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This abstract presents recent extensions to voqc, a verified optimizer for quantum circuits, first presented at
POPL 2021 [Hietala et al. 2021b]. All code described in this abstract is freely available online.1

1 OVERVIEW
voqc [Hietala et al. 2021b] (pronounced “vox”) is a compiler for quantum circuits, in the style of
tools like Qiskit [Aleksandrowicz et al. 2019], tket [Cambridge Quantum Computing Ltd 2019],
Quilc [Rigetti Computing 2019], and Cirq [Developers 2021]. What makes voqc different from these
tools is that it has been formally verified in the Coq proof assistant [Coq Development Team 2019].
voqc source programs are expressed in sqir, a simple quantum intermediate representation, which
has a precise mathematical semantics. We use Gallina, Coq’s programming language, to implement
voqc transformations over sqir programs, and use Coq to prove the source program’s semantics
are preserved. We then extract these Gallina definitions to OCaml, and compile the OCaml code to
a library that can operate on standard-formatted circuits.

voqc, and sqir, were built to be general-purpose. For example, while we originally designed sqir
for use in verified optimizations, we subsequently found sqir could also be suitable for writing, and
proving correct, source programs [Hietala et al. 2021a]. We have continued to develop the voqc
codebase to expand its reach and utility.
In this abstract, we present new extensions to voqc as an illustration of its flexibility. These

include support for calling voqc transformations from Python, added support for new gate sets
and optimizations, and the extension of our notion of correctness to include mapping-preservation,
which allows us to apply optimizations after mapping, reducing the cost introduced by making a
program conform to hardware constraints.

2 PYVOQC
In order to make voqc compatible with existing Python-based frameworks for compiling quantum
programs (e.g. Qiskit, pytket, Quilc, Cirq), we provide a Python wrapper (dubbed pyvoqc) around
the voqc OCaml library. To interface between Python and OCaml, we wrap the OCaml code in a C
library (following standard conventions [INRIA 2021]) and call to this C library using Python’s
1Software links:

● Our Coq definitions and proofs are available at https://github.com/inQWIRE/SQIR.
● Our OCaml library is available at https://github.com/inQWIRE/mlvoqc and can be installed with “opam install voqc”.
● Documentation on the OCaml library interface is available at https://inqwire.github.io/mlvoqc/voqc/Voqc/index.html.
● Our Python bindings and tutorials are available at https://github.com/inQWIRE/pyvoqc.
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Table 1. Gate sets used in voqc. 𝑟 is a real parameter and 𝑞 is a rational parameter.

Standard Single-qubit gates: I, X, Y, Z, H, S, T, Sdg, Tdg, Rx(𝑟 ), Ry(𝑟 ), Rz(𝑟 ),
Rzq(𝑞), U1(𝑟 ), U2(𝑟, 𝑟 ), U3(𝑟, 𝑟, 𝑟 )

Two-qubit gates: CX, CZ, SWAP
Three-qubit gates: CCX, CCZ

RzQ Single-qubit gates: X, H, Rzq(𝑞)
Two-qubit gates: CX

IBM Single-qubit gates: U1(𝑟 ), U2(𝑟, 𝑟 ), U3(𝑟, 𝑟, 𝑟 )
Two-qubit gates: CX

ctypes [Python Software Foundation 2021]. For convenience, we have written Python code that
makes voqc look like an optimization pass in IBM’s Qiskit or Google’s Cirq, allowing us to take
advantage of these frameworks’ utilities for quantum programming (e.g. constructing and printing
circuits, unverified optimizations and mapping routines). We show an example of using voqc as a
Qiskit pass in Section 3.

3 SUPPORT FOR ADDITIONAL GATE SETS
When we first presented voqc we defined our optimizations over the “RzQ” gate set [Hietala et al.
2021b, §4.2], but argued that our work could be applied to other gate sets as well since many of
our utility definitions and proofs are gate-set independent. Here, we demonstrate this extensibility
for two new gate sets: the “standard” gate set and the “IBM” gate set, both shown in Table 1. The
standard gate set is used for parsing and aims for completeness: Instead of having to translate a 𝑇
gate in the source program to the semantically equivalent Rz(PI⇑4), we can translate it directly to T.
Likewise, we can translate the three-qubit 𝐶𝐶𝑋 gate directly to CCX, rather than decomposing it
into a series of one- and two-qubit gates (potentially incorrectly).

