
What’s the Over/Under?

Probabilistic Bounds on Information Leakage

Ian Sweet1, José Manuel Calderón Trilla2, Chad Scherrer2, Michael Hicks1, and

Stephen Magill2

1University of Maryland and 2Galois Inc.

Abstract. Quantitative information flow (QIF) is concerned with mea-
suring how much of a secret is leaked to an adversary who observes the
result of a computation that uses it. Prior work has shown that QIF tech-
niques based on abstract interpretation with probabilistic polyhedra can be
used to analyze the worst-case leakage of a query, on-line, to determine
whether that query can be safely answered. While this approach can
provide precise estimates, it does not scale well. This paper shows how
to solve the scalability problem by augmenting the baseline technique
with sampling and symbolic execution. We prove that our approach never
underestimates a query’s leakage (it is sound), and detailed experimental
results show that we can match the precision of the baseline technique
but with orders of magnitude better performance.

1 Introduction

As more sensitive data is created, collected, and analyzed, we face the problem of

how to productively use this data while preserving privacy. One approach to this

problem is to analyze a query f in order to quantify how much information about

secret input s is leaked by the output f(s). More precisely, we can consider a

querier to have some prior belief of the secret’s possible values. The belief can be

modeled as a probability distribution [10], i.e., a function δ from each possible

value of s to its probability. When a querier observes output o = f(s), he revises
his belief, using Bayesian inference, to produce a posterior distribution δ′. If

the posterior could reveal too much about the secret, then the query should be

rejected. One common definition of “too much” is Bayes Vulnerability, which is

the probability of the adversary guessing the secret in one try [41]. Formally,

V (δ)
def
= maxi δ(i)

Various works [6, 19, 24, 25] propose rejecting f if there exists an output that

makes the vulnerability of the posterior exceed a fixed threshold K. In particular,

for all possible values i of s (i.e., δ(i) > 0), if the output o = f(i) could induce a

posterior δ′ with V (δ′) > K, then the query is rejected.

One way to implement this approach is to estimate f(δ)—the distribution

of f ’s outputs when the inputs are distributed according to δ—by viewing f as

a program in a probabilistic programming language (PPL) [18]. Unfortunately,

as discussed in Section 9, most PPLs are approximate in a manner that could

easily result in underestimating the vulnerability, leading to an unsafe security

decision. Techniques designed specifically to quantify information leakage often

assume only uniform priors, cannot compute vulnerability (favoring, for example,

Shannon entropy), and/or cannot maintain assumed knowledge between queries.

Mardziel et al. [25] propose a sound analysis technique based on abstract

interpretation [12]. In particular, they estimate a program’s probability distri-

bution using an abstract domain called a probabilistic polyhedron (PP), which

pairs a standard numeric abstract domain, such as convex polyhedra [13], with

some additional ornaments, which include lower and upper bounds on the size of

the support of the distribution, and bounds on the probability of each possible

secret value. Using PP can yield a precise, yet safe, estimate of the vulnerability,

and allows the posterior PP (which is not necessarily uniform) to be used as a

prior for the next query. Unfortunately, PPs can be very inefficient. Defining

intervals [11] as the PP’s numeric domain can dramatically improve performance,

but only with an unacceptable loss of precision.

In this paper we present a new approach that ensures a better balance of both

precision and performance in vulnerability computation, augmenting PP with

two new techniques. In both cases we begin by analyzing a query using the fast

interval-based analysis. Our first technique is then to use sampling to augment

the result. In particular, we execute the query using possible secret values i
sampled from the posterior δ′ derived from a particular output oi. If the analysis

were perfectly accurate, executing f(i) would produce oi. But since intervals are

overapproximate, sometimes it will not. With many sampled outcomes, we can

construct a Beta distribution to estimate the size of the support of the posterior,

up to some level of confidence. We can use this estimate to boost the lower bound

of the abstraction, and thus improve the precision of the estimated vulnerability.

Our second technique is of a similar flavor, but uses symbolic reasoning to

magnify the impact of a successful sample. In particular, we execute a query

result-consistent sample concolically [39], thus maintaining a symbolic formula

(called the path condition) that characterizes the set of variable valuations that

would cause execution to follow the observed path. We then count the number

of possible solutions and use the count to boost the lower bound of the support

(with 100% confidence).

Sampling and concolic execution can be combined for even greater precision.

We have formalized and proved our techniques are sound (Sections 3–6) and

implemented and evaluated them (Sections 7 and 8). Using a privacy-sensitive ship

planning scenario (Section 2) we find that our techniques provide similar precision

to convex polyhedra while providing orders-of-magnitude better performance.

More experiments are needed to see if the approach provides such benefits more

generally. Our implementation freely available at https://github.com/GaloisInc/

TAMBA.

https://github.com/GaloisInc/TAMBA
https://github.com/GaloisInc/TAMBA

Field Type Range Private?
ShipID Integer 1–10 No
NationID Integer 1–20 No
Capacity Integer 0–1000 Yes
Latitude Integer -900,000–900,000 Yes
Longitude Integer -1,800,000–1,800,000 Yes

Fig. 1. The data model used in the evacuation scenario.

2 Overview

To provide an overview of our approach, we will describe the application of our

techniques to a scenario that involves a coalition of ships from various nations

operating in a shared region. Suppose a natural disaster has impacted some

islands in the region. Some number of individuals need to be evacuated from

the islands, and it falls to a regional disaster response coordinator to determine

how to accomplish this. While the coalition wants to collaborate to achieve

these humanitarian aims, we assume that each nation also wants to protect their

sensitive data—namely ship locations and capacity.

More formally, we assume the use of the data model shown in Figure 1, which

considers a set of ships, their coalition affiliation, the evacuation capacity of the

ship, and its position, given in terms of latitude and longitude.1 We sometimes

refer to the latter two as a location L, with L.x as the longitude and L.y as the

latitude. We will often index properties by ship ID, writing Capacity(z) for the

capacity associated with ship ID z, or Location(z) for the location.

The evacuation problem is defined as follows

Given a target location L and number of people to evacuate N , compute

a set of nearby ships S such that
∑

z∈S Capacity(z) ≥ N .

Our goal is to solve this problem in a way that minimizes the vulnerability to the

coordinator of private information, i.e., the ship locations and their exact capacity.

We assume that this coordinator initially has no knowledge of the positions or

capabilities of the ships other than that they fall within certain expected ranges.

If all members of the coalition share all of their data with the coordinator,

then a solution is easy to compute, but it affords no privacy. Figure 2 gives an

algorithm the response coordinator can follow that does not require each member

to share all of their data. Instead, it iteratively performs queries AtLeast and

Nearby. These queries do not reveal precise values about ship locations or capacity,

but rather admit ranges of possibilities. The algorithm works by maintaining

upper and lower bounds on the capacity of each ship i in the array berths. Each

ship’s bounds are updated based on the results of queries about its capacity and

location. These queries aim to be privacy preserving, doing a sort of binary search

to narrow in on the capacity of each ship in the operating area. The procedure

completes once is_solution determines the minimum required capacity is reached.

1 We give latitude and longitude values as integer representations of decimal degrees
fixed to four decimal places; e.g., 14.3579 decimal degrees is encoded as 143579.

