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Abstract. Quantitative information flow (QIF) is concerned with mea-
suring how much of a secret is leaked to an adversary who observes the
result of a computation that uses it. Prior work has shown that QIF tech-
niques based on abstract interpretation with probabilistic polyhedra can be
used to analyze the worst-case leakage of a query, on-line, to determine
whether that query can be safely answered. While this approach can
provide precise estimates, it does not scale well. This paper shows how
to solve the scalability problem by augmenting the baseline technique
with sampling and symbolic execution. We prove that our approach never
underestimates a query’s leakage (it is sound), and detailed experimental
results show that we can match the precision of the baseline technique
but with orders of magnitude better performance.

1 Introduction

As more sensitive data is created, collected, and analyzed, we face the problem of
how to productively use this data while preserving privacy. One approach to this
problem is to analyze a query f in order to quantify how much information about
secret input s is leaked by the output f(s). More precisely, we can consider a
querier to have some prior belief of the secret’s possible values. The belief can be
modeled as a probability distribution [10], i.e., a function § from each possible
value of s to its probability. When a querier observes output o = f(s), he revises
his belief, using Bayesian inference, to produce a posterior distribution ¢’. If
the posterior could reveal too much about the secret, then the query should be
rejected. One common definition of “too much” is Bayes Vulnerability, which is
the probability of the adversary guessing the secret in one try [41]. Formally,

V(6) = max; 6(i)

Various works [6,19, 24, 25] propose rejecting f if there exists an output that
makes the vulnerability of the posterior exceed a fixed threshold K. In particular,
for all possible values i of s (i.e., 6(¢) > 0), if the output o = f(i) could induce a
posterior §' with V(') > K, then the query is rejected.

One way to implement this approach is to estimate f(d)—the distribution
of f’s outputs when the inputs are distributed according to d—by viewing f as
a program in a probabilistic programming language (PPL) [18]. Unfortunately,



as discussed in Section 9, most PPLs are approximate in a manner that could
easily result in underestimating the vulnerability, leading to an unsafe security
decision. Techniques designed specifically to quantify information leakage often
assume only uniform priors, cannot compute vulnerability (favoring, for example,
Shannon entropy), and/or cannot maintain assumed knowledge between queries.

Mardziel et al. [25] propose a sound analysis technique based on abstract
interpretation [12]. In particular, they estimate a program’s probability distri-
bution using an abstract domain called a probabilistic polyhedron (PP), which
pairs a standard numeric abstract domain, such as convex polyhedra [13], with
some additional ornaments, which include lower and upper bounds on the size of
the support of the distribution, and bounds on the probability of each possible
secret value. Using PP can yield a precise, yet safe, estimate of the vulnerability,
and allows the posterior PP (which is not necessarily uniform) to be used as a
prior for the next query. Unfortunately, PPs can be very inefficient. Defining
intervals [11] as the PP’s numeric domain can dramatically improve performance,
but only with an unacceptable loss of precision.

In this paper we present a new approach that ensures a better balance of both
precision and performance in vulnerability computation, augmenting PP with
two new techniques. In both cases we begin by analyzing a query using the fast
interval-based analysis. Our first technique is then to use sampling to augment
the result. In particular, we execute the query using possible secret values 4
sampled from the posterior 4’ derived from a particular output o;. If the analysis
were perfectly accurate, executing f(i) would produce o;. But since intervals are
overapproximate, sometimes it will not. With many sampled outcomes, we can
construct a Beta distribution to estimate the size of the support of the posterior,
up to some level of confidence. We can use this estimate to boost the lower bound
of the abstraction, and thus improve the precision of the estimated vulnerability.

Our second technique is of a similar flavor, but uses symbolic reasoning to
magnify the impact of a successful sample. In particular, we execute a query
result-consistent sample concolically [39], thus maintaining a symbolic formula
(called the path condition) that characterizes the set of variable valuations that
would cause execution to follow the observed path. We then count the number
of possible solutions and use the count to boost the lower bound of the support
(with 100% confidence).

Sampling and concolic execution can be combined for even greater precision.

We have formalized and proved our techniques are sound (Sections 3-6) and
implemented and evaluated them (Sections 7 and 8). Using a privacy-sensitive ship
planning scenario (Section 2) we find that our techniques provide similar precision
to convex polyhedra while providing orders-of-magnitude better performance.
More experiments are needed to see if the approach provides such benefits more
generally. Our implementation freely available at https://github.com/GaloisInc/
TAMBA.
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Field Type Range Private?
ShipID Integer 1-10 No
NationID |Integer 1-20 No
Capacity |Integer 0-1000 Yes
Latitude |Integer -900,000-900,000 Yes
Longitude | Integer -1,800,000-1,800,000  Yes

Fig. 1. The data model used in the evacuation scenario.

