
Toward AQuantum Programming Language for
Higher-Level Formal Verification

FINN VOICHICK and MICHAEL HICKS, University of Maryland, USA

We present QuantumOne, a quantum programming language formalized within the Coq proof assistant and
designed for formal verification of quantum algorithms. This language allows for working with superpositions
of tagged unions, allowing for quantum data more complicated than simple qubits. This paper outlines the
formal syntax, operational semantics, and typing judgment of QuantumOne.

CCS Concepts: • Software and its engineering→ Formal language definitions; Data types and structures;
Procedures, functions and subroutines; Specialized application languages; Formal software verification.

Additional Key Words and Phrases: quantum computing, tagged union, Coq

1 INTRODUCTION
Today’s quantum programming languages often express the quantum portions of an algorithm as
circuits, which operate on individual qubits. This design is natural, as near-term quantum computers
are resource-limited, offering only a few dozen qubits for computation. However, this approach is
tedious and error prone; quantum algorithms may benefit from a higher level of expression.
For example, Ambainis et al.’s boolean formula algorithm [2] involves a quantum walk on a

tree, requiring a superposition of vertex indices. Because of the operations being done on these
vertex indices, the most natural way to index vertices is often the path taken from the root to
the vertex, a variable-length list. Expressing such an algorithm in an existing language, such as
Quipper [4], would require writing a program dealing solely with some bit representation of a list.
Expressing the program in Qiskit would be similar. Sqir [5] and Qbricks [3] are both verification
tools that only allow quantum data to be represented with qubits, but real algorithms deal with
superpositions of objects that are more clumsy to represent as bitstrings.
Looking a little further out, programs can hopefully be written at a higher level of abstraction,

but still in a way that leverages key features of quantum computers, such as state superposition
and entanglement.

This paper presents work in progress on QuantumOne, a high-level language for writing quantum
programs. QuantumOne has two key features. First, it uses sum and product types as the basis
for quantum data, rather than qubits. These are closer to concepts that today’s programmers are
familiar with (e.g., records and objects). Second, QuantumOne’s type system does not enforce a strict
separation between classical and quantum data, but instead uses normal (classical) operations to
specify quantum concepts. The notion of quantum measurement is naturally encoded by discarding
data, and the concept of entanglement is encoded by variable duplication.

Some similar features are present in Qml [1], but their semantics are defined in terms of category
theory, while QuantumOne’s are specified using a novel small-step operational semantics. These
semantics have been formalized within the Coq proof assistant to serve as the basis for proofs of
algorithm correctness. We intend in the future to write a formally-verified compiler from Quantum-
One to Sqir [5]. This would allow a programmer to write a quantum program in QuantumOne
within the Coq proof assistant, formally prove its correctness using our operational semantics and
properties of QuantumOne, then compile the program to a quantum circuit that is provably correct.
The rest of this paper presents the syntax, semantics, and types of QuantumOne. Appendix C

discusses some related languages a bit more.

PlanQC 2021, June 22, 2021, Anywhere on Earth
2021.

1

PlanQC 2021, June 22, 2021, Anywhere on Earth Voichick and Hicks

2 QUANTUMONE: SYNTAX
Let 𝑥 range over an infinite set of variables (for example, Ascii strings), and 𝑔 range over a set of
single-qubit gates (for example, special unitary group SU(2)). Then, QuantumOne syntax is defined
with the following two mutually inductive definitions for expressions and functions:1

𝑒 ::= ⟨⟩ | inl 𝑒 | inr 𝑒 | ⟨𝑒1, 𝑒2⟩ | 𝑥
| (case 𝑒 of | inl 𝑥0 ⇒ 𝑒0 | inl 𝑥1 ⇒ 𝑒1)
| (control 𝑒 with | inl 𝑥0 ⇒ 𝑒0 | inl 𝑥1 ⇒ 𝑒1)
| 𝑓 𝑒 | let ⟨𝑥1, 𝑥2⟩ = 𝑒 ′ in 𝑒

𝑓 ::= 𝜆𝑥 .𝑒 | 𝑔
QuantumOne has standard classical features: a unit value ⟨⟩, variables 𝑥 , constructors inl and
inr and case analysis for sum types, constructor ⟨𝑒1, 𝑒2⟩ and let-based pattern matching for pairs,
and function definition and application. With units and sums, we can encode bits:

0 := inl ⟨⟩ 1 := inr ⟨⟩
(case 𝑒 of | 0 ⇒ 𝑒0 | 1 ⇒ 𝑒1) := (case 𝑒 of | inl 𝑥∗ ⇒ 𝑒0 | inl 𝑥∗ ⇒ 𝑒1)

Above, 𝑥∗ is a fresh variable not free in either 𝑒0 or 𝑒1. (Encoding of bits on control is similar.)
In addition to these standard features, there are two "quantum" features: single-qubit gate

application (the only way to produce superpositions) and control statements (a way to produce
entanglement). The control statements are like case statements except that they produce a pair
containing the value guarded on as well as the result. QuantumOne does not include a special
measurement operation, but a measurement function can be constructed, shown in Section 2.3.