The IBM gate set is the default basis for the Qiskit compiler.2 It includes the two-qubit controlled-
NOT (CX) gate, along with three parameterized single-qubit gates:

𝑈1(𝜆) = (
1 0

0 𝑒𝑖𝜆
) , 𝑈2(𝜙, 𝜆) =

1
⌋︂

2
(

1 −𝑒𝑖𝜆
𝑒𝑖𝜙 𝑒𝑖(𝜙+𝜆)

) , 𝑈3(𝜃,𝜙, 𝜆) = (
cos(𝜃⇑2) −𝑒𝑖𝜆 sin(𝜃⇑2)

𝑒𝑖𝜙 sin(𝜃⇑2) 𝑒𝑖(𝜙+𝜆) cos(𝜃⇑2)) .

One interesting property of this gate set (which does not hold of our original RzQ gate set) is that
any sequence of single-qubit gates can be combined into a single gate. This allows us to implement
an optimization (which Qiskit calls Optimize1qGates) that merges all adjacent single-qubit gate
by applying rules like𝑈1(𝜆1);𝑈1(𝜆2) →𝑈1(𝜆1 + 𝜆2) and𝑈1(𝜆1);𝑈2(𝜙, 𝜆2) →𝑈2(𝜆2, 𝜆1 + 𝜙).

The most complicated rule for merging gates is the one for combining a𝑈2 and𝑈3 gate or two𝑈3

gates. In this case, the two gates are first converted into a sequence of Euler rotations [Euler 1776]
about the 𝑦- and 𝑧-axes, e.g. 𝑈3(𝜃,𝜙, 𝜆) = 𝑅𝑧(𝜙) ⋅ 𝑅𝑦(𝜃) ⋅ 𝑅𝑧(𝜆). We will call this a ZYZ rotation.
Next, local identities are applied to combine the two ZYZ rotations into a single ZYZYZ rotation.
Then the interior YZY rotation is converted to a new ZYZ rotation, yielding a ZZYZZ rotation.
Finally, this is simplified to a ZYZ rotation, which can be represented as a 𝑈3 gate. For example,

2Actually, the𝑈1,𝑈2, and𝑈3 gates are used in many quantum compilers. We called this the “IBM” gate set because, at the
time, we were aiming to verify a Qiskit optimization.
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VOQC Tutorial (PLanQC 2020)
We provide Python bindings for VOQC in inQWIRE/pyvoqc. Providing Python bindings makes it easier to perform evaluations and easier to
integrate our tool into existing toolchains.

Preliminaries
To run this tutorial:

1. Install our OCaml package with opam install voqc  (requires opam)
2. Run ./install.sh  in the pyvoqc directory

Using PyVOQC Directly

In [3]: from pyvoqc.voqc import VOQC 
 
# load circuit 
c = VOQC("tutorial­files/tof_3_example.qasm") 
print("Input file:") 
c.print_info() 
 
# decompose CCX gates into single­qubit and CX ﴾= cnot﴿ gates 
c.decompose_to_cnot() 
print("\nAfter decomposing CCX gates:") 
c.print_info() 
 
# run our most general optimization ﴾see Sec. 4 of our POPL 2021 paper﴿ 
c.optimize_nam().replace_rzq() 
print("\nAfter optimization:") 
c.print_info() 
 
# map the circuit to the Tenerife architecture with initial layout [0,1,2,3,4] 
c.make_tenerife() 
c.list_to_layout([0,1,2,3,4]) 
c.simple_map() 
print("\nAfter mapping:") 
c.print_info() # adds a bunch of CX and H gates 
 
# try optimizing again to remove introduced gates 
c.cancel_single_qubit_gates().optimize_ibm() 
print("\nAfter optimization (round 2):") 
c.print_info() 

Running VOQC as a Qiskit Pass
Using our "voqc_pass" wrapper, VOQC can be called just like any other optimization pass in IBM's Qiskit framework. This allows us to take
advantage of Qiskit's utilities for quantum programming, such as the ability to build and print circuits.

To use VOQC, simply append QiskitVOQC([opt list])  to a Qiskit Pass Manager  where opt list  is an optional argument
specifying one or more of the transformations in VOQC. QiskitVOQC()  with no arguments will run all optimizations available.