2 Overview

To provide an overview of our approach, we will describe the application of our
techniques to a scenario that involves a coalition of ships from various nations
operating in a shared region. Suppose a natural disaster has impacted some
islands in the region. Some number of individuals need to be evacuated from
the islands, and it falls to a regional disaster response coordinator to determine
how to accomplish this. While the coalition wants to collaborate to achieve
these humanitarian aims, we assume that each nation also wants to protect their
sensitive data—namely ship locations and capacity.

More formally, we assume the use of the data model shown in Figure 1, which
considers a set of ships, their coalition affiliation, the evacuation capacity of the
ship, and its position, given in terms of latitude and longitude.! We sometimes
refer to the latter two as a location L, with L.z as the longitude and L.y as the
latitude. We will often index properties by ship ID, writing Capacity(z) for the
capacity associated with ship ID z, or Location(z) for the location.

The evacuation problem is defined as follows

Given a target location L and number of people to evacuate IV, compute

a set of nearby ships S such that ) _g Capacity(z) > N.

Our goal is to solve this problem in a way that minimizes the vulnerability to the
coordinator of private information, i.e., the ship locations and their exact capacity.
We assume that this coordinator initially has no knowledge of the positions or
capabilities of the ships other than that they fall within certain expected ranges.

If all members of the coalition share all of their data with the coordinator,
then a solution is easy to compute, but it affords no privacy. Figure 2 gives an
algorithm the response coordinator can follow that does not require each member
to share all of their data. Instead, it iteratively performs queries AtLeast and
Nearby. These queries do not reveal precise values about ship locations or capacity,
but rather admit ranges of possibilities. The algorithm works by maintaining
upper and lower bounds on the capacity of each ship i in the array berths. Each
ship’s bounds are updated based on the results of queries about its capacity and
location. These queries aim to be privacy preserving, doing a sort of binary search
to narrow in on the capacity of each ship in the operating area. The procedure
completes once is_solution determines the minimum required capacity is reached.

1 We give latitude and longitude values as integer representations of decimal degrees
fixed to four decimal places; e.g., 14.3579 decimal degrees is encoded as 143579.



(* S = ##ships; N = #evacuees; L = island loc.; D = min. proximity to L %)
let berths = Array.make S (0,1000)
let is_solution () = sum (Array.map fst berths) >N
let mid (x,y) = (x +v) /2
let Atleast(z,b) = Capacity(z) >b
let Nearby(z,l,d) = |Loc(z).x — I.x| + |Loc(z).y — l.y| <d
while true do
for i =0toS do
let ask = mid berths][i]
let ok = AtLeast(i,ask) && Nearby(i,L,D)
if ok then berths[i] < (ask, snd berths[i])

else berths[i] < (fst berths[i], ask)
if is_solution () then return berths
done
done

Fig. 2. Algorithm to solve the evacuation problem for a single island.

2.1 Computing vulnerability with abstract interpretation

Using this procedure, what is revealed about the private variables (location and
capacity)? Consider a single Nearby(z,l,d) query. At the start, the coordinator
is assumed to know only that z is somewhere within the operating region. If
the query returns true, the coordinator now knows that s is within d units of [
(using Manhattan distance). This makes Location(z) more vulnerable because
the adversary has less uncertainty about it.

Mardziel et al. [25] proposed a static analysis for analyzing queries such as
Nearby(z,1,d) to estimate the worst-case vulnerability of private data. If the
worst-case vulnerability is too great, the query can be rejected. A key element
of their approach is to perform abstract interpretation over the query using an
abstract domain called a probabilistic polyhedron. An element P of this domain
represents the set of possible distributions over the query’s state. This state
includes both the hidden secrets and the visible query results. The abstract
interpretation is sound in the sense that the true distribution § is contained in
the set of distributions represented by the computed probabilistic polyhedron P.

A probabilistic polyhedron P is a tuple comprising a shape and three or-
naments. The shape C' is an element of a standard numeric domain—e.g., in-
tervals [11], octagons [29], or convex polyhedra [13]—which overapproximates
the set of possible values in the support of the distribution. The ornaments
p € [0,1], m € R, and s € Z are pairs which store upper and lower bounds on
the probability per point, the total mass, and number of support points in the
distribution, respectively. (Distributions represented by P are not necessarily
normalized, so the mass m is not always 1.)

Figure 3(a) gives an example probabilistic polyhedron that represents the
posterior of a Nearby query that returns true. In particular, if Nearby(z,L1,D)
is true then Location(z) is somewhere within the depicted diamond around



Ly. Using convex polyhedra or octagons for the shape domain would permit
representing this diamond exactly; using intervals would overapproximate it as
the depicted 9x9 bounding box. The ornaments would be the same in any case:
the size s of the support is 41 possible (x,y) points, the probability p per point is
0.01, and the total mass is 0.41, i.e., p - s. In general, each ornament is a pair of
a lower and upper bound (e.g., Smin and Smax), and m might be a more accurate
estimate than p - s. In this case shown in the figure, the bounds are tight.
Mardziel et al’s procedure works by computing the posterior P for each
possible query output o, and from that posterior determining the vulnerability.
This is easy to do. The upper bound pyax of p maximizes the probability of any
given point. Dividing this by the lower bound muy;, of the probability mass m
normalizes this probability for the worst case. For P shown in Figure 3(a), the
bounds of p and m are tight, so the vulnerability is simply 0.01/0.41 = 0.024.