2.1 Example: Deutsch’s algorithm
Here is how we might define Deutsch’s algorithm in QuantumOne.

hadamard
(
let ⟨𝑥𝑑 , 𝑥𝑡 ⟩ = 𝑈𝑓 ⟨hadamard 0, hadamard 1⟩ in 𝑥𝑑

)
Here, hadamard is a Hadamard gate, and𝑈𝑓 a provided oracle function. This oracle should implement
the unitary transformation ⟨𝑥,𝑦⟩ ↦→ ⟨𝑥,𝑦 ⊕ 𝑓 (𝑥)⟩ for some function 𝑓 : Z2 → Z2. For example, the
oracle corresponding to the identity function 𝑓 is a cnot gate and can be manually implemented
by setting𝑈𝑓 to the following:

𝜆𝑥.let ⟨𝑥𝑑 , 𝑥𝑡 ⟩ = 𝑥 in control 𝑥𝑑 with | 0 ⇒ 𝑥𝑡 | 1 ⇒ not 𝑥𝑡

Here, not denotes the Pauli-X gate. QuantumOne does not have a way to “oraclize” a classical
function, but this could be a convenient addition to the language. The main challenge is that the
language’s type system (see Section 4) does not distinguish between classical and quantum data, so
there would need to be a way to create oracles for functions that are not classical.

2.2 Duplication via Entanglement
A key reason that some languages distinguish between classical and quantum types is the no-
cloning theorem. For example, the type system of Selinger and Valiron’s quantum lambda calculus
[8] distinguishes “reusable” (classical) types from other (potentially quantum) types, and their
typing relation uses linear types to ensure that quantum variables are never reused.
QuantumOne takes an alternative approach which doesn’t distinguish between classical and

quantum types.We interpret “duplication” to mean “sharing via entanglement” rather than “cloning,”
very similar to the approach taken in Qml [1]. For example, the program (𝜆𝑥.⟨𝑥, 𝑥⟩)(hadamard 0)
1The parentheses on case and control are there to clarify that pipe characters (“|”) are part of the language.

2

Toward a Language for Higher-Level Formal Verification PlanQC 2021, June 22, 2021, Anywhere on Earth

would produce a Bell state. In general, any variable use that would be disallowed in a linear type
system is instead treated as sharing, and in a compiled circuit this would be implemented using
cnot gates to “copy” the value to another register. Section 3 shows how QuantumOne’s operational
semantics allows for this kind of duplication.

2.3 Measurement via Discarding
Unlike many quantum programming languages, QuantumOne does not include measurement as a
special operation. Rather, measurement is accomplished by discarding information. Information is
discarded whenever a variable is created but not used, so one can measure a variable by duplicating
it and then discarding the duplicate. In particular, “measurement” can be defined by the function
𝜆𝑥.(𝜆𝑦.𝑥) 𝑥 . The semantics and use of this function are described in Section 3.

2.4 Meta programming
QuantumOne does not include any form of recursion or higher-order functions, but it does include
first-order functions. Our implementation of QuantumOne is embedded in the Coq proof assistant,
so we can use meta-programming at the Coq level to construct QuantumOne functions recursively.

3 OPERATIONAL SEMANTICS
The semantics of many prior quantum programming languages are defined denotationally using
unitary or density matrices over qubit-based quantum states. Doing so for QuantumOne would
require translating its higher level constructs to qubits first, which could occlude a direct under-
standing of a program’s meaning. As such, we define an operational semantics directly in terms of
QuantumOne constructs. We are also working on a compiler for QuantumOne programs, discussed
in Appendix D.
The operational semantics, given in full in Appendix A, defines two judgments. The first is

𝑒 =⇒ 𝑆 , which says that QuantumOne expression 𝑒 single-steps to state 𝑆 . A state 𝑆 a complex
linear combination (a superposition) of classical states, each of which is a pair |𝑒, 𝑑⟩, where 𝑒 is a
QuantumOne expression and 𝑑 is a list of values that have been discarded. Many of the operational
rules are essentially classical except that they keep track of discarded values. For example, consider
the rules for function application:

