediction

new data pd.DataFrame ({
[4.0, 6.0, 8.0, 8.01],

[ ’ ’

})

# Predict probabilities

predictions log model.predict (new data)
# Display
new data]| ] predictions. (3)

(new data)



A Pitfall: Incorrect Scale in Logistic Regression

The coefficient is 0.52...

“Higher CVSS increases exploitation by 0.52”
“Higher CVSS increases exploitation by 52%”

v “The log-odds coefficient is 0.52, corresponding to an odds ratio of
1.68”

v/ “Each 1-point CVSS increase is associated with 1.68x the odds of
exploitation”

v “Predicted probability rises from 1.5% at CVSS=6 to 4% at CVSS=8"



Part 5: Regression Pitfalls



A Caution: Class Imbalance in Your Data

KEV catalog: ~1,200 actively exploited CVEs
Total CVEs: ~250,000+

Exploitation rate: < 0.5%

In our sample data: 37 exploited out of 2,000 (1.8%)



Why Rare Events Are Challenging

1. Accuracy is misleading: Predicting “not exploited” for everything
gives 98%+ accuracy

2. Coefficients may be unstable: Few positive cases = high variance

3. Predicted probabilities may be miscalibrated: Systematically
under- or over-estimated



Better Metrics for Rare Events

Sensitivity (Recall)
Precision

F1 score

AUC-ROC

Of exploited CVEs, what % did we catch?

Of CVEs we flagged, what % are actually exploited?

Harmonic mean of precision and recall

Overall discriminative ability




V' Practical Guidance

* Report sensitivity and specificity, not just accuracy
* Consider whether the base rate makes prediction meaningful
* Acknowledge class imbalance as a limitation

* Use the logistic model to understand associations, not for
operational prediction



A Pitfall: Not Reporting Model Fit

The problem: Coefficients can be “significant” even if the model
explains almost nothing.

Example of misleading results:

“CWE category significantly predicts CVSS (p < 0.001)”
But if R> = 0.02... the model explains only 2% of variance!

Model Type Report

Always report Linear R?, Adjusted R?

Logistic Pseudo-R? (McFadden),
comparison to null model




A Pitfall: Unclear Model Specification

Ambiguous: “We ran a logistic regression to predict exploitation.”

Clear: “We fit a logistic regression predicting KEV inclusion (1 = in
catalog, O = not) from:

e CVSS base score (continuous)
* CWE category (dummy-coded, reference = Auth)
* Publication year (continuous, centered at 2020)

No interactions were included.”



A Pitfall: Regression # Causation

The problem: Regression shows association, not causation.

“Our regression shows that higher CVSS scores cause
vulnerabilities to be exploited.”

v “Higher CVSS scores are associated with greater likelihood of
exploitation. However, this association may reflect confounding factors
rather than a causal relationship.”



A Pitfall: Selectively Reporting Coefficients
The problem: Reporting only “significant” predictors gives incomplete picture.

Wrong:
“We found that Memory vulnerabilities (p = 0.02) predict higher CVSS.”

Better:

“We report all coefficients in Table 3. Memory (+0.42, p = 0.001) showed
significantly higher CVSS than Auth (reference). Crypto (-0.21, p = 0.08)
and InputValidation (-0.08, p = 0.52) did not significantly differ”



Regression Reporting Checklist

Model Specification:
L1 All predictors listed

[1 Reference categories specified
[J Transformations described

[] Interactions noted

Model Fit:
[1 R? or pseudo-R? reported

[J Comparison to null model

Coefficients:

L1 All coefficients reported
(not just significant ones)

[J Odds ratios for logistic regression

[ Confidence intervals for key estimates

Interpretation:

[ Coefficients interpreted relative to ref.

[] Association, not causation, language



Complete Regression Reporting Example

“We fit a logistic regression predicting KEV inclusion from CVSS base score
and CWE category (dummy-coded, reference = Auth). Results are shown
in Table 2.

The model significantly outperformed the null model (LR = 28.5, df =5, p <
0.001), though McFadden’s pseudo-R? was modest (0.08). Higher CVSS
was associated with increased exploitation odds (OR = 1.68 per point, 95%
Cl [1.34, 2.12]). CWE categories did not significantly differ from the Auth
reference (all p > 0.10), though Memory showed a trend toward higher
odds (OR =2.07, 95% CI [0.85, 5.06]).

These associations do not imply causation; unmeasured confounders may
explain the observed relationships.”



Lecture 2 Summary

Concept

Linear regression

Dummy coding
Reference level

LR test

Logistic regression
Odds ratios

Rare events

Key Takeaway

Model continuous outcome from
predictors

Convert categorical to numeric
Coefficients are differences from reference

Compare nested models

Model binary outcome via log-odds

eB — multiplicative effect

Accuracy misleading; use sensitivity

Example Use

CVSS ~ subscores

CWE category
Specify explicitly
Does CWE help?
Predict exploitation
Interpret coefficients

KEV prediction




Appendix: Quick Reference



Sample Data Summary

File: sample vuln data.csv

Variable Type Description

cve_id string CVE identifier

pub_year int Publication year (2018-2024)

cwe_category categorical Memory, InputValidation, Crypto, Auth, Other
cvss_base numeric CVSS score (0-10)

impact numeric Impact subscore

exploitability numeric Exploitability subscore

severity ordered Low < Medium < High < Critical

in_kev boolean TRUE if actively exploited




Python Function Reference

Python Function

Chi-square test scipy.stats.chi2 contingency ()
t-test scipy.stats.ttest ind()
Mann-Whitney U scipy.stats.mannwhitneyu ()
Mann-Whitney + effect size pingouin.mwu ()

Cohen’s d pingouin.compute effsize ()

Linear regression statsmodels.formula.api.ols ()
Logistic regression statsmodels.formula.api.logit ()
LR test model.compare lr test ()

Multiple comparison correction statsmodels.stats.multitest.multipletests ()




Effect Size Interpretation Guide

Cohen’s d (parametric):

Small

Medium

Large

Vargha-Delaney A (non-parametric):

Small

Medium

Large



Recommended Readings

Primary Textbook (Franke):

(Seltman better)
Secondary Textbook (Seltman):
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