Transparent Communication for Distributed Objects in Java

Michael Hicks* Suresh Jagannathan®

Richard Kelsey? Jonathan T. Moore*

Cristian Ungureanu?

Abstract

We describe a native-code implementation of Java that sup-
ports distributed objects. In order to foster the correctness
of distributed programs, remote access is syntactically and
semantically indistinguishable from local access. This trans-
parency is provided by the runtime system through the im-
plicit generation of remote references to an object when it
is passed as an argument or returned from a remote method
call. Consistency is achieved through the use of a distributed
(and thus scalable) global addressing scheme. Experiments
show that application performance is a function of data lay-
out, access algorithm, and local workload. For distributed
applications, such as distributed databases, these factors
may not be known statically, suggesting the importance of
runtime support.

1 Introduction

We consider a new approach to layering a distributed se-
mantics onto Java [GJS95]. Our goal is to provide a system
that simplifies the task of writing correct distributed Java
programs without seriously compromising generality, scala-
bility, or performance.

Distributed programming in our extended Java requires
programmers only to specify an initial home for an instance;
once an object is created, the semantics of accessing it re-
main unchanged regardless of whether the object is local or
remote. The system is completely general: no distinction
is made a priori about which objects may be remote. This
means that programmers may leave the implementation of
a program’s control component unchanged when convert-
ing a serial program to a distributed one. Alterations to a
program’s control structure may be made to improve perfor-
mance or to express a naturally distributed algorithm, but
are not necessary for correctness. In this way we resemble
distributed shared memory systems, but at the granularity
of objects (presenting a global shared object-space) rather
than memory locations.

While simplifying distributed programming in general,
we believe this model will be particularly useful in appli-
cations where a computation’s data access behavior cannot

*Department of Computer and Information Science, University of
Pennsylvania {mwh|jonm}@dsl.cis.upenn.edu

8Computer Science Research, NEC Research Institute
{suresh|kelseylcristian}@research.nj.nec.com

be easily determined statically or where data cannot be eas-
ily migrated. For example, a program might be written
to search several databases in multiple administrative do-
mains in a conceptually integrated manner. Programs may
be written to search or otherwise operate on the data as if it
were all available locally, when in fact it may be distributed
throughout a large network.

To support a global shared object-space that can scale
easily, we use a novel algorithm. The algorithm does not rely
on a central registry or name-server to mediate creation of
unique identifiers. Nodes involved in a remote communica-
tion event dynamically resolve the meaning of remote ref-
erences in messages through the use of a distributed access
table that manages remote references received from other
nodes. The runtime system thus allows the collection of
nodes involved in a Java computation to grow dynamically
without requiring recompilation. The use of a distributed
access table reduces the number of administrative messages
required to resolve the meaning of remote references com-
pared against an implementation that utilizes a centralized
registry.

To improve performance, a native-code optimizing com-
piler is used to emit fast sequential code. In addition, the
compiler is designed to perform distribution and commun-
ication-sensitive optimizations to help reduce the overhead
induced by a naive implementation of this model. Because
the way a program references an object is decoupled from
its location, the runtime system can make dynamic decisions
on how data should be distributed and how tasks should be
scheduled. These decisions can never influence correctness,
but may improve performance.

Like Java/RMI [WWR97, Sun97]), our design is based
on remote method invocation. To achieve greater gener-
ality, however, we do not require programmers to classify
instances as being remote or local. Instead, our semantics
permits programs to dynamically create any kind of instance
on any node in a network ensemble. An instance supplied
as an argument or returned as a result of a method call can
be referenced by any other object in the system regardless
of its location in the network.

Like distributed shared memory systems (e.g., [LH89,
YC97]), our implementation allows objects to be accessed
transparently anywhere in a network ensemble. We differ
insofar as we also permit code to be dynamically linked into
a running computation (i.e., programs are non-SPMD), and
we use remote method call as the underlying communication
mechanism: instance methods execute on the node where
the object was allocated, and not on the node where the
reference is made. Because of our exclusive use of RPC, we
do not support caching of mutable data on different nodes;
thus, unlike DSM, our implementation does not include a
significant invalidation and consistency component.

InE

T,

Base B

Base A

Figure 1: Remote references span bases.

Our use of a conceptually global shared object-space for
specifying distributed programs means that local and remote
method calls have the same external behavior. This seman-
tics is in sharp contrast to the semantics supported by typ-
ical RPC-based implementations [BN84, SB90, BNOWer].
In RPC, local objects are copied on a remote call, and are
not shared between the caller and callee if the two reside
on different nodes. Programs using standard RPC as the
communication model must therefore be carefully crafted to
avoid unexpected behavior due to unwanted copying and loss
of data sharing. Our design avoids this pitfall by implicitly
generating remote references for instances used in a remote
communication event. In this regard, our system resem-
bles JavaParty [PZ97] and JavaSpaces [JSp99], two systems
that also provide programmer-controlled shared-memory ab-
stractions. We differ in the mechanics through which remote
references are created and managed, and in the use of a spe-
cialized runtime (rather than Java/RMI) to provide trans-
port and marshalling services.

The paper is organized as follows. The next section gives
an overview of system assumptions and the programming
model. Section 3 provides details on how remote references
are implemented. Section 4 discusses the communication
protocol. Section 5 gives further details on the implemen-
tation. Section 6 provides performance results. Sections 7
and 8 present related work and conclusions.

2 The Programming Model

A distributed Java program consists of a collection of threads
and instances distributed on a set of bases. A base defines
an abstraction of a physical machine and an address space,
and is implemented as a process. Typically, there will be a
single base running on each machine in a network; however,
we make no assumption that there be a one-to-one corre-
spondence between bases and physical nodes: programmers
can create multiple bases on a single machine, but a base
never spans multiple machines.