𝑥 ∈ FV(𝑒)
(𝜆𝑥 .𝑒)𝑣 =⇒ |[𝑥 := 𝑣]𝑒, []⟩

𝑥 ∉ FV(𝑒)
(𝜆𝑥 .𝑒)𝑣 =⇒ |𝑒, [𝑣]⟩

Application of single-qubit gate 𝑔 is written

𝑔 0 =⇒ 𝐺00 |0, []⟩ +𝐺10 |1, []⟩ 𝑔 1 =⇒ 𝐺01 |0, []⟩ +𝐺11 |1, []⟩

where 𝑔’s semantics is represented by the unitary matrix with components 𝐺00, 𝐺01, 𝐺10, and 𝐺11.
The second judgment has the form 𝑆 −→ 𝑆 ′′. It is defined by a single rule that chooses a classical

state |𝑒, 𝑑⟩ from within 𝑆 , steps it using 𝑒 =⇒ 𝑆 ′, and then incorporates the result 𝑆 ′ into the original
𝑆 , producing 𝑆 ′′. To see this judgment at work in conjunction with duplicating and discarding
constructs, consider running a “coin flip” program that measures a |+⟩ state, producing a maximally

3

PlanQC 2021, June 22, 2021, Anywhere on Earth Voichick and Hicks

mixed state. “Measurement” is encoded via the term given in Section 2.3.

| ((𝜆𝑥 .(𝜆𝑦.𝑥) 𝑥) (hadamard 0), []⟩ −→ 1√
2
| (𝜆𝑥 .(𝜆𝑦.𝑥) 𝑥) 0, []⟩ + 1√

2
| (𝜆𝑥.(𝜆𝑦.𝑥) 𝑥) 1, []⟩

−→ 1√
2
| (𝜆𝑦.0) 0, []⟩ + 1√

2
| (𝜆𝑥.(𝜆𝑦.𝑥) 𝑥) 1, []⟩

−→ 1√
2
|0, [0]⟩ + 1√

2
| (𝜆𝑥.(𝜆𝑦.𝑥) 𝑥) 1, []⟩

−→∗ 1√
2
|0, [0]⟩ + 1√

2
|1, [1]⟩

3.1 Expression Equivalence
In a fully-reduced program state, the expression in each term within the superposition is a value,
either a unit, a tagged value, or a pair of values. Given a fully-reduced program state, one can
compute the density matrix corresponding to the program state by computing a partial trace over
the discard lists, “tracing out” the discarded information. The deferred measurement principle
allows us to defer this partial trace operation until the end of the program’s execution, meaning
that our operational semantics do not need to consider mixed states even though the language
allows for measurement. This is why we can describe the “coin flip” program above as producing a
maximally mixed state.

We can describe two expressions as equivalent if they reduce to program states corresponding to
the same density matrix. For example, applying a Pauli-X gate to the coin-flip expression would be
an equivalent program to the coin-flip expression alone because both correspond to the maximally
mixed state:

1√
2
|0, [0]⟩ + 1√

2
|1, [1]⟩ ∼ 1√

2
|1, [0]⟩ + 1√

2
|0, [1]⟩

3.2 Discussion
Our semantics takes a different approach from languages like Selinger and Valiron’s quantum
lambda calculus [8], which define the program state as a classical expression with labelled holes
pointing to indices in a separate quantum register. We found the “superposition of expressions”
approach to be more convenient because of the way that values can be duplicated via entanglement;
using labelled holes would require new holes to be created whenever values are duplicated, which
would complicate the semantics with pointer arithmetic.

4 TYPING
QuantumOne defines a typing judgment of the form Γ ⊢ 𝑒 : 𝑇 where Γ is the usual partial map
from variables to types. Judgment Γ ⊲ 𝑓 : 𝐹 states that “𝑓 has function type 𝐹 under assumptions
from typing context Γ. Types 𝑇 and 𝐹 are standard, and defined as follows:

𝑇 ::= Unit | 𝑇0 +𝑇1 | 𝑇1 ×𝑇2 Bit := Unit + Unit

𝐹 ::= 𝑇 → 𝑇 ′

Here are the typing rules:

Γ ⊢ ⟨⟩ : Unit
Γ(𝑥) = 𝑇

Γ ⊢ 𝑥 : 𝑇
Γ ⊢ 𝑒 : 𝑇0

Γ ⊢ inl 𝑒 : 𝑇0 +𝑇1
Γ ⊢ 𝑒 : 𝑇1

Γ ⊢ inr 𝑒 : 𝑇0 +𝑇1

Γ ⊢ 𝑒1 : 𝑇1 Γ ⊢ 𝑒2 : 𝑇2
Γ ⊢ ⟨𝑒1, 𝑒2⟩ : 𝑇1 ×𝑇2

𝑥1 ≠ 𝑥2 Γ ⊢ 𝑒 ′ : 𝑇1 ×𝑇2
[𝑥1 ↦→ 𝑇1] [𝑥2 ↦→ 𝑇2]Γ ⊢ 𝑒 : 𝑇
Γ ⊢ let ⟨𝑥1, 𝑥2⟩ = 𝑒 ′ in 𝑒 : 𝑇