2.2 Improving precision with sampling and concolic execution

In Figure 3(a), the parameters s, p, and m are precise. However, as additional
operations are performed, these quantities can accumulate imprecision. For
example, suppose we are using intervals for the shape domain, and we wish
to analyze the query Nearby(z, L1,4) V Nearby(z, Lo, 4) (for some nearby point
L,). The result is produced by analyzing the two queries separately and then
combining them with an abstract join; this is shown in the top row of Figure 3(b).
Unfortunately, the result is very imprecise. The bottom row of Figure 3(b)
illustrates the result we would get by using convex polyhedra as our shape domain.
When using intervals (top row), the vulnerability is estimated as 0.036, whereas
the precise answer (bottom row) is actually 0.026. Unfortunately, obtaining this
precise answer is far more expensive than obtaining the imprecise one.

This paper presents two techniques that can allow us to use the less precise in-
terval domain but then recover lost precision in a relatively cheap post-processing
step. The effect of our techniques is shown in the middle-right of Figure 3(b).
Both techniques aim to obtain better lower bounds for s. This allows us to update
lower bounds on the probability mass m since My, is at least Spin - Pmin (each
point has at least probability pmin and there are at least sy, of them). A larger
m means a smaller vulnerability.

The first technique we explore is sampling, depicted to the right of the arrow
in Figure 3(b). Sampling chooses random points and evaluates the query on
them to determine whether they are in the support of the posterior distribution
for a particular query result. By tracking the ratio of points that produce the
expected output, we can produce an estimate of s, whose confidence increases
as we include more samples. This approach is depicted in the figure, where we
conclude that s € [72,81] and m € [0.72,1.62] with 90% confidence after taking
1000 samples, improving our vulnerability estimate to V' < % = 0.028.

The second technique we explore is the use of concolic execution to derive a
path condition, which is a formula over secret values that is consistent with a query
result. By performing model counting to estimate the number of solutions to this
formula, which are an underapproximation of the true size of the distribution, we
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Fig. 3. Computing vulnerability (max probability) using abstract interpretation



Variables T € Var

Integers n S/

Rationals q e Q

States o € State ™ Var —~ 7

Distributions § € Dist < State — R+9

Arith.ops aop u=+4| x| —

Rel.ops relop =< | <|=|#]| -

Arith.exps E w=z|n| E aop B>

Bool.exps B = FEy relop B> | BIA B2 | B1V B | B
Statements S n=skip |z := E|S1; S2 | while Bdo S|

if B then Si else Sy | pif ¢ then Sy else S2

Fig. 4. Core language syntax

can safely boost the lower bound of s. This approach is depicted to the left of the
arrow in Figure 3(b). The depicted shapes represent discovered path condition’s
disjuncts, whose size sums to 63. This is a better lower bound on s and improves
the vulnerability estimate to 0.032.

These techniques can be used together to further increase precision. In partic-
ular, we can first perform concolic execution, and then sample from the area not
covered by this underapproximation. Importantly, Section 8 shows that using our
techniques with the interval-based analysis yields an orders of magnitude perfor-
mance improvement over using polyhedra-based analysis alone, while achieving
similar levels of precision, with high confidence.

3 Preliminaries: Syntax and Semantics

This section presents the core language—syntax and semantics—in which we
formalize our approach to computing vulnerability. We also review probabilistic
polyhedra [25], which is the baseline analysis technique that we augment.

3.1 Core Language and Semantics

The programming language we use for queries is given in Figure 4. The language
is essentially standard, apart from pif ¢ then S; else S, which implements
probabilistic choice: S is executed with probability ¢, and Sy with probability
1 — q. We limit the form of expressions E so that they can be approximated by
standard numeric abstract domains such as convex polyhedra [13]. Such domains
require linear forms; e.g., there is no division operator and multiplication of two
variables is disallowed.?

We define the semantics of a program in terms of its effect on (discrete)
distributions of states. States o are partial maps from variables to integers; we

2 Relaxing such limitations is possible—e.g., polynominal inequalities can be approxi-
mated using convex polyhedra [5]—but doing so precisely and scalably is a challenge.



write domain(o) for the set of variables over which o is defined. Distributions §
are maps from states to nonnegative real numbers, interpreted as probabilities
(in range [0,1]). The denotational semantics considers a program as a relation
between distributions. In particular, the semantics of statement S, written [S],
is a function of the form Dist — Dist; we write [S]0 = ¢’ to say that the
semantics of S maps input distribution § to output distribution ¢’. Distributions
are not necessarily normalized; we write ||| as the probability mass of § (which
is between 0 and 1). We write ¢ to denote the point distribution that gives o
probability 1, and all other states 0.