(∗ S = #ships; N = #evacuees; L = island loc.; D = min. proximity to L ∗)
let berths = Array.make S (0,1000)
let is_solution () = sum (Array.map fst berths) ≥N
let mid (x,y) = (x + y) / 2
let AtLeast(z,b) = Capacity(z) ≥b
let Nearby(z,l,d) = |Loc(z).x − l .x| + |Loc(z).y − l .y| ≤d
while true do

for i = 0 to S do
let ask = mid berths[i]
let ok = AtLeast(i ,ask) && Nearby(i,L,D)
if ok then berths [i] ← (ask, snd berths [i])
else berths [i] ← (fst berths [i], ask)
if is_solution () then return berths

done
done

Fig. 2. Algorithm to solve the evacuation problem for a single island.

2.1 Computing vulnerability with abstract interpretation

Using this procedure, what is revealed about the private variables (location and

capacity)? Consider a single Nearby(z, l, d) query. At the start, the coordinator

is assumed to know only that z is somewhere within the operating region. If

the query returns true, the coordinator now knows that s is within d units of l
(using Manhattan distance). This makes Location(z) more vulnerable because

the adversary has less uncertainty about it.

Mardziel et al. [25] proposed a static analysis for analyzing queries such as

Nearby(z, l, d) to estimate the worst-case vulnerability of private data. If the

worst-case vulnerability is too great, the query can be rejected. A key element

of their approach is to perform abstract interpretation over the query using an

abstract domain called a probabilistic polyhedron. An element P of this domain

represents the set of possible distributions over the query’s state. This state

includes both the hidden secrets and the visible query results. The abstract

interpretation is sound in the sense that the true distribution δ is contained in

the set of distributions represented by the computed probabilistic polyhedron P .

A probabilistic polyhedron P is a tuple comprising a shape and three or-
naments. The shape C is an element of a standard numeric domain—e.g., in-

tervals [11], octagons [29], or convex polyhedra [13]—which overapproximates

the set of possible values in the support of the distribution. The ornaments

p ∈ [0, 1], m ∈ R, and s ∈ Z are pairs which store upper and lower bounds on

the probability per point, the total mass, and number of support points in the

distribution, respectively. (Distributions represented by P are not necessarily

normalized, so the mass m is not always 1.)

Figure 3(a) gives an example probabilistic polyhedron that represents the

posterior of a Nearby query that returns true. In particular, if Nearby(z,L1,D)
is true then Location(z) is somewhere within the depicted diamond around

L1. Using convex polyhedra or octagons for the shape domain would permit

representing this diamond exactly; using intervals would overapproximate it as

the depicted 9x9 bounding box. The ornaments would be the same in any case:

the size s of the support is 41 possible (x,y) points, the probability p per point is

0.01, and the total mass is 0.41, i.e., p · s. In general, each ornament is a pair of

a lower and upper bound (e.g., smin and smax), and m might be a more accurate

estimate than p · s. In this case shown in the figure, the bounds are tight.

Mardziel et al’s procedure works by computing the posterior P for each

possible query output o, and from that posterior determining the vulnerability.

This is easy to do. The upper bound pmax of p maximizes the probability of any

given point. Dividing this by the lower bound mmin of the probability mass m
normalizes this probability for the worst case. For P shown in Figure 3(a), the

bounds of p and m are tight, so the vulnerability is simply 0.01/0.41 = 0.024.

2.2 Improving precision with sampling and concolic execution

In Figure 3(a), the parameters s, p, and m are precise. However, as additional

operations are performed, these quantities can accumulate imprecision. For

example, suppose we are using intervals for the shape domain, and we wish

to analyze the query Nearby(z, L1, 4) ∨ Nearby(z, L2, 4) (for some nearby point

L2). The result is produced by analyzing the two queries separately and then

combining them with an abstract join; this is shown in the top row of Figure 3(b).

Unfortunately, the result is very imprecise. The bottom row of Figure 3(b)

illustrates the result we would get by using convex polyhedra as our shape domain.

When using intervals (top row), the vulnerability is estimated as 0.036, whereas

the precise answer (bottom row) is actually 0.026. Unfortunately, obtaining this

precise answer is far more expensive than obtaining the imprecise one.

This paper presents two techniques that can allow us to use the less precise in-

terval domain but then recover lost precision in a relatively cheap post-processing

step. The effect of our techniques is shown in the middle-right of Figure 3(b).

Both techniques aim to obtain better lower bounds for s. This allows us to update

lower bounds on the probability mass m since mmin is at least smin · pmin (each

point has at least probability pmin and there are at least smin of them). A larger

m means a smaller vulnerability.

The first technique we explore is sampling, depicted to the right of the arrow

in Figure 3(b). Sampling chooses random points and evaluates the query on

them to determine whether they are in the support of the posterior distribution

for a particular query result. By tracking the ratio of points that produce the

expected output, we can produce an estimate of s, whose confidence increases

as we include more samples. This approach is depicted in the figure, where we

conclude that s ∈ [72, 81] and m ∈ [0.72, 1.62] with 90% confidence after taking

1000 samples, improving our vulnerability estimate to V ≤ 0.02
0.72 = 0.028.

The second technique we explore is the use of concolic execution to derive a

path condition, which is a formula over secret values that is consistent with a query

result. By performing model counting to estimate the number of solutions to this

formula, which are an underapproximation of the true size of the distribution, we

number of points
s ∈ [41,41]

probability per point
p ∈ [0.01,0.01]

total probability mass
m ∈ [0.41,0.41]

L1

Upper bound on max probability
pmax / mmin = 0.01 / 0.41 = 0.024

(a) Probabilistic polyhedra

s ∈ [41,41]

p ∈ [0.01,0.01]

m ∈ [0.41,0.41]

27 pts in overlap

Sound
Result

s ∈ [41,41]

p ∈ [0.01,0.01]

m ∈ [0.41,0.41]

s ∈ [55,82]

p ∈ [0.01,0.02]

m ∈ [0.55,1.64]

5 pts in overlap

Precise
Result

s ∈ [77,77]

p ∈ [0.01,0.02]

m ∈ [0.77,1.54]

Max probability ≤ 0.02 / 0.55 = 0.036

Max probability ≤ 0.02 / 0.77 = 0.026

Sampling

in = 570, out = 430
s ∈ [72,81] (90% cred.)

Under Approximation

s ≥ 63

Precise Representation

Abstraction

Precision Recovery

Max probability ≤ 0.028
Max probability ≤ 0.032

(b) Improving precision with sampling and underapproximation (concolic execution)

Fig. 3. Computing vulnerability (max probability) using abstract interpretation

Variables x ∈ Var

Integers n ∈ Z
Rationals q ∈ Q
States σ ∈ State

def= Var ⇀ Z
Distributions δ ∈ Dist

def= State→ R+0

Arith.ops aop ::= + | × | −
Rel.ops relop ::= ≤ | < | = | ≠ | · · ·
Arith.exps E ::= x | n | E1 aop E2

Bool.exps B ::= E1 relop E2 | B1 ∧ B2 | B1 ∨ B2 | ¬B
Statements S ::= skip | x := E | S1 ; S2 | while B do S |

if B then S1 else S2 | pif q then S1 else S2

Fig. 4. Core language syntax

can safely boost the lower bound of s. This approach is depicted to the left of the

arrow in Figure 3(b). The depicted shapes represent discovered path condition’s

disjuncts, whose size sums to 63. This is a better lower bound on s and improves

the vulnerability estimate to 0.032.