In [4]: from qiskit import QuantumCircuit 
from pyvoqc.qiskit.voqc_pass import QiskitVOQC 
from qiskit.transpiler import PassManager 
 
# create a circuit using Qiskit's interface 
circ = QuantumCircuit(2) 
circ.x(0) 
circ.t(0) 
circ.t(1) 
circ.cz(0, 1) 
circ.t(0) 
circ.tdg(1) 
print("Before Optimization:") 
print(circ) 
 
# create a Qiskit PassManager 
pm = PassManager() 
 
# decompose CZ gate 
pm.append(QiskitVOQC(["decompose_to_cnot"])) 
new_circ = pm.run(circ) 
print("\n\nAfter 'decompose_to_cnot':") 
print(new_circ) 
 
# run optimizations from Nam et al. 
pm.append(QiskitVOQC(["optimize_nam", "replace_rzq"])) 
new_circ = pm.run(circ) 
print("\n\nAfter 'optimize_nam':") 
print(new_circ) 
 
# run IBM gate merging 
pm.append(QiskitVOQC(["optimize_ibm"])) 
new_circ = pm.run(circ) 
print("\n\nAfter 'optimize_ibm':") 
print(new_circ) 

In [ ]:   

Input file: 
Circuit uses 5 qubits and 3 gates. 
{'CCX': 3} 
No current layout. 
 
After decomposing CCX gates: 
Circuit uses 5 qubits and 45 gates. 
{'H': 6, 'T': 12, 'Tdg': 9, 'CX': 18} 
No current layout. 
 
After optimization: 
Circuit uses 5 qubits and 40 gates. 
{'H': 6, 'S': 2, 'T': 8, 'Sdg': 1, 'Tdg': 7, 'CX': 16} 
No current layout. 
 
After mapping: 
Circuit uses 5 qubits and 159 gates. 
{'H': 98, 'S': 2, 'T': 8, 'Sdg': 1, 'Tdg': 7, 'CX': 43} 
Current layout is [2,1,0,3,4] 
 
After optimization (round 2): 
Circuit uses 5 qubits and 125 gates. 
{'U1': 2, 'U2': 80, 'CX': 43} 
Current layout is [2,1,0,3,4] 

Before Optimization: 
     ┌───┐┌───┐    ┌───┐  
q_0: ┤ X ├┤ T ├─■──┤ T ├─ 
     ├───┤└───┘ │ ┌┴───┴┐ 
q_1: ┤ T ├──────■─┤ TDG ├ 
     └───┘        └─────┘ 
 
 
After 'decompose_to_cnot': 
     ┌───┐┌───┐     ┌───┐        
q_0: ┤ X ├┤ T ├──■──┤ T ├─────── 
     ├───┤├───┤┌─┴─┐├───┤┌─────┐ 
q_1: ┤ T ├┤ H ├┤ X ├┤ H ├┤ TDG ├ 
     └───┘└───┘└───┘└───┘└─────┘ 
 
 
After 'optimize_nam': 
               ┌─────┐┌───┐ 
q_0: ───────■──┤ SDG ├┤ X ├ 
     ┌───┐┌─┴─┐└┬───┬┘├───┤ 
q_1: ┤ H ├┤ X ├─┤ H ├─┤ Z ├ 
     └───┘└───┘ └───┘ └───┘ 
 
 
After 'optimize_ibm': 
                      ┌───────────────┐ 
q_0: ──────────────■──┤ U3(pi,0,pi/2) ├ 
     ┌──────────┐┌─┴─┐└─┬───────────┬─┘ 
q_1: ┤ U2(0,pi) ├┤ X ├──┤ U2(pi,pi) ├── 
     └──────────┘└───┘  └───────────┘   

VOQC Tutorial (PLanQC 2020)
We provide Python bindings for VOQC in inQWIRE/pyvoqc. Providing Python bindings makes it easier to perform evaluations and easier to
integrate our tool into existing toolchains.

Preliminaries
To run this tutorial:

1. Install our OCaml package with opam install voqc  (requires opam)
2. Run ./install.sh  in the pyvoqc directory

Using PyVOQC Directly

In [3]: from pyvoqc.voqc import VOQC 
 
# load circuit 
c = VOQC("tutorial­files/tof_3_example.qasm") 
print("Input file:") 
c.print_info() 
 
# decompose CCX gates into single­qubit and CX ﴾= cnot﴿ gates 
c.decompose_to_cnot() 
print("\nAfter decomposing CCX gates:") 
c.print_info() 
 
# run our most general optimization ﴾see Sec. 4 of our POPL 2021 paper﴿ 
c.optimize_nam().replace_rzq() 
print("\nAfter optimization:") 
c.print_info() 
 
# map the circuit to the Tenerife architecture with initial layout [0,1,2,3,4] 
c.make_tenerife() 
c.list_to_layout([0,1,2,3,4]) 
c.simple_map() 
print("\nAfter mapping:") 
c.print_info() # adds a bunch of CX and H gates 
 
# try optimizing again to remove introduced gates 
c.cancel_single_qubit_gates().optimize_ibm() 
print("\nAfter optimization (round 2):") 
c.print_info() 

Running VOQC as a Qiskit Pass
Using our "voqc_pass" wrapper, VOQC can be called just like any other optimization pass in IBM's Qiskit framework. This allows us to take
advantage of Qiskit's utilities for quantum programming, such as the ability to build and print circuits.