The semantics is standard and not crucial in order to understand our tech-
niques. In Appendix B we provide the semantics in full. See Clarkson et al. [10]
or Mardziel et al [25] for detailed explanations.

3.2 Probabilistic polyhedra

To compute vulnerability for a program S we must compute (an approximation
of) its output distribution. One way to do that would be to use sampling: Choose
states ¢ at random from the input distribution é, “run” the program using that
input state, and collect the frequencies of output states ¢’ into a distribution ¢§’.
While using sampling in this manner is simple and appealing, it could be both
expensive and imprecise. In particular, depending on the size of the input and
output space, it may take many samples to arrive at a proper approximation of
the output distribution.

Probabilistic polyhedra [25] can address both problems. This abstract domain
combines a standard domain C' for representing numeric program states with
additional ornaments that all together can safely represent S’s output distribution.

Probabilistic polyhedra work for any numeric domain; in this paper we use
both convex polyhedra [13] and intervals [11]. For concreteness, we present the
defintion using convex polyhedra. We use the meta-variables 3, 51, B2, etc. to
denote linear inequalities.

Definition 1. A convex polyhedron C = (B, V) is a set of linear inequalities
B ={p1,...,0m}, interpreted conjunctively, over variables V. We write C for
the set of all convex polyhedra. A polyhedron C' represents a set of states, denoted
v¢c(C), as follows, where o |= B indicates that the state o satisfies the inequality
8.

ve((B,V)) = {0 : domain(c) =V, VB € B. ¢ = 3}

Naturally we require that domain({B1,...,8,}) C V; i.e., V mentions all
variables in the inequalities. Let domain((B,V)) =V.

Probabilistic polyhedra extend this standard representation of sets of program
states to sets of distributions over program states.

max ,min

Definition 2. A probabilistic polyhedron P is a tuple (C,s™in, smax pmin
prlax mmin - mmaxy - We write P for the set of probabilistic polyhedra. The quanti-
ties s™in are lower and upper bounds on the number of support points in

)

and s

max



the concrete distribution(s) P represents. A support point of a distribution is one
which has non-zero probability. The quantities p™™ and p™®* are lower and upper
bounds on the probability mass per support point. The m™™ and m™®* components
give bounds on the total probability mass (i.e., the sum of the probabilities of all
support points). Thus P represents the set of distributions yp(P) defined below.

e (P) B {6 : support(§) C vc(C) A
S < Jsupport(9)| < s™AF A
i < 5] < mes
Yo € support(d). p™" < 6(o) < p™a*}

We will write domain(P) = domain(C) to denote the set of variables used in
the probabilistic polyhedron.

Note the set yp(P) is a singleton exactly when s™? = gma* = #(C) and
plit = pmaxand m™® = m™a* where #(C) denotes the number of discrete
points in convex polyhedron C. In such a case vp(P) contains only the uniform
distribution where each state in ¢ (C) has probability p™®. In general, however,
the concretization of a probabilistic polyhedron will have an infinite number of
distributions, with per-point probabilities varied somewhere in the range p™™ and
p™@*. Distributions represented by a probabilistic polyhedron are not necessarlly
normalized. In general, there is a relationship between p™®,s™" and m™", in
that m™min > pmin . gmin (and mmax < pmax . gmax) and the combmatlon of the
three can yield more information than any two in isolation.

The abstract semantics of S is written ((S)) P = P’, and indicates that ab-
stractly interpreting S where the distribution of input states are approximated
by P will produce P’, which approximates the distribution of output states. Fol-
lowing standard abstract interpretation terminology, £Dist (sets of distributions)
is the concrete domain, P is the abstract domain, and v : P — £Dist is the
concretization function for P. We do not present the abstract semantics here;
details can be found in Mardziel et al. [25]. Importantly, this abstract semantics
is sound:

Theorem 1 (Soundness). For all S, Py, Py, 01,82, if 61 € vp(P1) and (S) P, =
Py, then [[S]](Sl = 0o with 6o € ’)/]P(PQ).

Proof. See Theorem 6 in Mardziel et. al [25].