These techniques can be used together to further increase precision. In partic-

ular, we can first perform concolic execution, and then sample from the area not

covered by this underapproximation. Importantly, Section 8 shows that using our

techniques with the interval-based analysis yields an orders of magnitude perfor-

mance improvement over using polyhedra-based analysis alone, while achieving

similar levels of precision, with high confidence.

3 Preliminaries: Syntax and Semantics

This section presents the core language—syntax and semantics—in which we

formalize our approach to computing vulnerability. We also review probabilistic
polyhedra [25], which is the baseline analysis technique that we augment.

3.1 Core Language and Semantics

The programming language we use for queries is given in Figure 4. The language

is essentially standard, apart from pif q then S1 else S2, which implements

probabilistic choice: S1 is executed with probability q, and S2 with probability

1 − q. We limit the form of expressions E so that they can be approximated by

standard numeric abstract domains such as convex polyhedra [13]. Such domains

require linear forms; e.g., there is no division operator and multiplication of two

variables is disallowed.2

We define the semantics of a program in terms of its effect on (discrete)

distributions of states. States σ are partial maps from variables to integers; we

2 Relaxing such limitations is possible—e.g., polynominal inequalities can be approxi-
mated using convex polyhedra [5]—but doing so precisely and scalably is a challenge.

write domain(σ) for the set of variables over which σ is defined. Distributions δ
are maps from states to nonnegative real numbers, interpreted as probabilities

(in range [0, 1]). The denotational semantics considers a program as a relation

between distributions. In particular, the semantics of statement S , written [[S]],

is a function of the form Dist → Dist; we write [[S]]δ = δ′ to say that the

semantics of S maps input distribution δ to output distribution δ′. Distributions

are not necessarily normalized; we write ∥δ∥ as the probability mass of δ (which

is between 0 and 1). We write σ̇ to denote the point distribution that gives σ
probability 1, and all other states 0.

The semantics is standard and not crucial in order to understand our tech-

niques. In Appendix B we provide the semantics in full. See Clarkson et al. [10]

or Mardziel et al [25] for detailed explanations.

3.2 Probabilistic polyhedra

To compute vulnerability for a program S we must compute (an approximation

of) its output distribution. One way to do that would be to use sampling: Choose

states σ at random from the input distribution δ, “run” the program using that

input state, and collect the frequencies of output states σ′ into a distribution δ′.

While using sampling in this manner is simple and appealing, it could be both

expensive and imprecise. In particular, depending on the size of the input and

output space, it may take many samples to arrive at a proper approximation of

the output distribution.

Probabilistic polyhedra [25] can address both problems. This abstract domain

combines a standard domain C for representing numeric program states with

additional ornaments that all together can safely represent S ’s output distribution.

Probabilistic polyhedra work for any numeric domain; in this paper we use

both convex polyhedra [13] and intervals [11]. For concreteness, we present the

defintion using convex polyhedra. We use the meta-variables β, β1, β2, etc. to

denote linear inequalities.

Definition 1. A convex polyhedron C = (B, V) is a set of linear inequalities
B = {β1, . . . , βm}, interpreted conjunctively, over variables V . We write C for
the set of all convex polyhedra. A polyhedron C represents a set of states, denoted
γC(C), as follows, where σ |= β indicates that the state σ satisfies the inequality
β.

γC((B, V))
def
= {σ : domain(σ) = V, ∀β ∈ B. σ |= β}

Naturally we require that domain({β1, . . . , βn}) ⊆ V ; i.e., V mentions all
variables in the inequalities. Let domain((B, V)) = V .

Probabilistic polyhedra extend this standard representation of sets of program

states to sets of distributions over program states.

Definition 2. A probabilistic polyhedron P is a tuple (C, smin, smax, pmin,
pmax, mmin, mmax). We write P for the set of probabilistic polyhedra. The quanti-
ties smin and smax are lower and upper bounds on the number of support points in

the concrete distribution(s) P represents. A support point of a distribution is one
which has non-zero probability. The quantities pmin and pmax are lower and upper
bounds on the probability mass per support point. The mmin and mmax components
give bounds on the total probability mass (i.e., the sum of the probabilities of all
support points). Thus P represents the set of distributions γP(P) defined below.

γP(P)
def
= {δ : support(δ) ⊆ γC(C) ∧

smin ≤ |support(δ)| ≤ smax ∧
mmin ≤ ∥δ∥ ≤ mmax∧
∀σ ∈ support(δ). pmin ≤ δ(σ) ≤ pmax}

We will write domain(P)
def
= domain(C) to denote the set of variables used in

the probabilistic polyhedron.

Note the set γP(P) is a singleton exactly when smin = smax = #(C) and

pmin = pmax, and mmin = mmax, where #(C) denotes the number of discrete

points in convex polyhedron C. In such a case γP(P) contains only the uniform

distribution where each state in γC(C) has probability pmin. In general, however,

the concretization of a probabilistic polyhedron will have an infinite number of

distributions, with per-point probabilities varied somewhere in the range pmin and

pmax. Distributions represented by a probabilistic polyhedron are not necessarily

normalized. In general, there is a relationship between pmin, smin, and mmin, in

that mmin ≥ pmin · smin (and mmax ≤ pmax · smax), and the combination of the

three can yield more information than any two in isolation.

The abstract semantics of S is written ⟨⟨S⟩⟩ P = P ′, and indicates that ab-

stractly interpreting S where the distribution of input states are approximated

by P will produce P ′, which approximates the distribution of output states. Fol-

lowing standard abstract interpretation terminology, ℘Dist (sets of distributions)

is the concrete domain, P is the abstract domain, and γP : P → ℘Dist is the

concretization function for P. We do not present the abstract semantics here;

details can be found in Mardziel et al. [25]. Importantly, this abstract semantics

is sound:

Theorem 1 (Soundness). For all S , P1, P2, δ1, δ2, if δ1 ∈ γP(P1) and ⟨⟨S⟩⟩ P1 =

P2, then [[S]]δ1 = δ2 with δ2 ∈ γP(P2).

Proof. See Theorem 6 in Mardziel et. al [25].

Consider the example from Section 2.2. We assume the adversary has no

prior information about the location of ship s. So, δ1 above is simply the uniform

distribution over all possible locations. The statement S is the query issued by

the adversary, Nearby(z, L1, 4) ∨ Nearby(z, L2, 4).3 If we assume that the result

of the query is true then the adversary learns that the location of s is within

(Manhattan) distance 4 of L1 or L2. This posterior belief (δ2) is represented

3 Appendix A shows the code, which computes Manhattan distance between s and L1

and L2 and then sets an output variable if either distance is within four units.

by the overlapping diamonds on the bottom-right of Figure 3(b). The abstract

interpretation produces a sound (interval) overapproximation (P2) of the posterior

belief. This is modeled by the rectangle which surrounds the overlapping diamonds.

This rectangle is the “join” of two overlapping boxes, which each correspond to

one of the Nearby calls in the disjuncts of S .

4 Computing Vulnerability: Basic procedure

The key goal of this paper is to quantify the risk to secret information of running

a query over that information. This section explains the basic approach by which

we can use probabilistic polyhedra to compute vulnerability, i.e., the probability

of the most probable point of the posterior distribution. Improvements on this

basic approach are given in the next two sections.