Bases have a representation as an ordinary Java instance.
Each base contains such a base instance for every base to
which it has established communication. The expression,
getBase (ipAddr,portNum), returns the base representative
corresponding to the base executing at IP address ipAddr,
accepting communication events at port portNum. The met-
hod creates a new base if not present.

Base instances provide a remote operation which may
take a static method call or a constructor call as an argu-
ment. For example, assume a class List with static method

cons to add new elements to a list. To create a remote list
element, we evaluate the expression:

i = B.remote(List.cons(j,k))

to allocate a new list element on base B whose car is j
and whose cdr is k. Note that remote is a syntactic form,
not a method, since its argument is not entirely evaluated
at the point of call: although the arguments j and k are
evaluated on the current base, the actual call to List.cons
takes place on B. In the above call, a reference to a remote
object is returned if B is a base different from the base
on which the statement executes; however, the instance i
returned can be used in any context where an ordinary (non-
remote) instance can be used.

An important invariant preserved by the semantics is
that equality is preserved even among remote references.
Thus, consider the method:

public static boolean cmp(Object x, Object y)
{ return x == y;
The call: b.remote(cmp(ol,02)) will produce the same an-
swer regardless of the base to which b is bound. The com-
munication algorithm described below permits every base to
retain a unique view of the remote instances it receives from
other bases while ensuring global consistency.

There is no syntactic or semantic difference between ac-
cessing a local instance versus a remote one. In this way we
present an abstraction in which references may span bases,
as shown in Figure 1. Invoking an instance method or refer-
encing a field through a remote reference results in a remote
call to the base where the actual instance resides.

The decision to have the syntax and semantics of remote
evaluation be indistinguishable from method invocation is
deliberate, and is intended to foster program correctness.
However, care must be taken to see that this simplification
does lead to unacceptable performance cost. Because local-
ity considerations dictate that an instance method should be
executed on the base where its associated instance data re-
sides, method calls are implicitly performed locally for local
instances and remotely for remote instances. Remote in-
stances can be used in any context where an ordinary (non-
remote) instance can be used.

While implicit remote method invocation simplifies the
complexity of writing correct distributed programs, we rec-
ognize that it may not always be possible to rely on au-
tomatic runtime management to achieve acceptable perfor-
mance. Thus, we provide other primitives to give program-
mers greater control over distribution decisions. For exam-
ple, we permit the programmer to specify the evaluation
base for constructors and static methods using the remote
construct described above. Furthermore, a predicate is pro-
vided to determine whether an instance is local or remote:
o.isRemote() for any instance o returns true if o is a re-
mote instance. The system also permits programs to clone
any object on a different base; the expression o.cloneOn(b)
clones instance o on base b, and returns a remote reference
to the remote copy. Note that by the semantics of remote
method invocation, the behavior of this operation does not
depend on o being a local instance.

These predicates permit a programmer to refine pro-
grams for better distributed performance. For example, if a
program detects a remote reference it might spawn a thread
to coordinate the remote computation in parallel with useful

0
1
2
3
Byna B

\Base B

w N+ O

\BaseA

_/ _/

Figure 2: Base caches provide a distributed view of remote
references.

local work. Similarly, if a series of operations are to be per-
formed on a remote instance by some object o, a program
may choose to clone o on the base where the target instance
resides, thus replacing remote operations with local ones.
Remote clones provide a convenient way of implementing
base-specific objects, and thus are a useful abstraction for
implementing machine-dependent system operations such as

1/0.

3 Remote References

In this section, we describe the implementation of remote
references, which are a fundamental part of our program-
ming model. Since our design imposes no restrictions on
which instances may be referenced remotely, the number of
remote references generated in a program may be quite large.
This suggests the use of a scheme that maintains the global
identity of objects in a distributed fashion. Specifically, an
object in our system can be identified by a combination of
the base on which it resides plus a local id that is an in-
teger allocated by the owning base. When an instance is
exported—i.e., a remote reference to it is created on an-
other base—it is assigned a local id and entered in a table
on the exporting base.

This export table is actually a special instance of a base
cache, which is a table mapping local ids to instances. A base
cache A,, p resides on base B and maps local ids which were
assigned on A to their instances. Thus, the export table
on a base A would be A,,4a. However, this export table
is partially replicated on all the other bases with which A
communicates as Aonp, Aonc, Aonb, €tc.

A remote reference is represented by a special proxy
object which contains the actual instance’s local id plus a
pointer to the local base cache of the owning base (among
other fields which are not important for this discussion, see
Section 5). Consider, for example, the situation depicted
in Figure 2 where we have expanded the detail of our sam-
ple remote reference from the previous section. Here, the
instance i on base A contains a remote reference to an in-
stance j on base B. Suppose that B has assigned j a local

id of 3 (thus B,,5[3] contains a pointer to j). Now i actu-
ally contains a pointer to a proxy object p which contains
the local id 3 plus a pointer to Bon4 (since B is the owning
base). Furthermore, B,,4[3] contains a pointer back to p;
further references from B with a local id 3 will resolve to
this same proxy object p, thus allowing pointer equality to
behave transparently as described at the end of the previous
section.

It is important to note that the base caches of a base B
which reside on other bases need not be completely filled.
Specifically, B,na will only contain entries for those instances
on B which have remote references to them on A. In fact,
base A maintains its own particular view of the instances
allocated on other bases in Bona, Cona, Dona, etc.