Counsider the example from Section 2.2. We assume the adversary has no
prior information about the location of ship s. So, §; above is simply the uniform
distribution over all possible locations. The statement S is the query issued by
the adversary, Nearby(z, L1,4) V Nearby(z, Lo,4).3 If we assume that the result
of the query is true then the adversary learns that the location of s is within
(Manhattan) distance 4 of Ly or L. This posterior belief (d2) is represented

3 Appendix A shows the code, which computes Manhattan distance between s and L;
and Ly and then sets an output variable if either distance is within four units.



by the overlapping diamonds on the bottom-right of Figure 3(b). The abstract
interpretation produces a sound (interval) overapproximation (Ps) of the posterior
belief. This is modeled by the rectangle which surrounds the overlapping diamonds.
This rectangle is the “join” of two overlapping boxes, which each correspond to
one of the Nearby calls in the disjuncts of S.

4 Computing Vulnerability: Basic procedure

The key goal of this paper is to quantify the risk to secret information of running
a query over that information. This section explains the basic approach by which
we can use probabilistic polyhedra to compute vulnerability, i.e., the probability
of the most probable point of the posterior distribution. Improvements on this
basic approach are given in the next two sections.

Our convention will be to use C1, sii?; g8 etc. for the components associated
with probabilistic polyhedron P;. In the program S of interest, we assume
that secret variables are in the set T, so input states are written or, and we
assume there is a single output variable r. We assume that the adversary’s
initial uncertainty about the possible values of the secrets T is captured by the
probabilistic polyhedron Py (such that domain(Py) 2 T).

Computing vulnerability occurs according to the following procedure.

1. Perform abstract interpretation: (S)) Py = P
2. Given a concrete output value of interest, o, perform abstract conditioning
to define Pr—, = (P Ar=0).*

The vulnerability V is the probability of the most likely state(s). When a proba-
bilistic polyhedron represents one or more true distributions (i.e., the probabilities
all sum to 1), the most probable state’s probability is bounded by p™#*. However,
the abstract semantics does not always normalize the probabilistic polyhedron
as it computes, so we need to scale p™®* according to the total probability
mass. To ensure that our estimate is on the safe side, we scale p™** using the

max
p

minimum probability mass: V' = 2. In Figure 3(b), the sound approximation

mmin

in the top-right has V' < % = 0.036 and the most precise approximation in the

. 0.02°°
bottom-right has V' < 7== = 0.026.

5 Improving precision with sampling

We can improve the precision of the basic procedure using sampling. First we
introduce some notational convenience:

def

Pr=PA(r=o0)|T
Pry < Pr revised polyhedron with confidence w

* We write P A B and not P | B because P need not be normalized.



Pr is equivalent to step 2, above, but projected onto the set of secret variables
T. Pry is the improved (via sampling) polyhedron.

After computing Pr with the basic procedure from the previous section we
take the following additional steps:

1. Set counters o and [ to zero.
2. Do the following N times (for some N, see below):
(a) Randomly select an input state op € y¢(Cr).
(b) “Run” the program by computing [SJor = d. If there exists o €
support(d) with o(r) = o then increment «, else increment /3.

3. We can interpret a and (3 as the parameters of a Beta distribution of the
likelihood that an arbitrary state in 7¢c(Cr) is in the support of the true
distribution. From these parameters we can compute the credible interval
[pr, pr] within which is contained the true likelihood, with confidence w
(where 0 < w < 1). A credible interval is essentially a Bayesian analogue of a
confidence interval and can be computed from the cumulative distribution
function (CDF) of the Beta distribution (the 99% credible interval is the
interval [a, b] such that the CDF at a has value 0.005 and the CDF at b has
value 0.995). In general, obtaining a higher confidence or a narrower interval
will require a higher N. Let result Pro = Pr except that s%lf =pr - #(Cr)
and s7Y = py - #(Cr) (assuming these improve on si'™ and s7%*). We
can then propagate these improvements to m™™ and m™?* by defining
mpit = ppit . $Pit and mpPg* = ppex - s?*. Note that if mP™ > mfpi® we

max

leave it unchanged, and do likewise if mp®* < mpi*.

At this point we can compute the vulnerability as in the basic procedure, but
using Pr. instead of Pr.

Consider the example of Section 2.2. In Figure 3(b), we draw samples from the
rectangle in the top-right. This rectangle overapproximates the set of locations
where s might be, given that the query returned true. We sample locations
from this rectangle and run the query on each sample. The green (red) dots
indicate true (false) results, which are added to a (8). After sampling N = 1000
locations, we have a = 570 and 8 = 430. Choosing w = .9 (90%), we compute
the credible interval [0.53,0.60]. With #(Cr) = 135, we compute [sF", sT4¥] as
[0.53 - 135,0.60 - 135] = [72, 81].

There are several things to notice about this procedure. First, observe that in
step 2b we “run” the program using the point distribution ¢ as an input; in the
case that S is deterministic (has no pif statements) the output distribution will
also be a point distribution. However, for programs with pif statements there
are multiple possible outputs depending on which branch is taken by a pif. We
consider all of these outputs so that we can confidently determine whether the
input state o could ever cause S to produce result o. If so, then o should be
considered part of Pry. If not, then we can safely rule it out (i.e., it is part of
the overapproximation).