To use VOQC, simply append QiskitVOQC([opt list])  to a Qiskit Pass Manager  where opt list  is an optional argument
specifying one or more of the transformations in VOQC. QiskitVOQC()  with no arguments will run all optimizations available.

In [4]: from qiskit import QuantumCircuit 
from pyvoqc.qiskit.voqc_pass import QiskitVOQC 
from qiskit.transpiler import PassManager 
 
# create a circuit using Qiskit's interface 
circ = QuantumCircuit(2) 
circ.x(0) 
circ.t(0) 
circ.t(1) 
circ.cz(0, 1) 
circ.t(0) 
circ.tdg(1) 
print("Before Optimization:") 
print(circ) 
 
# create a Qiskit PassManager 
pm = PassManager() 
 
# decompose CZ gate 
pm.append(QiskitVOQC(["decompose_to_cnot"])) 
new_circ = pm.run(circ) 
print("\n\nAfter 'decompose_to_cnot':") 
print(new_circ) 
 
# run optimizations from Nam et al. 
pm.append(QiskitVOQC(["optimize_nam", "replace_rzq"])) 
new_circ = pm.run(circ) 
print("\n\nAfter 'optimize_nam':") 
print(new_circ) 
 
# run IBM gate merging 
pm.append(QiskitVOQC(["optimize_ibm"])) 
new_circ = pm.run(circ) 
print("\n\nAfter 'optimize_ibm':") 
print(new_circ) 

In [ ]:   

Input file: 
Circuit uses 5 qubits and 3 gates. 
{'CCX': 3} 
No current layout. 
 
After decomposing CCX gates: 
Circuit uses 5 qubits and 45 gates. 
{'H': 6, 'T': 12, 'Tdg': 9, 'CX': 18} 
No current layout. 
 
After optimization: 
Circuit uses 5 qubits and 40 gates. 
{'H': 6, 'S': 2, 'T': 8, 'Sdg': 1, 'Tdg': 7, 'CX': 16} 
No current layout. 
 
After mapping: 
Circuit uses 5 qubits and 159 gates. 
{'H': 98, 'S': 2, 'T': 8, 'Sdg': 1, 'Tdg': 7, 'CX': 43} 
Current layout is [2,1,0,3,4] 
 
After optimization (round 2): 
Circuit uses 5 qubits and 125 gates. 
{'U1': 2, 'U2': 80, 'CX': 43} 
Current layout is [2,1,0,3,4] 

Before Optimization: 
     ┌───┐┌───┐    ┌───┐  
q_0: ┤ X ├┤ T ├─■──┤ T ├─ 
     ├───┤└───┘ │ ┌┴───┴┐ 
q_1: ┤ T ├──────■─┤ TDG ├ 
     └───┘        └─────┘ 
 
 
After 'decompose_to_cnot': 
     ┌───┐┌───┐     ┌───┐        
q_0: ┤ X ├┤ T ├──■──┤ T ├─────── 
     ├───┤├───┤┌─┴─┐├───┤┌─────┐ 
q_1: ┤ T ├┤ H ├┤ X ├┤ H ├┤ TDG ├ 
     └───┘└───┘└───┘└───┘└─────┘ 
 
 
After 'optimize_nam': 
               ┌─────┐┌───┐ 
q_0: ───────■──┤ SDG ├┤ X ├ 
     ┌───┐┌─┴─┐└┬───┬┘├───┤ 
q_1: ┤ H ├┤ X ├─┤ H ├─┤ Z ├ 
     └───┘└───┘ └───┘ └───┘ 
 
 
After 'optimize_ibm': 
                      ┌───────────────┐ 
q_0: ──────────────■──┤ U3(pi,0,pi/2) ├ 
     ┌──────────┐┌─┴─┐└─┬───────────┬─┘ 
q_1: ┤ U2(0,pi) ├┤ X ├──┤ U2(pi,pi) ├── 
     └──────────┘└───┘  └───────────┘   