Base caches reduce communication overhead in two ways.
First, a receiver needs to inquire about the meaning of a
local id from the sender only the first time it receives it.
Secondly, remote references can be forwarded from one base
to another without involving the base on which the refer-
enced instance is allocated, since a proxy object need only
contain a local id plus a pointer to the appropriate base
cache. In the above example, A could pass the remote refer-
ence to j on to another base C simply by sending the local
id 3 plus an indication that B is the owning base. C' can
then consult Bo,c[3] to see if a local proxy for j already ex-
ists, and can create one if necessary. Note that C' need not
communicate with B to receive the remote reference. By
building a distributed cache of references in this manner, we
believe our implementation can scale more effectively than
an implementation which uses a more conventional central-
ized registry [WWRIT].

4 Communication

Because references may be passed as arguments to remote
method invocations or returned as results, we need a way to
transmit and resolve remote and local references. Here we
describe the protocol that is used to resolve references that
are transmitted between bases. For a given instance j of
class ¢, created on base B and being transmitted by base A,
j is represented as a triple (id(Bona), id(instance(c)), id(j)),
where id(z) refers to the local id of some instance z and
instance(c) is an instance of java.lang.Class that repre-
sents ¢ (we will just use c for brevity). Note that if A = B,
then the instance is local; if the instance has never been
transmitted before, then it is assigned a local id at mar-
shalling time. As should be clear given our earlier descrip-
tion of remote references, the first and third elements of this
triple are needed are needed to construct a proxy or resolve
the reference on the remote base. We additionally require
the class’s id for our implementation; we describe its use in
more detail in Section 5.

To illustrate how this information is used, Figure 4 shows
three bases A, B, and C, and their associated caches. As
in our previous examples, instance i resides on A, while in-
stances j and k reside on B. At the outset, A has assigned
local id 1 to Bona. At this time B,,a is only partially
complete—some class instance c is filled in slot 2, but slots
1 and 3 are empty (while they are present in B,,p with
instances k and j, respectively).

The first row illustrates a message from B to A contain-

ol A 0Ol B 0
send (0,2,3)
1| B 1 1| k
A <= B socket
2| i 2| c 2| c
3 3 31
A B B
g OnA OnA) g onB)
Base A Base B
e ™ e ™
0ol A 0Ol B ol A 0Ol B
send (1,3,3)
1| B 1 > 1| B 1
A == C socket
2| i 2| c 2 2
3| ¢ 3 3 7 3
AonA) BonA AonC BonC
Base A Base C
e ™ e ™
0ol A Ol B 0ol A Ol B
request class 3
1| B 1 - 1| B 1
2| i 2| ¢ classc) 2
3| ¢ 3 3| ¢ 3
AonA) BonA AonC) BonC
Base A Base C
Figure 3: Communication among bases. The reference to j in B,,p is the instance itself, while in B,,4 and Bo,¢ it is to a
proxy. All references to caches (A, B) and classes (c) are to instances. The vectors shown are the relevant base caches.

ing the representation for j: the local id for B,,p is 0, a
local id for class c is 2, and the local id for 7 is 3. Since com-
munication is point-to-point, the receiver (in this case A)
knows the base of the sender (B), and thus knows the base
cache to use to resolve local ids it receives (Bona). It first
looks up the base cache local id 0, which resolves to Bona,
j’s owner. It then looks up j’s local id 3 in that cache; since
j is not present, a remote reference must be created. To do
this, the instance’s class ¢ must first be resolved from id 2
in the sender’s cache, B,,a. A then creates a proxy for j
based on this information and then stores it at index 3 in
its cache for B.

The second row shows the equivalent message being sent
from A to C, consisting of the triple (1,3, 3). There are two
differences from the previous message. The first is that the
local id for B’s cache is now 1, rather than 0, since 1 is the
local id for Bona (rather than B,,p as before). The second
difference is that since A is sending the message, it refers to
its local copy of class ¢, which has not been exported yet.
It therefore allocates local id 3 for the class instance and

notes this in A,,4. Note that there may never be remote
references to base caches or classes since each base has its
own copy of each. Therefore, as we have seen here, each
base may assign a base cache or class instance a different
local id.

When C receives the message, it will not be able to create
the proxy for j because it fails to resolve the class local id 3.
C thus sends a message to A asking for clarification about
this local id. When the reply is received in the form of the
class’s name, C' is able to match the name to its local copy
of the class structure c¢. It then updates its cache for A, so
that A,nc[3] points to ¢. C' may now create a proxy instance
for j and update B,,c accordingly. Subsequent messages to
C that refer to j can be processed without any additional
administrative messages.

5 Implementation

This section presents details about the implementation of
our distributed Java. We first present some information

about the compiler and runtime system, followed by a de-
scription of bases, classes and instances, remote invocation,
and threads.

5.1 Compiler

The compiler and runtime system are written in Java (60K
lines of code). The runtime system also contains about 6K
lines of C code, mostly consisting of native methods for per-
forming I/O or ‘unsafe’ operations, like thread stack initial-
ization. Each Java class is compiled into a shared object
which is dynamically loaded if necessary during the execu-
tion of the program; currently, these objects are loaded from
each node’s local file system.

5.2 Bases

In our current implementation, each base communciates with
other bases via a duplex socket using TCP/IP. However,
we expect to relax this constraint to allow connections be-
tween bases to be dynamically constructed and removed,
thus improving overall scalability of the system. Moreover,
the specification of the message layer can be easily modified
to support, for example, hierarchical (tree-based) connec-
tions.

5.3 Classes, Instances, and Proxies

Instances, instance proxies, classes, and class proxies are
the four main components of our implementation. These
elements are pictured in Figure 4.