4

Toward a Language for Higher-Level Formal Verification PlanQC 2021, June 22, 2021, Anywhere on Earth

Γ ⊢ 𝑒 : 𝑇0 +𝑇1 [𝑥0 ↦→ 𝑇0]Γ ⊢ 𝑒0 : 𝑇 [𝑥1 ↦→ 𝑇1]Γ ⊢ 𝑒1 : 𝑇
Γ ⊢ case 𝑒 of | inl 𝑥0 ⇒ 𝑒0 | inr 𝑥1 ⇒ 𝑒1 : 𝑇

FV(𝑒0) \ {𝑥0} = FV(𝑒1) \ {𝑥1} discard-free(𝑒0) discard-free(𝑒1)
Γ ⊢ 𝑒 : 𝑇0 +𝑇1 [𝑥0 ↦→ 𝑇0]Γ ⊢ 𝑒0 : 𝑇 [𝑥1 ↦→ 𝑇1]Γ ⊢ 𝑒1 : 𝑇
Γ ⊢ control 𝑒 with | inl 𝑥0 ⇒ 𝑒0 | inr 𝑥1 ⇒ 𝑒1 : (𝑇0 +𝑇1) ×𝑇

[𝑥 ↦→ 𝑇]Γ ⊢ 𝑒 : 𝑇 ′

Γ ⊲ 𝜆𝑥.𝑒 : 𝑇 → 𝑇 ′ Γ ⊲ 𝑔 : Bit → Bit
Γ ⊲ 𝑓 : 𝑇 → 𝑇 ′ Γ ⊢ 𝑒 : 𝑇

Γ ⊢ 𝑓 𝑒 : 𝑇 ′

Here, [𝑥 ↦→ 𝑇]Γ is an extension of Γ with 𝑥 mapped to 𝑇 (possibly overriding an earlier mapping).
Most of the rules are mostly standard since, as mentioned previously, QuantumOne does not

strongly separate quantum and classical data. The interesting rule is the one for control. FV(𝑒) is
the set of free variables in 𝑒 , defined in the usual way. The predicate discard-free(𝑒) holds when 𝑒

uses all of the variables it creates; it is formally defined in Appendix B. These premises effectively
ensure that a control expression’s subexpressions do not discard variables (i.e. they are free of
measurement).
Other languages, such as Mingsheng Ying’s QuGcl [10] have been designed to allow for mea-

surement within quantum control statements. However, Ying’s denotational semantics are non-
compositional, meaning that equivalent subprograms cannot always be substituted to produce
equivalent programs. We see this as a major hurdle for any kind of formal verification, and so we
restrict control statements to disallow controlled measurement.

As an example, Deutsch’s algorithm (see Section 2.1) can be typed like this:

⊲𝑈𝑓 : Bit × Bit → Bit × Bit

⊢ hadamard
(
let ⟨𝑥,𝑦⟩ = 𝑈𝑓 ⟨hadamard 0, hadamard 1⟩ in 𝑥

)
: Bit

QuantumOne does not include any recursion or looping mechanism, so it should be strongly
normalizing, as described in the following conjecture. We are waiting to formally prove this until
we have a verified compiler.

Conjecture 4.1 (Normalization). Suppose ⊢ 𝑒 : 𝑇 is a valid typing judgment for some expression
𝑒 and type 𝑇 . Then 𝑒 reduces in a finite number of steps to a value state of type 𝑇 . That is,

|𝑒, []⟩ −→∗ |𝑣1, 𝑑1⟩ + |𝑣2, 𝑑2⟩ + · · · + |𝑣𝑛, 𝑑𝑛⟩,

where every 𝑣 𝑗 is a value such that ⊢ 𝑣 𝑗 : 𝑇 .

5 FUTUREWORK
We hope that the semantics of QuantumOne will be easier to work with in a formal verification
context than current tools, especially in programs that involve superpositionswithmore complicated
structure where tagged unions could be helpful. The next step toward making this language more
useful is constructing a certified compiler from this language to a lower-level circuit description
language such as Sqir, as discussed in Appendix D. Formally proving this compiler correct would
help prove Conjecture 4.1 because it would imply that the behavior of the semantics is equivalent
to a finite quantum circuit.
Expressing and verifying more algorithms in this language would also be a good next step,

particularly algorithms that combine classical and quantum computation or that can be naturally
expressed with superpositions of tagged unions. We can also consider augmenting this language
with additional features, like automatic oracle construction from classical functions (mentioned in
Section 2.1) or a kind of “in-place” symmetric pattern matching [7].