Second, we only update the size parameters of Pry; we make no changes to
p%“f and ppi*. This is because our sampling procedure only determines whether
it is possible for an input state to produce the expected output. The probability



that an input state produces an output state is already captured (soundly) by pr
so we do not change that. This is useful because the approximation of pr does
not degrade with the use of the interval domain in the way the approximation of
the size degrades (as illustrated in Figure 3(b)). Using sampling is an attempt to
regain the precision lost on the size component (only).

Finally, the confidence we have that sampling has accurately assessed which
input states are in the support is orthogonal to the probability of any given state.
In particular, Pr is an abstraction of a distribution dr, which is a mathematical
object. Confidence w is a measure of how likely it is that our abstraction (or, at
least, the size part of it) is accurate.

We prove (in our extended report [43]) that our sampling procedure is sound:

Theorem 2 (Sampling is Sound).
If 09 € v (Py), (S) Po = P, and [S]6o = 6 then dp € vp(Pry) with confidence w
where

brE6A(r=0)|T

def

Pr=PA(r=o)|T

Pry < pr sampling revised with confidence w.

6 Improving precision with concolic execution

Another approach to improving the precision of a probabilistic polyhedron P is
to use concolic execution. The idea here is to “magnify” the impact of a single
sample to soundly increase s™™ by considering its execution symbolically. More
precisely, we concretely execute a program using a particular secret value, but
maintain symbolic constraints about how that value is used. This is referred to
as concolic execution [39]. We use the collected constraints to identify all points
that would induce the same execution path, which we can include as part of s™*,

We begin by defining the semantics of concolic execution, and then show how
it can be used to increase s™" soundly.

6.1 (Probabilistic) Concolic Execution

Concolic execution is expressed as rewrite rules defining a judgment (17, S) —2
(IT',S"). Here, II is pair consisting of a concrete state o and symbolic state
¢. The latter maps variables x € Var to symbolic expressions & which extend
expressions E with symbolic variables a. This judgment indicates that under
input state IT the statement S reduces to statement S’ and output state II’
with probability p, with path condition w. The path condition is a conjunction
of boolean symbolic expressions B (which are just boolean expressions B but
altered to use symbolic expressions € instead of expressions E) that record which
branch is taken during execution. For brevity, we omit 7 in a rule when it is true.

The rules for the concolic semantics are given in Figure 5. Most of these are
standard, and deterministic (the probability annotation p is 1). Path conditions



(0.C)v = B) —* ((o]z = o(B)], [ — C(B)]), skip)
(0,¢),if Bthen S; else Sa) —>é(3) ((6,¢), %) ifo(B)
(0,¢),if Bthen S; else Sz) —>é(ﬂ3) ((0,¢), S2) if ¢(—B)
I1, pif q then S; else S2) —9 (I1, S1)

<H, pif q then S else Sz) —>1ﬁ1 <H, 52>

(IT, S1 ; So) —L (IT', 8 ; S2) if (IT, 1) —% (IT', S)
(IT,skip ; Sy —* (IT, S)

(IT,while Bdo S) —¢ ) (IT, S ; while Bdo S) if o(B)
(I, while B do S) —>é(ﬂ3> (I1, skip) if o(=B)

o~ o~~~

Fig. 5. Concolic semantics

are recorded for if and while, depending on the branch taken. The semantics of
pif g then S; else S5 is non-deterministic: the result is that of S; with probability
q, and Sy with probability 1 —g. We write ((B) to substitute free variables = € B
with their mapped-to values ((z) and then simplify the result as much as possible.
For example, if {(z) = a and {(y) = 2, then ((x > y + 3) = a > 5. The same
goes for ((E).

We define a complete run of the concolic semantics with the judgment
(I1,S) |2 II’, which has two rules:

<H7 Sk|p> lltlrue H

(I1,8) —h (I', ") (I, 8") 47, 11"
<H7 S> pq H//

TAT!

A complete run’s probability is thus the product of the probability of each
individual step taken. The run’s path condition is the conjunction of the conditions
of each step.

The path condition 7 for a complete run is a conjunction of the (symbolic)
boolean guards evaluated during an execution. 7 can be converted to disjunctive
normal form (DNF), and given the restrictions of the language the result is
essentially a set of convex polyhedra over symbolic variables «.

6.2 Improving precision

Using concolic execution, we can improve our estimate of the size of a probabilistic
polyhedron as follows:

1. Randomly select an input state o7 € vc(Cr) (recall that Cr is the polyhedron
describing the possible valuations of secrets T').

2. Set II = (o7, {r) where {r maps each variable x € T to a fresh symbolic
variable a,. Perform a complete concolic run (II, S) ||2 (o', (’). Make sure
that o/ (r) = o, i.e., the expected output. If not, select a new o and retry. Give
up after some number of failures N. For our example shown in Figure 3(b),
we might obtain a path condition |Loc(z).2 — Ly.xz| + |Loc(z).y — L1.y| < 4
that captures the left diamond of the disjunctive query.