Our convention will be to use C1, smin
1 , smax

1 , etc. for the components associated

with probabilistic polyhedron P1. In the program S of interest, we assume

that secret variables are in the set T , so input states are written σT , and we

assume there is a single output variable r. We assume that the adversary’s

initial uncertainty about the possible values of the secrets T is captured by the

probabilistic polyhedron P0 (such that domain(P0) ⊇ T).

Computing vulnerability occurs according to the following procedure.

1. Perform abstract interpretation: ⟨⟨S⟩⟩ P0 = P
2. Given a concrete output value of interest, o, perform abstract conditioning

to define Pr=o
def
= (P ∧ r=o).4

The vulnerability V is the probability of the most likely state(s). When a proba-

bilistic polyhedron represents one or more true distributions (i.e., the probabilities

all sum to 1), the most probable state’s probability is bounded by pmax. However,

the abstract semantics does not always normalize the probabilistic polyhedron

as it computes, so we need to scale pmax according to the total probability

mass. To ensure that our estimate is on the safe side, we scale pmax using the

minimum probability mass: V =
pmax

mmin . In Figure 3(b), the sound approximation

in the top-right has V ≤ 0.02
0.55 = 0.036 and the most precise approximation in the

bottom-right has V ≤ 0.02
0.77 = 0.026.

5 Improving precision with sampling

We can improve the precision of the basic procedure using sampling. First we

introduce some notational convenience:

PT
def
= P ∧ (r = o) ⇂ T

PT +
def
= PT revised polyhedron with confidence ω

4 We write P ∧B and not P | B because P need not be normalized.

PT is equivalent to step 2, above, but projected onto the set of secret variables

T . PT + is the improved (via sampling) polyhedron.

After computing PT with the basic procedure from the previous section we

take the following additional steps:

1. Set counters α and β to zero.
2. Do the following N times (for some N , see below):

(a) Randomly select an input state σT ∈ γC(CT).
(b) “Run” the program by computing [[S]]σ̇T = δ. If there exists σ ∈

support(δ) with σ(r) = o then increment α, else increment β.
3. We can interpret α and β as the parameters of a Beta distribution of the

likelihood that an arbitrary state in γC(CT) is in the support of the true

distribution. From these parameters we can compute the credible interval
[pL, pU] within which is contained the true likelihood, with confidence ω
(where 0 ≤ ω ≤ 1). A credible interval is essentially a Bayesian analogue of a

confidence interval and can be computed from the cumulative distribution

function (CDF) of the Beta distribution (the 99% credible interval is the

interval [a, b] such that the CDF at a has value 0.005 and the CDF at b has

value 0.995). In general, obtaining a higher confidence or a narrower interval

will require a higher N . Let result PT + = PT except that smin
T + = pL · #(CT)

and smax
T + = pU · #(CT) (assuming these improve on smin

T and smax
T). We

can then propagate these improvements to mmin and mmax by defining

mmin
T + = pmin

T · smin
T + and mmax

T + = pmax
T · smax

T + . Note that if mmin
T > mmin

T + we

leave it unchanged, and do likewise if mmax
T < mmax

T + .

At this point we can compute the vulnerability as in the basic procedure, but

using PT + instead of PT .

Consider the example of Section 2.2. In Figure 3(b), we draw samples from the

rectangle in the top-right. This rectangle overapproximates the set of locations

where s might be, given that the query returned true. We sample locations

from this rectangle and run the query on each sample. The green (red) dots

indicate true (false) results, which are added to α (β). After sampling N = 1000

locations, we have α = 570 and β = 430. Choosing ω = .9 (90%), we compute

the credible interval [0.53, 0.60]. With #(CT) = 135, we compute [smin
T + , smax

T +] as

[0.53 · 135, 0.60 · 135] = [72, 81].

There are several things to notice about this procedure. First, observe that in

step 2b we “run” the program using the point distribution σ̇ as an input; in the

case that S is deterministic (has no pif statements) the output distribution will

also be a point distribution. However, for programs with pif statements there

are multiple possible outputs depending on which branch is taken by a pif. We

consider all of these outputs so that we can confidently determine whether the

input state σ could ever cause S to produce result o. If so, then σ should be

considered part of PT +. If not, then we can safely rule it out (i.e., it is part of

the overapproximation).

Second, we only update the size parameters of PT +; we make no changes to

pmin
T + and pmax

T + . This is because our sampling procedure only determines whether

it is possible for an input state to produce the expected output. The probability

that an input state produces an output state is already captured (soundly) by pT

so we do not change that. This is useful because the approximation of pT does

not degrade with the use of the interval domain in the way the approximation of

the size degrades (as illustrated in Figure 3(b)). Using sampling is an attempt to

regain the precision lost on the size component (only).

Finally, the confidence we have that sampling has accurately assessed which

input states are in the support is orthogonal to the probability of any given state.

In particular, PT is an abstraction of a distribution δT , which is a mathematical

object. Confidence ω is a measure of how likely it is that our abstraction (or, at

least, the size part of it) is accurate.

We prove (in our extended report [43]) that our sampling procedure is sound:

Theorem 2 (Sampling is Sound).

If δ0 ∈ γP(P0), ⟨⟨S⟩⟩ P0 = P , and [[S]]δ0 = δ then δT ∈ γP(PT +) with confidence ω
where

δT
def
= δ ∧ (r = o) ⇂ T

PT
def
= P ∧ (r = o) ⇂ T

PT +
def
= PT sampling revised with confidence ω.

6 Improving precision with concolic execution

Another approach to improving the precision of a probabilistic polyhedron P is

to use concolic execution. The idea here is to “magnify” the impact of a single

sample to soundly increase smin by considering its execution symbolically. More

precisely, we concretely execute a program using a particular secret value, but

maintain symbolic constraints about how that value is used. This is referred to

as concolic execution [39]. We use the collected constraints to identify all points

that would induce the same execution path, which we can include as part of smin.

We begin by defining the semantics of concolic execution, and then show how

it can be used to increase smin soundly.

6.1 (Probabilistic) Concolic Execution

Concolic execution is expressed as rewrite rules defining a judgment ⟨Π, S⟩ −→p
π

⟨Π ′, S ′⟩. Here, Π is pair consisting of a concrete state σ and symbolic state

ζ. The latter maps variables x ∈ Var to symbolic expressions E which extend

expressions E with symbolic variables α. This judgment indicates that under

input state Π the statement S reduces to statement S ′ and output state Π ′

with probability p, with path condition π. The path condition is a conjunction

of boolean symbolic expressions B (which are just boolean expressions B but

altered to use symbolic expressions E instead of expressions E) that record which

branch is taken during execution. For brevity, we omit π in a rule when it is true.

The rules for the concolic semantics are given in Figure 5. Most of these are

standard, and deterministic (the probability annotation p is 1). Path conditions

⟨(σ, ζ), x := E⟩ −→1 ⟨(σ[x 7→ σ(E)], ζ[x 7→ ζ(E)]), skip⟩
⟨(σ, ζ), if B then S1 else S2⟩ −→1

ζ(B) ⟨(σ, ζ), S1⟩ if σ(B)
⟨(σ, ζ), if B then S1 else S2⟩ −→1

ζ(¬B) ⟨(σ, ζ), S2⟩ if σ(¬B)
⟨Π, pif q then S1 else S2⟩ −→q ⟨Π, S1⟩
⟨Π, pif q then S1 else S2⟩ −→1−q ⟨Π, S2⟩
⟨Π, S1 ; S2⟩ −→1

π ⟨Π ′, S ′
1 ; S2⟩ if ⟨Π, S1⟩ −→1

π ⟨Π ′, S ′
1⟩

⟨Π, skip ; S⟩ −→1 ⟨Π, S⟩
⟨Π, while B do S⟩ −→1

ζ(B) ⟨Π, S ; while B do S⟩ if σ(B)
⟨Π, while B do S⟩ −→1

ζ(¬B) ⟨Π, skip⟩ if σ(¬B)

Fig. 5. Concolic semantics

are recorded for if and while, depending on the branch taken. The semantics of

pif q then S1 else S2 is non-deterministic: the result is that of S1 with probability

q, and S2 with probability 1 − q. We write ζ(B) to substitute free variables x ∈ B
with their mapped-to values ζ(x) and then simplify the result as much as possible.