5

PlanQC 2021, June 22, 2021, Anywhere on Earth Voichick and Hicks

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Quantum Testbed Pathfinder Program under
Award Number DE-SC0019040 and the Air Force Office of Scientific Research under Grant No.
FA95502110051.

REFERENCES
[1] Thorsten Altenkirch and Jonathan Grattage. 2005. A functional quantum programming language. In 20th Annual IEEE

Symposium on Logic in Computer Science (LICS’ 05). 249–258. https://doi.org/10.1109/LICS.2005.1
[2] Andris Ambainis, Andrew M Childs, Ben W Reichardt, Robert Špalek, and Shengyu Zhang. 2010. Any AND-OR

formula of size N can be evaluated in time Nˆ1/2+o(1) on a quantum computer. SIAM J. Comput. 39, 6 (2010), 2513–2530.
https://doi.org/10.1137/080712167

[3] Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron. 2021. An Automated
Deductive Verification Framework for Circuit-building Quantum Programs. In Programming Languages and Systems,
Nobuko Yoshida (Ed.). Springer International Publishing, Cham, 148–177. https://doi.org/10.1007/978-3-030-72019-3_6

[4] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A Scalable
Quantum Programming Language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York,
NY, USA, 333–342. https://doi.org/10.1145/2491956.2462177

[5] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A Verified Optimizer for Quantum
Circuits. Proc. ACM Program. Lang. 5, POPL, Article 37 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434318

[6] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A Core Language for Quantum Circuits. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL 2017).
Association for Computing Machinery, New York, NY, USA, 846–858. https://doi.org/10.1145/3009837.3009894

[7] Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto. 2018. From Symmetric Pattern-Matching to Quantum Control.
In Foundations of Software Science and Computation Structures, Christel Baier and Ugo Dal Lago (Eds.). Springer
International Publishing, Cham, 348–364. https://doi.org/10.1007/978-3-319-89366-2_19

[8] Peter Selinger, Benoıt Valiron, et al. 2009. Quantum lambda calculus. Semantic techniques in quantum computation
(2009), 135–172.

[9] André Van Tonder. 2004. A lambda calculus for quantum computation. SIAM J. Comput. 33, 5 (2004), 1109–1135.
https://doi.org/10.1137/S0097539703432165

[10] Mingsheng Ying. 2016. Foundations of Quantum Programming. Elsevier Science, Chapter 6, 211–271.

A FULL OPERATIONAL SEMANTICS
The operational semantics is defined as two step relations. The first one defines how classical states
step to quantum states. However, to account for discarded information, this step relation actually
describes how a language expression steps to a pair containing an updated expression and a list of
discarded expressions. In the inference rules below,

• “𝑒 =⇒ 𝛼 |𝑒0, 𝑑0⟩ + 𝛽 |𝑒1, 𝑑1⟩” can be interpreted as “𝑒 steps to a superposition of 𝑒0 with 𝑑0
discarded and 𝑒1 with 𝑑1 discarded, weighted by amplitudes 𝛼 and 𝛽 .”

• Values are denoted with the letter 𝑣 , and are expressions that are either unit, a tagged value,
or a pair of values. Formally, 𝑣 ::= ⟨⟩ | inl 𝑣 | inr 𝑣 | ⟨𝑣1, 𝑣2⟩.

• “[𝑥 := 𝑣]𝑒” is the expression 𝑒 with every free occurrence of the variable 𝑥 replaced with the
value 𝑣 .

• Assume that a gate 𝑔 is represented by the matrix with scalars 𝐺00, 𝐺01, 𝐺10, and 𝐺11.

𝑥 ∈ FV(𝑒)
(𝜆𝑥 .𝑒)𝑣 =⇒ |[𝑥 := 𝑣]𝑒, []⟩

𝑥 ∉ FV(𝑒)
(𝜆𝑥 .𝑒)𝑣 =⇒ |𝑒, [𝑣]⟩

𝑥0 ∈ FV(𝑒0)
(case inl 𝑣 of | inl 𝑥0 ⇒ 𝑒0 | inr 𝑥1 ⇒ 𝑒1) =⇒ |[𝑥0 := 𝑣]𝑒0, [0]⟩

6

https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1137/080712167
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/3434318
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1137/S0097539703432165

Toward a Language for Higher-Level Formal Verification PlanQC 2021, June 22, 2021, Anywhere on Earth