Instance proxies have much the same representation as
local instances. A local instance has a pointer to class data,
and contains slots to hold a local id (if allocated), a hash-
code, a mutex, and any instance fields. An instance proxy is
simpler—it contains a pointer to a class prozy (described be-
low), a pointer to its ‘owning’ base cache (that is, the cache
representing the base on which the local version of the in-
stance was allocated), a local id, and reference counts used
by the distributed garbage collector. The collector currently
uses a scheme based upon weighted reference counts [JLI6]
for collecting remote references, although distributed cycles
could be collected by applying techniques like those found
in [LPS98].

The figure also depicts our implementation of classes,
and their corresponding class prozies. Proxies contain a
pointer to their corresponding class, and also contain a pointer
to a table of method stubs. When an instance method is in-
voked, the class pointer is followed to the method table. If
the ‘instance’ is local, then the actual code will be found
in the method table; in the case that the ‘instance’ is ac-
tually a proxy then the class proxy’s method table will be
used. The stubs found in this table dispatch calls to the
actual method code on other bases: the stub marshals argu-
ments for the call, initiates the remote method invocation,
and then unmarshals and returns any result. Notice that
a given method m and its stub representation reside at the
same offset in the corresponding method tables. Thus, the
calling sequence for m is unchanged regardless of whether
the method will be evaluated locally or remotely. This strat-
egy avoids the need for testing the location of an object when
doing a method dispatch.

Unfortunately, a similar trick is not possible for field ref-
erences. In the absence of any optimizations, each field refer-
ence is preceded by a compiler-generated check to determine
whether the instance is local or a proxy; this is done by fol-
lowing the class pointer and checking a flag in the class. If
the object is a proxy, some stub code is invoked to remotely
acquire the field value. The only occasion where the check is
clearly unnecessary is when the field is referenced via this
(either explicitly or implicitly): since methods are evalu-
ated on the base where their associated object resides, an
expression of the form this.x always refers to a local field
or method. Compiler optimizations can be used to reduce
the amount of checking necessary, and to prefetch or bundle
remote field accesses.

Classes also contain slots for GC- and class-specific data,
static fields, static methods, and static method stubs (for
use in B.remote expressions). To preserve the invariant
that a computation’s location does not alter its correctness,
mutable class data (such as mutable class fields) must be
consistent. This is acheived by requiring that such data
reside on only one base in the system. This base is indicated
by the class’s owning base field; accesses to such data require
checks similar to those instance fields. Immutable data (such
as code and immutable fields) may be copied.

Having a designated base for storing mutable class data
complicates class initialization, especially given the seman-
tics imposed by Java regarding the order in which classes
are initialized. Every class ¢ that needs to be initialized
must first initialize its superclass, d. The superclass decides
which node first requested initialization of ¢, making that
node the owner of c¢. Only the owner is allowed to contain
the mutable data of the class. All other nodes that require
initialization of ¢ receive a message informing them that the
class is initialized, and the base where the owner resides.
The owner of java.lang.Object is the node that initiated
the computation.

5.4 Remote Method Call

As mentioned, the compiler generates for each method a
send-stub that marshals any arguments, sends a message to
the remote base containing the arguments and other per-
tinent information (such as the method index), and finally
unmarshals any returned result. Primitive types (i.e., inte-
gers, floats, etc.) are marshalled in the standard way, while
instances (local or proxy) are marshalled as described in Sec-
tion 4 (along with additional reference counts, not described
in this paper).

When a remote invocation message sent from base A is
received on base B, a new thread of control is created on B
to handle it. Once the class of the method being invoked
is known, a recetve-stub at the specified method index is
invoked. Receive stubs correspond one-to-one to send stubs,
performing the inverse operations. For example, the receive
stub for a constructor first allocates space for the instance,
unmarshals the arguments (how many and their types are
determined at compile-time, as is the case with the send-
stub), and finally invokes the local constructor. The newly
created instance is marshalled and returned. During the
marshalling process of this new instance, reference counts
and a local id will be allocated, filling an entry in B,,B.
If an exception is thrown during remote invocation, it is

local instance local class class proxy instance pro.
class > classproxy |-= ™ |ocal class |« class
local id methods method stubs local id
mutex owning base owning base
hashcode GC data ref counts
fields class data
static fields Vi Vi
static methods m send stub for m
static method
stubs

Figure 4: Local and remote object layout.

marshalled, returned, and rethrown on the sender.

5.5 Threads

While our thread model follows Java’s semantics, our im-
plementation is necessarily quite different. Ordinarily, an
instance of java.lang.Thread will be implemented as a sin-
gle data structure that contains a stack, status fields, etc.
However, in a distributed environment, a single thread of
control may be physically dispersed among many bases. Re-
mote method invocation is an obvious example: the thread
created on behalf of a remote method call is intuitively part
of the sender’s thread of control.

To make remote method invocation efficient, our imple-
mentation supports lightweight threads, allowing potentially
thousands of threads to run on a particular base. Thread
stacks consist of a series of chained, fixed-sized segments;
new segments are added on stack overflow.

When a thread ¢ initiates a computation on a remote
base, a thread t' is spawned on that base to handle the
computation. Thread ¢ serves as a delegate for ¢ in the
sense that it may reacquire locks held by ¢. This is safe
and necessary due to the fact that ¢ is blocked, awaiting the
result being computed by t'; failure to allow t' to behave as
if it were ¢ may lead to deadlock.

Because delegates are an implementation mechanism to
handle remote method invocation, they are not visible to the
program. Indeed, from the programming model’s perspec-
tive, delegates and threads have the same identity. Delegates
implicitly belong to the same thread group as their par-
ent thread, but are not included in a thread group’s thread
count. If a delegate ¢ raises an exception it cannot handle,
control reverts back to the thread (or delegate) that instan-
tiated ¢.