Fig. 1. Example of using voqc as a Qiskit pass. The output from the script on the left is shown on the right.

here is the process for combining two𝑈3 gates:

𝑈3(𝜃1, 𝜙1, 𝜆1);𝑈3(𝜃2, 𝜙2, 𝜆2) = 𝑅𝑧(𝜙2) ⋅ 𝑅𝑦(𝜃2) ⋅ 𝑅𝑧(𝜆2) ⋅ 𝑅𝑧(𝜙1) ⋅ 𝑅𝑦(𝜃1) ⋅ 𝑅𝑧(𝜆1)

= 𝑅𝑧(𝜙2) ⋅ (︀𝑅𝑦(𝜃2) ⋅ 𝑅𝑧(𝜆2 + 𝜙1) ⋅ 𝑅𝑦(𝜃1)⌋︀ ⋅ 𝑅𝑧(𝜆1)

= 𝑅𝑧(𝜙2) ⋅ (︀𝑅𝑧(𝛾) ⋅ 𝑅𝑦(𝛽) ⋅ 𝑅𝑧(𝛼)⌋︀ ⋅ 𝑅𝑧(𝜆1)

= 𝑅𝑧(𝜙2 + 𝛾) ⋅ 𝑅𝑦(𝛽) ⋅ 𝑅𝑧(𝛼 + 𝜆1)

= 𝑈3(𝛽,𝜙2 + 𝛾, 𝛼 + 𝜆1)

where 𝛼 , 𝛽 , 𝛾 satisfy 𝑅𝑦(𝜃2) ⋅ 𝑅𝑧(𝜆2 + 𝜙1) ⋅ 𝑅𝑦(𝜃1) = 𝑅𝑧(𝛾) ⋅ 𝑅𝑦(𝛽) ⋅ 𝑅𝑧(𝛼).
Importantly, we were able to define and verify this optimization using the same infrastructure

we had developed for our original RzQ gate set, showing that our framework is indeed extensible.
The most difficult part of the proof was showing the correctness of the gate combination rules.
In particular, the method for converting from a YZY to ZYZ rotation (shown in Figure 2) was
challenging to verify because it contains many cases, all of which involve complicated trigonometric
expressions. To our knowledge, we are the first to formally verify this method in a proof assistant.
In total, voqc supports the 9 optimizations listed in Table 2. We show the effect of applying

optimize_nam and optimize_ibm (as Qiskit passes) on an example circuit in Figure 1. In addition,
voqc provides a simple_map function that takes as input a circuit, a description of the underlying
architecture connectivity, and an initial mapping from the circuit’s qubits to machine qubits, and
returns a program that respects the constraints of the architecture (see Section 4 for more details).
Our simple_map routine is effectively the same as Qiskit’s BasicSwap pass [Qiskit Development
Team 2021].
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Definition rm02 (x y z : R) : R := sin x ∗ cos z + cos x ∗ cos y ∗ sin z.
Definition rm12 (x y z : R) : R := sin y ∗ sin z.
Definition rm22 (x y z : R) : R := cos x ∗ cos z − sin x ∗ cos y ∗ sin z.
Definition rm10 (x y z : R) : R := sin y ∗ cos z.
Definition rm11 (x y z: R) : R := cos y.
Definition rm20_minus (x y z : R) : R := cos x ∗ sin z + sin x ∗ cos y ∗ cos z.
Definition rm21 (x y z : R) : R := sin x ∗ sin y.

Definition atan2 (y x : R) : R :=
if 0 <? x then atan (y⇑x)
else if x <? 0 then if negb (y <? 0) then atan (y⇑x) + PI else atan (y⇑x) − PI

else if 0 <? y then PI⇑2 else if y <? 0 then −PI⇑2 else 0.

Definition yzy_to_zyz (x y z : R) : R ∗ R ∗ R :=
if rm22 x y z <? 1
then if −1 <? rm22 x y z

then (atan2 (rm12 x y z) (rm02 x y z),
acos (rm22 x y z),
atan2 (rm21 x y z) (rm20_minus x y z))

else (− atan2 (rm10 x y z) (rm11 x y z), PI, 0)
else (atan2 (rm10 x y z) (rm11 x y z), 0, 0).