𝑥0 ∉ FV(𝑒0)
(case inl 𝑣 of | inl 𝑥0 ⇒ 𝑒0 | inr 𝑥1 ⇒ 𝑒1) =⇒ |𝑒0, [inl 𝑣]⟩

𝑥1 ∈ FV(𝑒1)
(case inr 𝑣 of | inl 𝑥0 ⇒ 𝑒0 | inr 𝑥1 ⇒ 𝑒1) =⇒ |[𝑥1 := 𝑣]𝑒1, [1]⟩

𝑥1 ∉ FV(𝑒1)
(case inr 𝑣 of | inl 𝑥0 ⇒ 𝑒0 | inr 𝑥1 ⇒ 𝑒1) =⇒ |𝑒1, [inr 𝑣]⟩

(control inl 𝑣 with | inl 𝑥0 ⇒ 𝑒0 | inr 𝑥1 ⇒ 𝑒1) =⇒ |⟨inl 𝑣, [𝑥0 := 𝑣]𝑒0⟩, []⟩

(control inr 𝑣 with | inl 𝑥0 ⇒ 𝑒0 | inr 𝑥1 ⇒ 𝑒1) =⇒ |⟨inr 𝑣, [𝑥1 := 𝑣]𝑒1⟩, []⟩

let ⟨𝑥1, 𝑥2⟩ = ⟨𝑣1, 𝑣2⟩ in 𝑒 =⇒ |(𝜆𝑥1.(𝜆𝑥2.𝑒) 𝑣2) 𝑣1, []⟩

𝑔 0 =⇒ 𝐺00 |0, []⟩ +𝐺10 |1, []⟩ 𝑔 1 =⇒ 𝐺01 |0, []⟩ +𝐺11 |1, []⟩

𝑒 =⇒ 𝛼1 |𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩
inl 𝑒 =⇒ 𝛼1 |inl 𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |inl 𝑒𝑛, 𝑑𝑛⟩

𝑒 =⇒ 𝛼1 |𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩
inr 𝑒 =⇒ 𝛼1 |inr 𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |inr 𝑒𝑛, 𝑑𝑛⟩

𝑒 =⇒ 𝛼1 |𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩
⟨𝑒, 𝑒 ′⟩ =⇒ 𝛼1 |⟨𝑒1, 𝑒 ′⟩, 𝑑1⟩ + · · · + 𝛼𝑛 |⟨𝑒𝑛, 𝑒 ′⟩, 𝑑𝑛⟩

𝑒 =⇒ 𝛼1 |𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩
⟨𝑣, 𝑒⟩ =⇒ 𝛼1 |⟨𝑣, 𝑒1⟩, 𝑑1⟩ + · · · + 𝛼𝑛 |⟨𝑣, 𝑒𝑛⟩, 𝑑𝑛⟩

𝑒 =⇒ 𝛼1 |𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩
(case 𝑒 of | inl 𝑥0 ⇒ 𝑒 ′ | inl 𝑥1 ⇒ 𝑒 ′′) =⇒

𝛼1 |case 𝑒1 of | inl 𝑥0 ⇒ 𝑒 ′ | inl 𝑥1 ⇒ 𝑒 ′′, 𝑑1⟩ + · · · + 𝛼𝑛 |case 𝑒𝑛 of · · · , 𝑑𝑛⟩

𝑒 =⇒ 𝛼1 |𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩
(control 𝑒 with | inl 𝑥0 ⇒ 𝑒 ′ | inl 𝑥1 ⇒ 𝑒 ′′) =⇒

𝛼1 |control 𝑒1 with | inl 𝑥0 ⇒ 𝑒 ′ | inl 𝑥1 ⇒ 𝑒 ′′, 𝑑1⟩ + · · · + 𝛼𝑛 |control 𝑒𝑛 with · · · , 𝑑𝑛⟩

𝑒 =⇒ 𝛼1 |𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩
let ⟨𝑥1, 𝑥2⟩ = 𝑒 in 𝑒 ′ =⇒ 𝛼1 |let ⟨𝑥1, 𝑥2⟩ = 𝑒1 in 𝑒

′, 𝑑1⟩ + · · · + 𝛼𝑛 |let ⟨𝑥1, 𝑥2⟩ = 𝑒𝑛 in 𝑒 ′, 𝑑𝑛⟩

𝑒 =⇒ 𝛼1 |𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩
𝑓 𝑒 =⇒ 𝛼1 |𝑓 𝑒1, 𝑑1⟩ + · · · + 𝛼𝑛 |𝑓 𝑒𝑛, 𝑑𝑛⟩

Finally, the main step relation can be defined by a single inference rule, sending quantum states
to quantum states. We will use “−→” do denote this step, and “++” to denote list concatenation.