Threads synchronize using an implementation of thin
locks [BKMS98]. Thin locks are particularly useful in our
implementation since most threads have short lifetimes, and
are often used in single-threaded computations with little or
no contention on shared resources. Remote method invoca-
tion is an obvious example.

6 Benchmarks

In this section we present the performance of remote method
calls (RMC), a primary component of any distributed ap-
plication using our system, and of a simple list-processing
benchmark, to provide insight about our system’s suitability
for distributed database-style applications.

6.1 Experimental Setup

Our benchmarking cluster is made up of four dual 300 MHz
Pentium-II’s with split first level caches for instruction and
data, each of which is 16 KB, 4-way set associative, write-
back, and with pseudo LRU replacement. The second level
cache is a unified 512 KB and operates at 150 MHz (we
were unable to find any additional details about the second
level cache). These machines receive a rating of 11.7 on
SPECint95 and have 256 MBs of EDO memory. The ma-
chines run Linux kernel version 2.0.30 with multi-processor
support. Each is connected to a single fast (100 Mb/s) Eth-
ernet, switched by a 3Com SuperStack 3000.

Elapsed times were measured using the Pentium cycle
counter. Our timing infrastructure imposes about 0.84 us
overhead for each call to the clock.

6.2 Remote Method Costs

To measure basic remote method invocation costs, we cre-
ated a benchmark which allocates a remote instance and
then invokes a ‘null’ instance method 10,000 times. For
each invocation, we must marshal the “this” pointer; since
the instance is itself remote, the “this” pointer is a remote
reference. No value is returned, so no additional marshalling
or unmarshalling is required. No garbage collections occur
during the benchmark.

On average, each remote method invocation takes 0.94 ms.
This time is further broken down into its components in Fig-
ure 5; note that the time indicated in the figure is slightly
larger due to the overhead of additional timers. All of the in-
dicated components are measured directly, while the “socket
time” is simply the remaining unaccounted time; this in-
cludes wire time, the time to receive the message(s) and
notify the receiving thread, and additional runtime system
overhead, e.g. synchronization.

Cadlee
Socket Time

Caller ' i

Receive Stub/Method Call
Resolve Environment
Message Unmarshal
Message Send

Message Marshal

Message Creation

- - — — - - — — - - - - - -

0.32

Send Stub &4
T
0

0.41
time (ms)

Figure 5: Breakdown of remote method invocation costs

The largest fraction of the total cost is the socket time,
at 38% (0.38 ms). Based on other measurements (described
below), we know that at least 44% of this time (0.17 ms) is
above the basic communication costs for our platform. The
next largest portion of the total RMC time (18%) is the
cost of sending a message, at 0.18 ms. We therefore believe
that tuning the I/O subsystem and the base communication
implementation will greatly improve overall performance.

Of the remaining costs, message creation, marshalling,
and unmarshalling constitute the largest overhead (18%, or
0.18 ms), followed by the time in the send/receive stubs and
the remote method itself (13%, or 0.13 ms, and the time
to set up the stub environment (10%, or 0.10 ms). The
time spent in the stubs includes the time to marshal and
unmarshal the this pointer. This constitutes about 30% of
stub processing time (0.04 ms).

To put these measurements in context, we ran other sim-
ilar benchmarks. To determine the basic cost of our mes-
saging infrastructure, we measured the time to send a “null
message” to another base and receive an acknowledgment.
To measure basic transmission/receipt costs and I/O subsys-
tem overhead we performed a similar test by sending out and
receiving back appropriately message-sized buffers through
a java.lang.Socket. Finally, we ran this same benchmark
written in C to determine the lower bound for basic network
operations on our platform. The results of these tests are
given in Table 1.

Working from the left, we see that our implementation
of thread-safe sockets adds an additional 0.13 ms to the C-
based measurement. While this number may be improved,
we see that larger gains may be had by optimizing the mes-
saging system (the difference between columns 2 and 3), as
well as optimizing the operations specific to RMC (the dif-
ference between columns 3 and 4).

Table 1: Remote method invocation overheads

| C socket | Java socket | null message | RMC |
[021ms | 034ms | 0.68ms [0.94 ms |

We are actively tuning the performance of our system to
good effect: our current times improve on our initial imple-
mentation by more than a factor of two. One key source
of improvement has been to eliminate wasteful allocations.
This has the two-fold benefit of lowering in-band latency and
reducing the frequency of GC. For instance, by reducing the
number of allocations required per message, we were able to
cut message creation and marshalling times nearly in half.
We have also reduced allocation by making selective use of
caching; thus, rather than spawning a new thread for each
RMC, we allow completed delegate threads to be cached
for later use. Message processing costs have decreased as
we have improved the speed of runtime system operations
in the critical path. For example, by moving from a naive
locking implementation to thin locks [BKMS98], we reduced
RMC times by about 4%. We expect similar improvements
by reducing I/O subsystem costs and context-switch times.
Finally, since most of our communication infrastructure is
written in Java, we can expect further improvements to oc-
cur as our compiler technology improves.

6.3 List Benchmark

We now consider a simple benchmark which iterates over
a distributed list of size n spread across b bases, perform-
ing a configurable amount of work w on each element, re-

time (s)

—a— (scattered) serial

— a— - (scattered) threaded
---a-- (scattered) hybrid
—— (compact) serial

— 10— - (compact) threaded
--O-- (compact) hybrid
—>— (clump) seria

— X— - (clump) threaded
--%-- (clump) hybrid

number of bases

Figure 6: List benchmark times with workload w = 1.0 ms

turning a final result to the caller. This benchmark is de-
signed to model a distributed database, as motivated ear-
lier. However, by varying the traversal algorithm to ex-
ploit parallelism, the benchmark may also approximate ap-
plications designed to run on tightly coupled clusters of ma-
chines [ACPT95].