For example, if ζ(x) = α and ζ(y) = 2, then ζ(x > y + 3) = α > 5. The same

goes for ζ(E).

We define a complete run of the concolic semantics with the judgment

⟨Π, S⟩ ⇓p
π Π ′, which has two rules:

⟨Π, skip⟩ ⇓1
true Π

⟨Π, S⟩ −→p
π ⟨Π ′, S ′⟩ ⟨Π ′, S ′⟩ ⇓q

π′ Π ′′

⟨Π, S⟩ ⇓p·q
π∧π′ Π ′′

A complete run’s probability is thus the product of the probability of each

individual step taken. The run’s path condition is the conjunction of the conditions

of each step.

The path condition π for a complete run is a conjunction of the (symbolic)

boolean guards evaluated during an execution. π can be converted to disjunctive

normal form (DNF), and given the restrictions of the language the result is

essentially a set of convex polyhedra over symbolic variables α.

6.2 Improving precision

Using concolic execution, we can improve our estimate of the size of a probabilistic

polyhedron as follows:

1. Randomly select an input state σT ∈ γC(CT) (recall that CT is the polyhedron

describing the possible valuations of secrets T).
2. Set Π = (σT , ζT) where ζT maps each variable x ∈ T to a fresh symbolic

variable αx. Perform a complete concolic run ⟨Π, S⟩ ⇓p
π (σ′, ζ ′). Make sure

that σ′(r) = o, i.e., the expected output. If not, select a new σT and retry. Give

up after some number of failures N . For our example shown in Figure 3(b),

we might obtain a path condition |Loc(z).x − L1.x| + |Loc(z).y − L1.y| ≤ 4

that captures the left diamond of the disjunctive query.

3. After a successful concolic run, convert path condition π to DNF, where each

conjunctive clause is a polyhedron Ci. Also convert uses of disequality (≤
and ≥) to be strict (< and >).

4. Let C = CT ⊓ (
⊔

i Ci); that is, it is the join of each of the polyhedra in

DNF (π) “intersected” with the original constraints. This captures all of the

points that could possibly lead to the observed outcome along the concolically

executed path. Compute n = #(C). Let PT + = PT except define smin
T + = n if

smin
T < n and mmin

T + = pmin
T ·n if mmin

T < pmin
T ·n. (Leave them as is, otherwise.)

For our example, n = 41, the size of the left diamond. We do not update smin
T

since 41 < 55, the probabilistic polyhedron’s lower bound (but see below).

Theorem 3 (Concolic Execution is Sound).

If δ0 ∈ γP(P0), ⟨⟨S⟩⟩ P0 = P , and [[S]]δ0 = δ then δT ∈ γP(PT +) where

δT
def
= δ ∧ (r = o) ⇂ T

PT
def
= P ∧ (r = o) ⇂ T

PT +
def
= PT concolically revised.

The proof is in the extended technical report [43].

6.3 Combining Sampling with Concolic Execution

Sampling can be used to further augment the results of concolic execution. The

key insight is that the presence of a sound under-approximation generated by

the concolic execution means that it is unnecessary to sample from the under-

approximating region. Here is the algorithm:

1. Let C = C0 ⊓ (
⊔

i Ci) be the under-approximating region.

2. Perform sampling per the algorithm in Section 5, but with two changes:

– if a sampled state σT ∈ γC(C), ignore it

– When done sampling, compute smin
T + = pL · (#(CT) − #(C)) + #(C) and

smax
T + = pU · (#(CT) − #(C)) + #(C). This differs from Section 5 in not

including the count from concolic region C in the computation. This

is because, since we ignored samples σT ∈ γC(C), the credible interval

[pL, pU] bounds the likelihood that any given point in CT \ C is in the

support of the true distribution.

For our example, concolic execution indicated there are at least 41 points that

satisfy the query. With this in hand, and using the same samples as shown in

Section 5, we can refine s ∈ [74, 80] and m ∈ [0.74, 0.160] (the credible interval is

formed over only those samples which satisfy the query but fall outside the under-

approximation returned by concolic execution). We improve the vulnerability

estimate to V ≤ 0.02
0.0.74 = 0.027. These bounds (and vulnerability estimate) are

better than those of sampling alone (s ∈ [72, 81] with V ≤ 0.028).

The statement of soundness and its proof can be found in the extended

technical report [43].

7 Implementation

We have implemented our approach as an extension of Mardziel et al. [25],

which is written in OCaml. This baseline implements numeric domains C via an

OCaml interface to the Parma Polyhedra Library [4]. The counting procedure

#(C) is implemented by LattE [15]. Support for arbitrary precision and exact

arithmetic (e.g., for manipulating mmin, pmin, etc.) is provided by the mlgmp

OCaml interface to the GNU Multi Precision Arithmetic library. Rather than

maintaining a single probabilistic polyhedron P , the implementation maintains

a powerset of polyhedra [3], i.e., a finite disjunction. Doing so results in a

more precise handling of join points in the control flow, at a somewhat higher

performance cost.

We have implemented our extensions to this baseline for the case that do-

main C is the interval numeric domain [11]. Of course, the theory fully applies

to any numeric abstract domain. We use Gibbs sampling, which we imple-

mented ourselves. We delegate the calculation of the beta distribution and its

corresponding credible interval to the cephes OCaml library, which in turns

uses the GNU Scientific Library. It is straightforward to lift the various opera-

tions we have described to the powerset domain. All of our code is available at

https://github.com/GaloisInc/TAMBA.

8 Experiments

To evaluate the benefits of our techniques, we applied them to queries based on

the evacuation problem outlined in Section 2. We found that while the baseline

technique can yield precise answers when computing vulnerability, our new

techniques can achieve close to the same level of precision far more efficiently.

8.1 Experimental Setup

For our experiments we analyzed queries similar to Nearby(s, l, d) from Figure 2.

We generalize the Nearby query to accept a set of locations L—the query returns

true if s is within d units of any one of the islands having location l ∈ L. In

our experiments we fix d = 100. We consider the secrecy of the location of s,

Location(s). We also analyze the execution of the resource allocation algorithm

of Figure 2 directly; we discuss this in Section 8.3.

We measure the time it takes to compute the vulnerability (i.e., the probability

of the most probable point) following each query. In our experiments, we consider

a single ship s and set its coordinates so that it is always in range of some island

in L, so that the concrete query result returns true (i.e. Nearby(s, L, 100) = true).

We measure the vulnerability following this query result starting from a prior belief

that the coordinates of s are uniformly distributed with 0 ≤ Location(s).x ≤ 1000

and 0 ≤ Location(s).y ≤ 1000.