𝑒 𝑗 =⇒ 𝛼 ′
1 |𝑒 ′1, 𝑑 ′

1⟩ + · · · + 𝛼 ′
𝑛 |𝑒 ′𝑛, 𝑑 ′

𝑛⟩
𝛼1 |𝑣1, 𝑑1⟩ + · · · + 𝛼 𝑗−1 |𝑣 𝑗−1, 𝑑 𝑗 ⟩ + 𝛼 𝑗 |𝑒 𝑗 , 𝑑 𝑗 ⟩ + · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩ −→

𝛼1 |𝑣1, 𝑑1⟩ + · · · + 𝛼 𝑗−1 |𝑣 𝑗−1, 𝑑 𝑗−1⟩ + 𝛼 𝑗

(
𝛼 ′
1 |𝑒 ′1, 𝑑 𝑗 ++ 𝑑 ′

1⟩ + · · · + 𝛼 ′
𝑛 |𝑒 ′𝑛, 𝑑 𝑗 ++ 𝑑 ′

𝑛⟩
)
+ · · · + 𝛼𝑛 |𝑒𝑛, 𝑑𝑛⟩

This is the “main” step relation of a program. Running a program 𝑒 can be seen as repeatedly
applying this relation, starting with |𝑒, []⟩.

7

PlanQC 2021, June 22, 2021, Anywhere on Earth Voichick and Hicks

B DISCARD-FREE
Formally, the “discard-free” property is defined by the following inference rules:

discard-free(⟨⟩)
discard-free(𝑒)

discard-free(inl 𝑒)
discard-free(𝑒)

discard-free(inr 𝑒)

discard-free(𝑒1) discard-free(𝑒2)
discard-free(⟨𝑒1, 𝑒2⟩)

discard-free(𝑥)

discard-free(𝑒) discard-free(𝑒0) discard-free(𝑒1)
discard-free(control 𝑒 with | inl 𝑥0 ⇒ 𝑒0 | inr 𝑥1 ⇒ 𝑒1)

𝑥1 ∈ FV(𝑒) 𝑥2 ∈ FV(𝑒) discard-free(𝑒 ′) discard-free(𝑒)
discard-free(let ⟨𝑥1, 𝑥2⟩ = 𝑒 ′ in 𝑒)

𝑥 ∈ FV(𝑒) discard-free(𝑒) discard-free(𝑒 ′)
discard-free((𝜆𝑥.𝑒) 𝑒 ′)

discard-free(𝑒)
discard-free(𝑔 𝑒)

C COMPARISONWITH OTHER LANGUAGES
In this section, we will compare QuantumOne’s features with that of a handful of other quantum
programming languages, specifically Qml[1], quantum lambda calculus [8], Quipper [4], Qwire[6],
Qbricks[3], and Sqir[5]. (Note that there is more than one quantum lambda calculus [9], but we
will discuss one of Selinger and Valiron’s [8].)

C.1 Linear Types versus Sharing
The no-cloning theorem shows that there is no quantum circuit that can clone an arbitrary quantum
state, so any quantum programming language with variables must handle variable re-use in some
way. Some languages accomplish this using linear types, typing systems that disallow variables to
be re-used. This is the approach taken in quantum lambda calculus and Qwire, through typing
relations and typechecking algorithms. Quipper is similar, but checks appear at runtime instead of
compile time. Sqir does not have virtual qubit variables in the same way, but it includes a typing
relation that prevents multi-qubit gates from being applied to a single location.
Qml takes a different approach. It allows for variable duplication, but interprets it as sharing

rather than cloning. We take this approach as well, as described in Section 2.2. One advantage to
this approach is that it significantly simplifies the type system. Programs can combine classical
and quantum operations in a single program, and the typing rules are no more complicated for the
quantum data than the classical data.

Qbricks seems to avoid the no-cloning problem altogether by limiting itself to describing whole
circuits rather than applications to specific registers.

C.2 Formal Verification Oriented
Sqir and Qbricks are two languages designed for formally verifying quantum programs. Sqir
is implemented within the Coq proof assistant, and Qbricks is implemented using the Why3
deductive verification platform. Qbricks allows for a high degree of automation, and Sqir comes
with Voqc, a verified optimizer for quantum circuits. Both have been used to verify interesting
algorithms such as Grover’s algorithm, and none of the other languages discussed were designed
with formal verification in mind.