We fix the amount of work performed on each element
to be roughly 1.0 ms, the baseline cost for a remote method
call. The benchmark is run under three kinds of data layout:
a scattered layout, where the list is interleaved across all the
bases such that each “next” pointer is a remote reference;
a compact layout, where the list is divided into evenly-sized
clumps spread among the bases (so only one out of n/b ele-
ments is a remote reference); and a case in which clumps are
smaller: one out of every four elements is a remote reference.
For each of these data layouts, we consider three traversal
algorithms: serial, threaded, and hybrid, described below.
In all cases, we use a 1000 element list and present mea-
surements varying b from 1 to 8 bases (at most 1 base per
processor). Times presented are the median of 11 runs.

Figure 6 shows the results of these different runs. The
x-axis is the number of bases involved in the computation,
and the y-axis is the time to completion. The top three
lines (with triangular hashes) show the three algorithms on
the scattered data layout. The “serial” algorithm simply
moves sequentially down the list. With only one base, the
list is entirely local and so moving to the next element is
cheap, but with two or more bases, every link in the list is
a remote reference, increasing the total time. Because “se-
rial” is single-threaded, the results are relatively insensitive
to the number of bases.! The “threaded” algorithm, how-

n general, there is a slight upward slope to the lines. We suspect
that this is due to the overhead of running two bases on one (dual-
processor) machine, since all kernel operations must occur serially.

ever, spawns a thread at each element to do the 1.0 ms of
work and then moves on to the next element. As expected,
the run times decrease as parallelism increases when moving
from two to three bases. However, since the work time is
approximately the time to perform an RMC, the improve-
ment with parallelism quickly diminishes, and the per-base
overheads begin to dominate.

The best algorithm, in this case, is the “hybrid” algo-
rithm. Here, the algorithm examines each link in the list to
determine if the next element is local or remote, and only
spawns a thread if the next element is remote. Thus, for the
one-base case, all links are local, no threads are created, and
the algorithm performs similarly to the serial algorithm. For
all other cases, however, the algorithm performs similarly to
the threaded algorithm, thus achieving the optimum in all
cases.

The other two data layouts illustrate different trends.
Looking at the compact distribution, we see that the serial
and hybrid algorithms are indistinguishable; this is because
the advantage of the hybrid algorithm offsets its overhead
due to less opportunity for parallelism. For the clumped
distribution, the hybrid case improves on the serial one be-
cause it is able to leverage parallelism on one out of four
nodes. The best performing with two or more bases for both
clumped and compact layouts is the threaded algorithm; for
the most part the compact case performs better. This re-
sult conforms to intuition because there are fewer remote
references to traverse.

While not presented here, measurements taken for work-
loads significantly smaller or greater than the workload used
in Figure 6 do corroborate intuition: as workload increases
so does the benefit of parallelism and vice versa. With
smaller workloads, performance is largely driven by data
layout (and thus the number of required RMC’s) and not

by algorithm.

The failure of the hybrid algorithm to outperform the
threaded version is somewhat surprising since the hybrid im-
plementation takes location information into account. We
could recode the algorithm so that rather than computing w
serially when the next element is local, we instead find out
in total how many adjacent nodes are local, and then fork
a thread to compute all of their workloads serially, having
the current thread directly perform an RMC to the next
base. This would reduce both thread overhead (a given
thread potentially performs more work), and makes more
effective use of parallelism. This alternative specification
is essentially an application of lazy task creation [MKH90].
Nonetheless, this experiment indicates that modifying pro-
grams with location-dependent information may not always
lead to noticeable performance improvement.

To summarize, with w = 1.0 ms the serial algorithm is
the best for one base (whatever the layout), the hybrid is
best for an extremely scattered layout, and the threaded one
is the best in other cases. These benchmarks clearly indicate
that overall performance is a function of algorithm, data lay-
out, and workload. Since data layout is the most difficult
to predict and can have dramatic impact on performance, it
would be useful to provide some sort of feedback mechanism
to communicate distribution information to the runtime sys-
tem so that it can move data around to best fit the chosen
algorithm. Since the easiest algorithms to write are the serial
ones (which are well-supported by the transparency of our
system), this suggests that objects which are frequently ref-
erenced together should be migrated to (or allocated on) the
same base. Forcing the programmer to encode this policy
directly into his programs would be redundant and error-
prone, hiding the true nature of the computational element.
This motivates the idea of having the runtime do this work
automatically; we intend to explore appropriate policies and
feedback mechanisms that would assist the runtime in this
respect.

7 Related Work

There have been numerous efforts exploring the use of Java
as a high-performance distributed language [FF97, Jav98].
These efforts can be broadly classified into three categories.
The first two explore improvements to a Java/RMI imple-
mentation [WWRI7, Sun97] either by providing a high-level
veneer that removes some of RMI’s complexity [PZ97], or
by providing more efficient lower-level protocols [KWBT98].
The third considers extensions of Java with special distri-
bution primitives and semantics [GS97, KBW97, JSp99],
possibly adapting abstractions from other concurrent lan-
guages [CG89, GBD 194, KK93] into a Java framework. Be-
sides these extensions, there has also been work incorpo-
rating agents [KB98, KZ97], a locus of data and control
spanning multiple machines, into Java. We differ from these
efforts in two important respects. First, our communication
model is not based on RMI or other kinds of client/server
models and thus, for example, does not distinguish between
local and remote classes or references. Instead, calls to con-
structors or static methods are evaluated remotely with the
compiler and runtime system establishing remote references
as needed. Second, the implementation of both the compiler

and runtime are optimized for this programming model; the
system does not leverage functionality from existing Java
implementations.