3. After a successful concolic run, convert path condition 7 to DNF, where each
conjunctive clause is a polyhedron C;. Also convert uses of disequality (<
and >) to be strict (< and >).

4. Let C = Cp M (|, Ci); that is, it is the join of each of the polyhedra in
DNF(r) “intersected” with the original constraints. This captures all of the
points that could possibly lead to the observed outcome along the concolically
executed path. Compute n = #(C). Let Pry = Pr except define s?ﬂf =n if
SP < nand mPP = pptn if mP™ < p™on. (Leave them as is, otherwise.)
For our example, n = 41, the size of the left diamond. We do not update s
since 41 < 55, the probabilistic polyhedron’s lower bound (but see below).

Theorem 3 (Concolic Execution is Sound).
If 6o € vp(Py), {(S) Po = P, and [S]do = & then ér € yp(Pry) where

op ZSA(r=0)| T
def

Pr=PA(r=o0)|T

Pri Lot Pr concolically revised.

The proof is in the extended technical report [43].

6.3 Combining Sampling with Concolic Execution

Sampling can be used to further augment the results of concolic execution. The
key insight is that the presence of a sound under-approximation generated by
the concolic execution means that it is unnecessary to sample from the under-
approximating region. Here is the algorithm:

1. Let C'= Co M (], C;) be the under-approximating region.
2. Perform sampling per the algorithm in Section 5, but with two changes:
— if a sampled state op € v¢(C), ignore it
— When done sampling, compute s = py, - (#(Cr) — #(C)) + #(C) and
s = pu - (#(Cr) — #(C)) + #(C). This differs from Section 5 in not
including the count from concolic region C in the computation. This
is because, since we ignored samples o1 € v¢(C), the credible interval
[pL, pu] bounds the likelihood that any given point in C7 \ C' is in the
support of the true distribution.

For our example, concolic execution indicated there are at least 41 points that
satisfy the query. With this in hand, and using the same samples as shown in
Section 5, we can refine s € [74,80] and m € [0.74,0.160] (the credible interval is
formed over only those samples which satisfy the query but fall outside the under-
approximation returned by concolic execution). We improve the vulnerability
estimate to V' < 096?724 = 0.027. These bounds (and vulnerability estimate) are
better than those of sampling alone (s € [72,81] with V' < 0.028).

The statement of soundness and its proof can be found in the extended
technical report [43].




7 Implementation

We have implemented our approach as an extension of Mardziel et al. [25],
which is written in OCaml. This baseline implements numeric domains C' via an
OCaml interface to the Parma Polyhedra Library [4]. The counting procedure
#(C) is implemented by LattE [15]. Support for arbitrary precision and exact
arithmetic (e.g., for manipulating m™®, p™i® etc.) is provided by the mlgmp
OCaml interface to the GNU Multi Precision Arithmetic library. Rather than
maintaining a single probabilistic polyhedron P, the implementation maintains
a powerset of polyhedra [3], i.e., a finite disjunction. Doing so results in a
more precise handling of join points in the control flow, at a somewhat higher
performance cost.

We have implemented our extensions to this baseline for the case that do-
main C' is the interval numeric domain [11]. Of course, the theory fully applies
to any numeric abstract domain. We use Gibbs sampling, which we imple-
mented ourselves. We delegate the calculation of the beta distribution and its
corresponding credible interval to the cephes OCaml library, which in turns
uses the GNU Scientific Library. It is straightforward to lift the various opera-
tions we have described to the powerset domain. All of our code is available at
https://github.com/GaloisInc/TAMBA.

8 Experiments

To evaluate the benefits of our techniques, we applied them to queries based on
the evacuation problem outlined in Section 2. We found that while the baseline
technique can yield precise answers when computing vulnerability, our new
techniques can achieve close to the same level of precision far more efficiently.

8.1 Experimental Setup

For our experiments we analyzed queries similar to Nearby(s,l,d) from Figure 2.
We generalize the Nearby query to accept a set of locations L—the query returns
true if s is within d units of any one of the islands having location [ € L. In
our experiments we fix d = 100. We consider the secrecy of the location of s,
Location(s). We also analyze the execution of the resource allocation algorithm
of Figure 2 directly; we discuss this in Section 8.3.

We measure the time it takes to compute the vulnerability (i.e., the probability
of the most probable point) following each query. In our experiments, we consider
a single ship s and set its coordinates so that it is always in range of some island
in L, so that the concrete query result returns true (i.e. Nearby(s, L,100) = true).
We measure the vulnerability following this query result starting from a prior belief
that the coordinates of s are uniformly distributed with 0 < Location(s).z < 1000
and 0 < Location(s).y < 1000.