Given the difficulty in debugging quantumprograms, we’re planning to center the implementation
of QuantumOne around formal verification. We have implemented the syntax, typing rules, and

8

Toward a Language for Higher-Level Formal Verification PlanQC 2021, June 22, 2021, Anywhere on Earth

semantics of QuantumOne within the Coq proof assistant, and we have proven the correctness of
small programs. A certified compiler from QuantumOne to Sqir would make it easy to optimize
circuits with Voqc and would allow for formal verification using higher-level language features
such as variables and tagged unions.

C.3 Superpositions of Tagged Unions
Any useful quantum programming language must allow for interactions between qubits, and thus
must allow for some sort of collection of qubits. For most languages, this essentially means classical
data structures containing qubits. Quipper and Qwire allow for manipulating lists of qubits, but
the length of the list must be known classically. (There is no notion of “superposition of lists of
different length.”) Sqir and Qbricks both assume that all of the quantum data they deal with is
a single list of qubits, or equivalently a superposition of bitstrings of a classically-known length.
Quantum lambda calculus includes tagged unions that can contain qubits, but the tag is classical.
None of these languages allow for superpositions beyond qubits or collections of qubits. The

only way to represent a trit in these languages would be with a pair of qubits, and a programmer
would be forced to work with this two-bit representation.

Qml and QuantumOne include superpositions of tagged unions. The “trit” type can be represented
with “Unit + Unit + Unit,” and language features are designed to work with these kinds of types.
The kinds of case analysis that the two languages include are a bit different; QuantumOneonly
allows for “control” expressions that keep the argument, while Qml allows for a more powerful
case analysis subject to orthogonality constraints.

D COMPILATION
We intend to write a compiler from QuantumOne to quantum circuits in Sqir [5], verified in Coq. It
should be verified that the compiled circuit produces quantum states equivalent to those produced
by the operational semantics. This will require us to represent all of our values with a series of
qubits. The number of qubits needed to represent a value of type 𝑇 is size(𝑇), recursively defined
by

size(Unit) := 0
size(𝑇0 +𝑇1) := 1 +max{size(𝑇0), size(𝑇1)}
size(𝑇1 ×𝑇2) := size(𝑇1) + size(𝑇2)

Tagged unions are represented with a single qubit for the tag and the rest of the qubits for the
subvalues.

When compiling a QuantumOne expression, the compiler will be given a specific |0⟩-initialized
register on which to produce the desired value. In addition, there will need to be some collection of
pointers associating variables with quantum registers, so that expressions with free variables can
receive input from the correct register. Expressions that create new variables will need to allocate
a new register, as will any expressions that duplicate variables. Duplication of variables will be
accomplished with a series of cnot gates applied to a newly-allocated register initialized to zero.
Sqir does not have a mechanism for allocating and managing registers, so this mechanism will
need to be implemented.

QuantumOne’s “control” expressions will be implemented using controlled gates. As an example,
consider this expression:

control 𝑥 with | inl 𝑥0 ⇒ 𝑓0 𝑦 | inr 𝑥1 ⇒ 𝑓1 ⟨𝑦, 𝑥0⟩

9

PlanQC 2021, June 22, 2021, Anywhere on Earth Voichick and Hicks

This expression could be compiled into a circuit like this:
𝑥tag × |0⟩

𝑥0/𝑥1 / × |0⟩

𝑦 / 𝑓0 𝑓1 |0⟩

|0⟩ × • • out1,tag

|0⟩ / × • out1,sub

|0⟩ / 𝑓0
𝑓1

out2

|0⟩ / |0⟩
Note that the output registers of compiled expressions are distinct from the input registers contain-
ing the free variables used. This is done because in general the output type may be different from
the input type. We are assuming that any discard-free expression compiles into a circuit that leaves
its input register in the |0⟩ state.

There is a lot of opportunity for optimization here, particularly in qubit reuse. It would save some
qubits to allow for overlap between input and output registers, but this is more difficult to depict
in a circuit diagram. For example, the 𝑓1 gate in the above circuit could produce its output onto a
register that includes the input 𝑦 register, but the circuit diagram would look different depending
on whether the type of (𝑓1 ⟨𝑦, 𝑥0⟩) is larger than the type of ⟨𝑦, 𝑥0⟩.

10

	Abstract
	1 Introduction
	2 QuantumOne: Syntax
	2.1 Example: Deutsch's algorithm
	2.2 Duplication via Entanglement
	2.3 Measurement via Discarding
	2.4 Meta programming

	3 Operational Semantics
	3.1 Expression Equivalence
	3.2 Discussion

	4 Typing
	5 Future Work
	Acknowledgments
	References
	A Full Operational Semantics
	B Discard-Free
	C Comparison with Other Languages
	C.1 Linear Types versus Sharing
	C.2 Formal Verification Oriented
	C.3 Superpositions of Tagged Unions

	D Compilation