We share important similarity with Java Party [PZ97], a
distributed Java implementation that is also not explicitly
client/server based. Classes (including threads) whose in-
stances may be remote are declared as such. The compiler
and runtime system take care of issues related to locality,
data mapping, and communication. Java Party thus sup-
ports even greater location transparency than provided in
our implementation. However, because it is currently im-
plemented as preprocessor that uses RMI as a target, it also
inherits some of RMI’s shortcomings. For example, pro-
grammers must still take care to distinguish between re-
mote and local method invocation as the argument passing
convention between the two are different. While the pro-
gramming model presented by Java Party bears resemblance
to the model outlined here, the implementation techniques
between the two systems are quite different since we rely
exclusively on our own native-code compiler and specialized
runtime.

Our design is also similar in spirit to Obliq [Car95], an-
other distributed object-based language. Like our system,
remote references in Obliq are also implicit. Obliq distin-
guishes between methods and procedures, the former being
associated with code that modifies object state. Methods
are always executed on the machine where its corresponding
object lives. Procedures may execute on the machine where
the invocation is performed. In both systems, program be-
havior is not dependent on how objects are distributed in a
network. In addition, our implementation differs in impor-
tant and obvious ways from Obliq’s, which is implemented
as an interpreted language using Modula-3’s network ob-
jects [BNOWer].

Emerald [BHJ*87, JLHBS8S] is a distributed object-based
language that provides support for mobile objects. Like
Obliq, Emerald has no class/instance hierarchy. However,
similar to the implementation described here, method invo-
cation in Emerald obeys the same semantics regardless of
whether the invocation is remote or local, and processes are
typically unaware of their location. Emerald’s thread sys-
tem shares much in common with the thread implementa-
tion used in our system. Emerald also provides other calling
protocols that we have chosen not to include in our model,
and provides extensive support for mobility. While Emerald
does have access tables to map remote references to their
locations, they are quite different from base caches which
provide a partial, consistent view of the references exported
by other bases.

The idea of a distributed cache as a mechanism to im-
plement a global address space was inspired by the imple-
mentation used in Kali [CJK95], a distributed extension of
the Scheme [RKR98] programming language which uses a
similar structure to map remote Scheme objects. Kali’s fun-
damental unit of distribution is a closure: code along with
data could be freely transmitted among distributed nodes.
In the system described here, objects remain resident on
the node where they were created. Thus, Kali programmers
must take care to ensure that unwanted copying of shared
data does not occur. Our distributed Java semantics guar-
antees that a distributed Java program will exhibit the same

behavior regardless of how data is partitioned among nodes.

CORBA [MZ96] and ILU [JSLJ97] are two well-known
object-oriented glue languages that can be used to connect
sequential components into a distributed program. The se-
quential components can be written in a variety of languages
and components written in different languages can be freely
intermixed within a single distributed program. Because
these systems use classical form of remote procedure call,
the values that may be sent between components are im-
mutable ones: numbers, characters, sequences of values, and
so forth. The only references that can be sent over the wire
are references to the glue language’s global objects.

Our implementation is also distinguished from Just-in-
Time [CFM*97] and Way-Ahead-of-Time [PTB"97] com-
pilers for Java insofar as our compiler translates to native
code, and fully integrates distributed remote method invoca-
tion functionality. We share similar goals with [GFHM98],
which proposes to use Java for high-performance comput-
ing using native-code compiler technology and fast native
libraries for message-passing and distribution. However, the
mechanism through which these goals are achieved is quite
different since we propose to achieve distributed function-
ality and efficiency by fully integrating communication and
messaging into the compiler and runtime.

8 Conclusions

Our programming model is intended to foster correctness
of distributed Java programs, while still providing hooks
to improve efficiency when necessary. Our runtime system
helps support abstraction by allowing remote references to
move freely among machines irrespective of where the ac-
tual objects referenced reside. With reasonable compiler
optimizations and further streamlining of the runtime, we
expect technology of this kind to be an attractive vehicle
for distributed programming that permits highly efficient
distributed programs suitable for execution on diverse dis-
tributed platforms to be easily written, debugged, and main-
tained.

References

[ACPT95] Thomas Anderson, David Culler, David Patterson,
and The Now Team. A Case For NOW (Networks of
Workstations). IEEE Micro, 15(1):54-64, February

1995.

[BHJ+87] Andrew Black, Norman Hutchinson, Eric Jul, Henry
Levy, and Larry Carter. Distribution and Abstract
Data Types in Emerald. IEEE Transactions on Soft-

ware Engineering, 13(1):65-76, 1987.

David Bacon, Ravi Konru, Chet Murthy, and Mauri-
cio Serrano. Think Locks: Featherweight Synchro-
nization for Java. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language and
Design, pages 258-268, June 1998.

[BKMS98]

[BN84] A. D. Birrell and B.J. Nelson. Implementing Remote
Procedure Call. ACM Transactions on Computer

Systems, 2(1):39-59, 1984.

[BNOWer] Andrew Birrell, Greg Nelson, Susan Owicki, and Ed-
ward Wobber. Network Objects. In 1/th ACM Sym-
posium on Operating Systems Principles, 1993 De-

cember.

[Car95]

[CFM*97]

[CG8Y]

[CIK95]

[FF97]

[GBD+94]

[GFHMOY8]

[GJS95]

[GS97]

[Jav9g|
[JL96]

[JLHBSS]

[ISLJ97]

[JSp99]

[KBOS]

[KBW97]

[KK93]

Luca Cardelli. A Language with Distributed Scope.
In Proceedings of the 22nd ACM Symposium on
Principles of Programming Languages, pages 286—
298, New York, 1995. ACM.