In our experiments, we varied several experimental parameters: analysis
method (either P, I, CE, S, or CE+S), query complexity c; AI precision level p;

and number of samples n. We describe each in turn.

https://github.com/GaloisInc/TAMBA

Analysis method We compared five techniques for computing vulnerability:
P: Abstract interpretation (AI) with convex polyhedra for domain C (Section 4),
I: AI with intervals for C (Section 4),
S: AI with intervals augmented with sampling (Section 5),
CE: AI with intervals augmented with concolic execution (Section 6), and
CE+S: AI with intervals augmented with both techniques (Section 6.3)

The first two techniques are due to Mardziel et al. [25], where the former uses

convex polyhedra and the latter uses intervals (aka boxes) for the underlying poly-

gons. In our experiments we tend to focus on P since I’s precision is unacceptably

poor (e.g., often vulnerability = 1).

Query complexity. We consider queries with different L; we say we are in-

creasing the complexity of the query as L gets larger. Let c = |L|; we consider

1 ≤ c ≤ 5, where larger L include the same locations as smaller ones. We set each

location to be at least 2 · d Manhattan distance units away from any other island

(so diamonds like those in Figure 3(a) never overlap).

Precision. The precision parameter p bounds the size of the powerset abstract

domain at all points during abstract interpretation. This has the effect of forcing

joins when the powerset grows larger than the specified precision. As p grows

larger, the results of abstract interpretation are likely to become more precise

(i.e. vulnerability gets closer to the true value). We considered p values of 1, 2, 4,

8, 16, 32, and 64.

Samples taken. For the latter three analysis methods, we varied the number

of samples taken n. For analysis CE, n is interpreted as the number of samples

to try per polyhedron before giving up trying to find a “valid sample.”5 For

analysis S, n is the number of samples, distributed proportionally across all the

polyhedra in the powerset. For analysis CE+S, n is the combination of the two.

We considered sample size values of 1, 000 − 50, 000 in increments of 1, 000. We

always compute an interval with ω =99.9% confidence (which will be wider when

fewer samples are used).

System description. We ran experiments varying all possible parameters. For

each run, we measured the total execution time (wall clock) in seconds to analyze

the query and compute vulnerability. All experiments were carried out on a

MacBook Air with OSX version 10.11.6, a 1.7GHz Intel Core i7, and 8GB of

RAM. We ran a single trial for each configuration of parameters. Only wall-clock

time varies across trials; informally, we observed time variations to be small.

8.2 Results

Figure 6(a)–(c) measure vulnerability (y-axis) as a function of time (x-axis) for

each analysis.6 These three figures characterize three interesting “zones” in the

space of complexity and precision. The results for method I are not shown in

any of the figures. This is because I always produces a vulnerability of 1. The

refinement methods (CE, S, and CE+S) are all over the interval domain, and

should be considered as “improving” the vulnerability of I.

5 This is the N parameter from section 6.
6 These are best viewed on a color display.

(a) Vulnerability vs. time,
c = 1 and p = 1

(b) Vulnerability vs. time,
c = 2 and p = 4

(c) Vulnerability vs. time,
c = 5 and p = 32 (X-axis is log-scale)

(d) Time vs. complexity,
n = 50, 000 and p = 64

Fig. 6. Experimental results

In Figure 6(a) we fix c = 1 and p = 1. In this configuration, baseline analysis

P can compute the true vulnerability in ∼ 0.95 seconds. Analysis CE is also

able to compute the true vulnerability, but in ∼0.19 seconds. Analysis S is able

to compute a vulnerability to within ∼ 5 · e−6 of optimal in ∼ 0.15 seconds.

These data points support two key observations. First, even a very modest

number of samples improves vulnerability significantly over just analyzing with

intervals. Second, concolic execution is only slightly slower and can achieve the

optimal vulnerability. Of course, concolic execution is not a panacea. As we will

see, a feature of this configuration is that no joins take place during abstract

interpretation. This is critical to the precision of the concolic execution.

In Figure 6(b) we fix c = 2 and p = 4. In contrast to the configuration of

Figure 6(a), the values for c and p in this configuration are not sufficient to prevent

all joins during abstract interpretaion. This has the effect of taking polygons

that represent individual paths through the program and joining them into a

single polygon representing many paths. We can see that this is the case because

baseline analysis P is now achieving a better vulnerability than CE. However, one

Table 1. Analyzing a 3-ship resource allocation run

Resource Allocation (3 ships)

Analysis Time (s) Vulnerability

P Timeout (5 min) N/A

I 0.516 1

CE 16.650 1.997 · 10−24

S 1.487 1.962 · 10−24

CE+S 17.452 1.037 · 10−24

pattern from the previous configuration persists: all three refinement methods

(CE, S, CE+S) can achieve vulnerability within ∼1 · e−5 of P, but in 1
4 the time.

In contrast to the previous configuration, analysis CE+S is now able to make a

modest improvement over CE (since it does not achieve the optimal).

In Figure 6(c) we fix c = 5 and p = 32. This configuration magnifies the

effects we saw in Figure 6(b). Similarly, in this configuration there are joins

happening, but the query is much more complex and the analysis is much more

precise. In this figure, we label the X axis as a log scale over time. This is because

analysis P took over two minutes to complete, in contrast the longest-running

refinement method, which took less than 6 seconds. The relationship between the

refinement analyses is similar to the previous configuration. The key observation

here is that, again, all three refinement analyses achieve within ∼ 3 · e−5 of P,

but this time in 4% of the time (as opposed to 1
4 in the previous configuration).

Figure 6(d) makes more explicit the relationship between refinements (CE,

S, CE+S) and P. We fix n = 50, 000 (the maximum) here, and p = 64 (the

maximum). We can see that as query complexity goes up, P gets exponentially

slower, while CE, S, and CE+S slow at a much lower rate, while retaining (per

the previous graphs) similar precision.

8.3 Evacuation Problem

We conclude this section by briefly discussing an analysis of an execution of the

resource allocation algorithm of Figure 2. In our experiment, we set the number

of ships to be three, where two were in range d = 300 of the evacuation site, and

their sum-total berths (500) were sufficient to satisfy demand at the site (also

500). For our analysis refinements we set n = 1000. Running the algorithm, a

total of seven pairs of Nearby and Capacity queries were issued. In the end, the

algorithm selects two ships to handle the evacuation.

Table 1 shows the time to execute the algorithm using the different analysis

methods, along with the computed vulnerability—this latter number represents

the coordinator’s view of the most likely nine-tuple of the private data of the

three ships involved (x coordinate, y coordinate, and capacity for each). We can

see that, as expected, our refinement analyses are far more efficient than baseline

P, and far more precise than baseline I. The CE methods are precise but slower

than S. This is because of the need to count the number of points in the DNF of

the concolic path conditions, which is expensive.

9 Related Work

Quantifying Information Flow. There is a rich research literature on techniques

that aim to quantify information that a program may release, or has released, and

then use that quantification as a basis for policy. One question is what measure

of information release should be used. Past work largely considers information

theoretic measures, including Bayes vulnerability [41] and Bayes risk [8], Shannon
entropy [40], and guessing entropy [26]. The g-vulnerability framework [1] was

recently introduced to express measures having richer operational interpretations,

and subsumes other measures.

Our work focuses on Bayes Vulnerability, which is related to min entropy.