(* Correctness property: *)

Lemma yzy_to_zyz_correct : ∀ 𝜃1 𝜉 𝜃2 𝜉1 𝜃 𝜉2,
yzy_to_zyz 𝜃1 𝜉 𝜃2 = (𝜉1, 𝜃 , 𝜉2)→
y_rotation 𝜃2 × phase_shift 𝜉 × y_rotation 𝜃1
∝ phase_shift 𝜉2 × y_rotation 𝜃 × phase_shift 𝜉1.

Fig. 2. Code for converting a YZY rotation to a ZYZ rotation.

4 INTERLEAVING MAPPING AND OPTIMIZATION

Fig. 3. Connectivity

on IBM’s 5-qubit

Tenerife machine.

Near-termmachines only allow two-qubit gates to be applied between certain
pairs of qubits and in particular orientations. For example, in IBM’s 5-qubit
Tenerife machine (shown on the right), a CX gate may be applied with Q4
as the control and Q2 as the target, but not the reverse. No two-qubit gate
is possible between physical qubits Q4 and Q1. So the program CX Q4 Q1
will need to be transformed to, e.g., SWAP Q2 Q4; CX Q2 Q1 in order to be
executed on the machine.3
Circuit mapping automates this process, taking as input a circuit and

architecture connectivity graph, and returning a transformed circuit that
respects the constraints of the architecture [Saeedi et al. 2011; Zulehner et al.
2017]. Circuit mapping increases the number of gates, typically adding many
CX and H gates to perform SWAPs between qubits.

3The SWAP gate will be decomposed to CX Q4 Q2; CX Q2 Q4; CX Q4 Q2, which is transformed into CX Q4 Q2; H Q2; H
Q4; CX Q4 Q2; H Q2; H Q4; CX Q4 Q2 to respect architecture constraints.
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Table 2. Optimizations available in voqc.

Name Description Gate Set
not_propagation [Hietala et al. 2021b, §4.3] RzQ
hadamard_reduction [Hietala et al. 2021b, §4.4] RzQ
cancel_single_qubit_gates [Hietala et al. 2021b, §4.3] RzQ
cancel_two_qubit_gates [Hietala et al. 2021b, §4.3] RzQ
merge_rotations [Hietala et al. 2021b, §4.4] RzQ
optimize_nam Applies all RzQ optimizations in the ordering

described in Hietala et al. [2021b, §4.6]
RzQ

optimize_1q_gates Implementation of Qiskit’s Optimize1qGates
[Qiskit Development Team 2021]

IBM

cx_cancellation Implementation of Qiskit’s CXCancellation
[Qiskit Development Team 2021]

IBM

optimize_ibm Applies optimize_1q_gates followed by
cx_cancellation

IBM

It is desirable to reduce this overhead by applying optimization after mapping. However, this
is only worthwhile if the optimization preserves the guarantee from mapping that all CX gates
are allowed by the connectivity graph. We have verified that all of the optimizations in Table 2,
except hadamard_reduction, preserve connectivity guarantees. We call this property mapping-
preservation, in contrast to the standard property that we prove, semantics-preservation, which that
says that an optimization does not change the behavior (“semantics”) of the input program.

5 ONGOINGWORK
We are working to extend voqc with more gates, optimizations, and mapping routines, taking
inspiration from frameworks like Qiskit, tket, Quilc, and Cirq. We are especially interested in
implementing and verifying more sophisticated circuit mappers and adding support for approximate
optimizations that do not preserve semantics exactly, but instead return a lower-cost circuit with
similar behavior (e.g. [Peterson 2021]). Our current mapping routine is quite simple compared
to state-of-the-art mappers, which involve complex subroutines like A* search [Zulehner et al.
2017] or Steiner tree approximations [Nash et al. 2020]. To avoid verifying the entirety of these
algorithms, we are exploring approaches to verified translation validation of their components.

One major limitation of our current work with the IBM gate set is that we have proved optimiza-
tions correct for gates that use Coq real numbers as parameters. Because Coq reals are axiomatized,
there is no way to extract our Coq definitions to OCaml without providing an implementation of
real arithmetic. For simplicity (and compatibility with existing frameworks), we have chosen to
extract Coq reals to OCaml floats. This is not ideal because it allows for the possibility of rounding
error not accounted for in our proofs. We previously avoided this issue by using rational gate
parameters (which can be extracted to OCaml multi-precision rationals), but this is not sufficient
for the IBM single-qubit gate optimization, which involves trigonometric functions that are not
defined over rationals (Figure 2). One possible solution is to verify our optimizations over gates
that use Coq float parameters (e.g. using the Floqc library [Boldo and Melquiond 2011]).
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