Timothy Cramer, Richard Friedman, Terrence
Miller, David Seberger, Robert Wilson, and Mario
Wolczko. Compiling Java Just in Time. IEEE Mi-
cro, 2(72):36-43, May 1997.

Nick Carriero and David Gelernter. Linda in Context.
Communications of the ACM, 32(4):444 — 458, April
1989.

Henry Cejtin, Suresh Jagannathan, and Richard
Kelsey. Higher-Order Distributed Objects. ACM
Transactions on Programming Languages and Sys-
tems, 17(5):704-739, 1995.

Geoffrey Fox and W. Furmanski. Overview of Java for
Parallel Computing and as a General Language for
Scientific and Engineering Simulation and Modelling.
Concurrency: Practice & Experience, 9(6), 1997.

Al Geist, Adam Beguelin, John Dongarra, Weicheng
Jiang, Robert Manchek, and Vaidy Sunderam. PVM:
Parallel Virtual Machine. MIT Press, 1994.

Vladimir Getov, Susan Flynn-Hummel, and Sava
Mintchev. High-Performance Parallel Programming
in Java: Exploiting Native Libraries. In ACM Work-
shop on Java for High-Performance Network Com-
puting, 1998.

James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Sun Microsystems, Inc.,
1995.

Paul Gray and Vaidy Sunderam. IceT: Distributed
Computing and Java. Concurrency: Practice € Ex-
perience, 9(7), 1997.

ACM Workshop on Java for High-Performance Net-
work Computing, 1998.

Richard Jones and Rafael Lins. Garbage Collection.
John Wiley, 1996.

Eric Jul, Henry Levy, Norman Hutchinson, and An-
drew Black. Fine-Grained Mobility in the Emerald
System. ACM Transactions on Computer Systems,
6(1):109-133, January 1988.

Bill Jansen, Mike Spreitzer, Dan Larner, and Chris
Jacobi. ILU 2.0alphal2 Reference Manual. Xerox
Corporation, 1997.

Javaspaces white paper, 1999. available from

java.sun.com/products/javaspaces.

Arie Keren and Amnon Barak. Adaptive Place-
ment of Parallel Java Agents in a Scalable Comput-
ing Cluster. In ACM Workshop on Java for High-
Performance Network Computing, 1998.

L.V. Kalé, Milind Bhandarkar, and Terry Wilmarth.
Design and Implementation of Parallel Java with
Global Object Space. In Proceedings of the Confer-
ence on Distributed Processing Technology and Ap-
plications, 1997.

L.V. Kalé and S. Krishnan. Charm++: A Portable
Concurrent Object-Oriented System Based on C++.
In Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Ap-
plications, 1993.

[KWB*98] Vijaykumar Krishnaswamy, Dan Walther, Sumeer
Bhola, Ethendranath Bommaiah, George Riley, Brad
Topol, and Mustaque Ahamad. Efficient Implemen-
tations of Java Remote Method Invocation (RMI).
In Proceedings of the Useniz Fourth Conference on
Object-Oriented Technologies and Systems, 1998.

[KZ97] J. Kiniry and D. Zimmerman. A Hands-on Look
at Java Mobile Agents. IEEE Internet Computing,
1(4):21-30, 1997.

[LH89] Kai Li and Paul Hudak. Memory Coherence in
Shared Virtual Memory Systems. ACM Transactions
on Computer Systems, 7(4):321-359, 1989.

[LPS98] Fabrice Le Fessant, lan Piumarta, and Marc Shapiro.
An implementation of complete, asynchronous, dis-
tributed garbage collection. In Proceedings of the
ACM SIGPLAN Conference on Programming Lan-
guage and Design, pages 152-161, June 1998.

[MKH90] Rick Mohr, David Kranz, and Robert Halstead. Lazy
Task Creation: A Technique for Increasing the Gran-
ularity of Parallel Programs. In Proceedings of the
1990 ACM Conference on Lisp and Functional Pro-
grammang, June 1990.

[MZ96] Thomas Mowbray and Ron Zahavi. The Essential
CORBA: Systems Integration Using Distributed Ob-
jects. Wiley, 1996.

[PTB*97] Todd Proebsting, Gregg Townsend, Patrick Bridges,
John Hartman, Tim Newsham, and Scott Watterson.
Toba: Java for Applications, A Way Ahead of Time
(WAT) Compiler. In COOTS’97, 1997.

[PZ97] Michael Philippsen and Matthias Zenger. JavaParty
— Transparent Remote Objects in Java. Concurrency:
Practice and Experience, 9(7), 1997.

[RKR98] William Clinger Richard Kelsey and Jonathan, Eds.
Rees. Revised® report on the algorithmic language
Scheme. ACM SIGPLAN Notices Computation,
33(9):26-75, September 1998.

[SB90] M.D. Schroder and M. Burrows. Performance of Fire-
fly RPC. ACM Transations on Computer Systems,
8(1):1-17, 1990.

[Sun97] Java Remote Method Invocation (RMI). see

http://java.sun.com/products/jdk/1.2/docs/guide/rmi,
1997.

[WWR97] Ann Wollrath, Jim Waldo, and Roger Rigs. Java-
Centric Distributed Computing. IEEE Micro,
2(72):44-53, May 1997.

[YC97] Weimin Yu and Alan Cox. Java/DSM: A Platform
for Heterogenous Computing. Concurrency: Practice
and Ezperience, 9(7), 1997.