Vulnerability is appealing operationally: As Smith [41] explains, it estimates

the risk of the secret being guessed in one try. While challenging to compute,

this approach provides meaningful results for non-uniform priors. Work that has

focused on other, easier-to-compute metrics, such as Shannon entropy and channel

capacity, require deterministic programs and priors that conform to uniform

distributions [2,22,23,27,32]. The work of Klebanov [20] supports computation

of both Shannon and Min entropy over deterministic programs with non-uniform

priors. The work takes a symbolic execution and program specification approach

to QIF. Our use of concolic execution for counting polyhedral constraints is

similar to that of Klebanov. However, our language supports probabilistic choice

and in addition to concolic execution we also provide a sampling technique and

a sound composition. Like Mardziel et al. [25], we are able to compute the

worst-case vulnerability, i.e., due to a particular output, rather than a static
estimate, i.e., as an expectation over all possible outputs. Köpf and Basin [21]

originally proposed this idea, and Mardziel et al. were the first to implement it,

followed by several others [6, 19,24].

Köpf and Rybalchenko [22] (KR) also use sampling and concolic execution

to statically quantify information leakage. But their approach is quite different

from ours. KR uses sampling of a query’s inputs in lieu of considering (as

we do) all possible outputs, and uses concolic execution with each sample to

ultimately compute Shannon entropy, by underapproximation, within a confidence

interval. This approach benefits from not having to enumerate outputs, but also

requires expensive model counting for each sample. By contrast, we use sampling

and concolic execution from the posterior computed by abstract interpretation,

using the results to boost the lower bound on the size/probability mass of the

abstraction. Our use of sampling is especially efficient, and the use of concolic

execution is completely sound (i.e., it retains 100% confidence in the result). As

with the above work, KR requires deterministic programs and uniform priors.

Probabilistic Programming Langauges. A probabilistic program is essentially a

lifting of a normal program operating on single values to a program operating on

distributions of values. As a result, the program represents a joint distribution over

its variables [18]. As discussed in this paper, quantifying the information released

by a query can be done by writing the query in a probabilistic programming

language (PPL) and representing the uncertain secret inputs as distributions.

Quantifying release generally corresponds to either the maximum likelihood

estimation (MLE) problem or the maximum a-posteriori probability (MAP)

problem. Not all PPLs support computation of MLE and MAP, but several do.

PPLs based on partial sampling [17, 34] or full enumeration [37] of the

state space are unsuitable in our setting: they are either too inefficient or too

imprecise. PPLs based on algebraic decision diagrams [9], graphical models [28],

and factor graphs [7,30,36] translate programs into convenient structures and

take advantage of efficient algorithms for their manipulation or inference, in

some cases supporting MAP or MLE queries (e.g. [33, 35]). PSI [16] supports

exact inference via computation of precise symbolic representations of posterior

distributions, and has been used for dynamic policy enforcement [24]. Guarnieri

et al. [19] use probabilistic logic programming as the basis for inference; it scales

well but only for a class of queries with certain structural limits, and which do

not involve numeric relationships.

Our implementation for probabilistic computation and inference differs from

the above work in two main ways. Firstly, we are capable of sound approximation

and hence can trade off precision for performance, while maintaining soundness

in terms of a strong security policy. Even when using sampling, we are able to

provide precise confidence measures. The second difference is our compositional
representation of probability distributions, which is based on numerical abstrac-

tions: intervals [11], octagons [29], and polyhedra [13]. The posterior can be easily

used as the prior for the next query, whereas prior work would have to repeatedly

analyze the composition of past queries.

A few other works have also focused on abstract interpretation, or related

techniques, for reasoning about probabilistic programs. Monniaux [31] defines

an abstract domain for distributions. Smith [42] describes probabilistic abstract

interpretation for verification of quantitative program properties. Cousot [14]

unifies these and other probabilistic program analysis tools. However, these

do not deal with sound distribution conditioning, which is crucial for belief-

based information flow analysis. Work by Sankaranarayanan et al [38] uses a

combination of techniques from program analysis to reason about distributions

(including abstract interpretation), but the representation does not support

efficient retrieval of the maximal probability, needed to compute vulnerability.

10 Conclusions

Quantitative information flow is concerned with measuring the knowledge about

secret data that is gained by observing the answer to a query. This paper has

presented a combination of static analysis using probabilistic abstract interpre-

tation, sampling, and underapproximation via concolic execution to compute

high-confidence upper bounds on information flow. Preliminary experimental

results are promising and suggest that this approach can operate more precisely

and efficiently than abstract interpretation alone. As next steps, we plan to eval-

uate the technique more rigorously – including on programs with probabilistic

choice. We also plan to integrate static analysis and sampling more closely so as

to avoid precision loss at decision points in programs. We also look to extend

programs to be able to store random choices in variables, to thereby implement

more advanced probabilistic structures.

References

1. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proc. IEEE Computer Security
Foundations Symposium (CSF) (2012)

2. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: Proceedings of the IEEE Symposium on Security and Privacy
(S&P) (2009)

3. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
International Journal on Software Tools for Tech. Transfer 8(4), 449–466 (2006)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma polyhedra library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72 (Jun 2008)

5. Bagnara, R., Rodríguez-Carbonell, E., Zaffanella, E.: Generation of basic semi-
algebraic invariants using convex polyhedra. In: SAS (2005)

6. Besson, F., Bielova, N., Jensen, T.: Browser randomisation against fingerprinting:
A quantitative information flow approach. In: NordSec (2014)

7. Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., Van Gael, J.: Mea-
sure transformer semantics for bayesian machine learning. In: Proceedings of the
European Symposium on Programming (ESOP) (2011)

8. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in
information-hiding protocols. Journal of Computer Security 16(5) (2008)

9. Claret, G., Rajamani, S.K., Nori, A.V., Gordon, A.D., Borgstroem, J.: Bayesian
inference for probabilistic programs via symbolic execution. Tech. Rep. MSR-TR-
2012-86, Microsoft Research (2012)

10. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Quantifying information flow with
beliefs. Journal of Computer Security 17(5), 655–701 (2009)

11. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In:
Proceedings of the Second International Symposium on Programming (1976)

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the ACM SIGPLAN Conference on Principles of Programming Languages (POPL)
(1977)

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL (1978)

14. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Proceedings of
the European Symposium on Programming (ESOP) (2012)

15. De Loera, J.A., Haws, D., Hemmecke, R., Huggins, P., Tauzer, J., Yoshida, R.:
Latte. https://www.math.ucdavis.edu/~latte/ (2008)

16. Gehr, T., Misailovic, S., Vechev, M.: Psi: Exact symbolic inference for probabilistic
programs. In: CAV (2016)

https://www.math.ucdavis.edu/~latte/

17. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI) (2008)

18. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic program-
ming. In: Conference on the Future of Software Engineering. pp. 167–181. FOSE
2014, ACM, New York, NY, USA (2014)

19. Guarnieri, M., Marinovic, S., Basin, D.: Securing databases from probabilistic
inference. In: Proc. IEEE Computer Security Foundations Symposium (CSF) (2017)

20. Klebanov, V.: Precise quantitative information flow analysis—a symbolic approach.
Theoretical Computer Science 538, 124–139 (2014)

21. Köpf, B., Basin, D.: An Information-Theoretic Model for Adaptive Side-Channel
Attacks. In: Proceedings of the ACM Conference on Computer and Communications
Security (CCS) (2007)

22. Köpf, B., Rybalchenko, A.: Approximation and randomization for quantitative
information-flow analysis. In: Proceedings of the IEEE Computer Security Founda-
tions Symposium (CSF) (2010)

23. Köpf, B., Rybalchenko, A.: Automation of quantitative information-flow analysis.
In: 13th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems (SFM), 2013. Lecture Notes in Computer
Science, vol. 7938, pp. 1–28. Springer (2013)

24. Kučera, M., Tsankov, P., Gehr, T., Guarnieri, M., Vechev, M.: Synthesis of proba-
bilistic privacy enforcement. In: Proc. ACM Conference on Computer and Commu-
nications Security (CCS) (2017)

25. Mardziel, P., Magill, S., Hicks, M., Srivatsa, M.: Dynamic enforcement of knowledge-
based security policies using probabilistic abstract interpretation. Journal of Com-
puter Security 21, 463–532 (Oct 2013)

26. Massey, J.L.: Guessing and entropy. In: Proc. IEEE Intl. Symposium on Information
Theory (ISIT) (1994)

27. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capacity.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (2008)

28. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: Blog:
Probabilistic models with unknown objects. In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI) (2005)

29. Miné, A.: The octagon abstract domain. In: Proceedings of the Working Conference
on Reverse Engineering (WCRE) (2001)

30. Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler, A.,
Bronskill, J.: Infer.NET 2.6 (2014), microsoft Research Cambridge. http://research.
microsoft.com/infernet

31. Monniaux, D.: Analyse de programmes probabilistes par interprétation abstraite.
Thèse de doctorat, Université Paris IX Dauphine (2001)

32. Mu, C., Clark, D.: An interval-based abstraction for quantifying information flow.
Elec. Notes in Theoretical Computer Science 253(3), 119–141 (2009)

33. Narayanan, P., Carette, J., Romano, W., Shan, C.c., Zinkov, R.: Probabilistic
inference by program transformation in hakaru (system description). In: Proc.
Functional and Logic Programming (2016)

34. Park, S., Pfenning, F., Thrun, S.: A probabilistic language based on sampling
functions. ACM Transactions on Programming Languages and Systems (TOPLAS)
31(1), 4:1–4:46 (2008)

35. Pfeffer, A.: Figaro: An object-oriented probabilistic programming language. Tech.
rep., Charles River Analytics (2000)

http://research.microsoft.com/infernet
http://research.microsoft.com/infernet

36. Pfeffer, A.: The design and implementation of IBAL: A general-purpose probabilistic
language. In: Getoor, L., Taskar, B. (eds.) Statistical Relational Learning. MIT
Press (2007)

37. Radul, A.: Report on the probabilistic language Scheme. In: Proceedings of the
Dynamic Languages Symposium (DLS) (2007)

38. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilis-
tic programs: Inferring whole program properties from finitely many paths. In:
Conference on Programming Language Design and Implementation. PLDI (2013)

39. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
ESEC/FSE (2005)

40. Shannon, C.: A mathematical theory of communication. Bell System Technical
Journal 27 (1948)

41. Smith, G.: On the foundations of quantitative information flow. In: Proc. Conference
on Foundations of Software Science and Computation Structures (FoSSaCS) (2009)

42. Smith, M.J.A.: Probabilistic abstract interpretation of imperative programs using
truncated normal distributions. Elec. Notes in Theoretical Computer Science (2008)

43. Sweet, I., Trilla, J.M.C., Scherrer, C., Hicks, M., Magill, S.: What’s the over/under?
probabilistic bounds on information leakage (extended version). CoRR
abs/1802.08234 (Feb 2018), https://arxiv.org/abs/1802.08234

All links were last followed on February 23, 2018.

A Query code

The following is the query code of the example developed in Section 2.2. Here,

s_x and s_y represent a ship’s secret location. The variables l1_x, l1_y, l2_x, l2_y,

and d are inputs to the query. The first pair represents position L1, the second

pair represents the position L2, and the last is the distance threshold, set to 4.

We assume for the example that L1 and L2 have the same y coordinate, and

their x coordinates differ by 6 units.

We express the query in the language of Figure 4 basically as follows:

d_l1 := |s_x - l1_x| + |s_y - l1_y|;

d_l2 := |s_x - l2_x| + |s_y - l2_y|;

if (d_l1 <= d || d_l2 <= d) then

out := true // assume this result

else

out := false

The variable out is the result of the query. We simplify the code by assuming

the absolute value function is built-in; we can implement this with a simple

conditional. We run this query probabilistically under the assumption that s_x
and s_y are uniformly distributed within the range given in Figure 1. We then

condition the output on the assumption that out = true. When using intervals

as the baseline of probabilistic polyhedra, this produces the result given in the

upper right of Figure 3(b); when using convex polyhedra, the result is shown

in the lower right of the figure. The use of sampling and concolic execution to

augment the former is shown via arrows between the two.

https://arxiv.org/abs/1802.08234

B Formal semantics

Here we defined the probabilistic semantics for the programming language given

in Figure 4. The semantics of statement S , written [[S]], is a function of the form

Dist → Dist, i.e., it is a function from distributions of states to distributions of

states. We write [[S]]δ = δ′ to say that the semantics of S maps input distribution

δ to output distribution δ′.

Figure 7 gives this denotational semantics along with definitions of relevant

auxiliary operations. We write [[E]]σ to denote the (integer) result of evaluating

expression E in σ, and [[B]]σ to denote the truth or falsehood of B in σ. The

variables of a state σ, written domain(σ), is defined by domain(σ); sometimes we

will refer to this set as just the domain of σ. We will also use the this notation

for distributions; domain(δ)
def
= domain(domain(δ)). We write lfp as the least

fixed-point operator. The notation
∑

x : ϕ ρ can be read ρ is the sum over all x
such that formula ϕ is satisfied (where x is bound in ρ and ϕ).

This semantics is standard. See Clarkson et al. [10] or Mardziel et al [25] for

detailed explanations.

[[skip]]δ = δ
[[x := E]]δ = δ [x→ E]

[[if B then S1 else S2]]δ = [[S1]](δ ∧B) + [[S2]](δ ∧ ¬B)
[[pif q then S1 else S2]]δ = [[S1]](q · δ) + [[S2]]((1− q) · δ)

[[S1 ; S2]]δ = [[S2]]([[S1]]δ)
[[while B do S]] = lfp [λf : Dist→ Dist. λδ.

f ([[S]](δ ∧B)) + (δ ∧ ¬B)]

where

δ [x→ E] def= λσ.
∑

τ : τ [x→[[E]]τ]=σ
δ(τ)

δ1 + δ2
def= λσ. δ1(σ) + δ2(σ)

δ ∧ B def= λσ. if [[B]]σ then δ(σ) else 0
p · δ def= λσ. p · δ(σ)
∥δ∥ def=

∑
σ

δ(σ)
normal(δ) def= 1

∥δ∥ · δ
δ|B def= normal(δ ∧B)
δ1 × δ2

def= λ(σ1, σ2). δ1(σ1) · δ2(σ2)
σ̇

def= λσ0. if σ = σ0 then 1 else 0
σ ⇂ V

def= λx ∈ VarV . σ(x)
δ ⇂ V

def= λσV ∈ StateV .
∑

τ : τ⇂V =σV
δ(τ)

fx(δ) def= δ ⇂ (domain(δ)− {x})
support(δ) def= {σ : δ(σ) > 0}

Fig. 7. Distribution semantics