In our experiments, we varied several experimental parameters: analysis
method (either P, I, CE, S, or CE+S), query complexity c; Al precision level p;
and number of samples n. We describe each in turn.


https://github.com/GaloisInc/TAMBA

Analysis method We compared five techniques for computing vulnerability:
P: Abstract interpretation (AI) with convex polyhedra for domain C' (Section 4),

I: Al with intervals for C' (Section 4),

S: AI with intervals augmented with sampling (Section 5),

CE: Al with intervals augmented with concolic execution (Section 6), and
CE+S: AI with intervals augmented with both techniques (Section 6.3)

The first two techniques are due to Mardziel et al. [25], where the former uses
convex polyhedra and the latter uses intervals (aka boxes) for the underlying poly-
gons. In our experiments we tend to focus on P since I's precision is unacceptably
poor (e.g., often vulnerability = 1).

Query complexity. We consider queries with different L; we say we are in-
creasing the complexity of the query as L gets larger. Let ¢ = |L|; we consider
1 < ¢ <5, where larger L include the same locations as smaller ones. We set each
location to be at least 2 - d Manhattan distance units away from any other island
(so diamonds like those in Figure 3(a) never overlap).

Precision. The precision parameter p bounds the size of the powerset abstract
domain at all points during abstract interpretation. This has the effect of forcing
joins when the powerset grows larger than the specified precision. As p grows
larger, the results of abstract interpretation are likely to become more precise
(i.e. vulnerability gets closer to the true value). We considered p values of 1, 2, 4,
8, 16, 32, and 64.

Samples taken. For the latter three analysis methods, we varied the number
of samples taken n. For analysis CE, n is interpreted as the number of samples
to try per polyhedron before giving up trying to find a “valid sample.”® For
analysis S, n is the number of samples, distributed proportionally across all the
polyhedra in the powerset. For analysis CE4S, n is the combination of the two.
We considered sample size values of 1,000 — 50,000 in increments of 1,000. We
always compute an interval with w =99.9% confidence (which will be wider when
fewer samples are used).

System description. We ran experiments varying all possible parameters. For
each run, we measured the total execution time (wall clock) in seconds to analyze
the query and compute vulnerability. All experiments were carried out on a
MacBook Air with OSX version 10.11.6, a 1.7GHz Intel Core i7, and 8 GB of
RAM. We ran a single trial for each configuration of parameters. Only wall-clock
time varies across trials; informally, we observed time variations to be small.

8.2 Results

Figure 6(a)—(c) measure vulnerability (y-axis) as a function of time (x-axis) for
each analysis.® These three figures characterize three interesting “zones” in the
space of complexity and precision. The results for method I are not shown in
any of the figures. This is because I always produces a vulnerability of 1. The
refinement methods (CE, S, and CE+S) are all over the interval domain, and
should be considered as “improving” the vulnerability of I.

5 This is the N parameter from section 6.
8 These are best viewed on a color display.
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Fig. 6. Experimental results

In Figure 6(a) we fix ¢ = 1 and p = 1. In this configuration, baseline analysis
P can compute the true vulnerability in ~ 0.95 seconds. Analysis CE is also
able to compute the true vulnerability, but in ~0.19 seconds. Analysis S is able
to compute a vulnerability to within ~ 5 - e~ of optimal in ~ 0.15 seconds.
These data points support two key observations. First, even a very modest
number of samples improves vulnerability significantly over just analyzing with
intervals. Second, concolic execution is only slightly slower and can achieve the
optimal vulnerability. Of course, concolic execution is not a panacea. As we will
see, a feature of this configuration is that no joins take place during abstract
interpretation. This is critical to the precision of the concolic execution.

In Figure 6(b) we fix ¢ = 2 and p = 4. In contrast to the configuration of
Figure 6(a), the values for ¢ and p in this configuration are not sufficient to prevent
all joins during abstract interpretaion. This has the effect of taking polygons
that represent individual paths through the program and joining them into a
single polygon representing many paths. We can see that this is the case because
baseline analysis P is now achieving a better vulnerability than CE. However, one



Table 1. Analyzing a 3-ship resource allocation run

Resource Allocation (3 ships)
Analysis Time (s) Vulnerability
P Timeout (5 min) N/A
I 0.516 1
CE 16.650 1.997 - 10~
S 1.487 1.962 - 102
CE+S 17.452 1.037 - 102

pattern from the previous configuration persists: all three refinement methods
(CE, S, CE+S) can achieve vulnerability within ~1-e~5 of P, but in % the time.
In contrast to the previous configuration, analysis CE+S is now able to make a
modest improvement over CE (since it does not achieve the optimal).

In Figure 6(c) we fix ¢ = 5 and p = 32. This configuration magnifies the
effects we saw in Figure 6(b). Similarly, in this configuration there are joins
happening, but the query is much more complex and the analysis is much more
precise. In this figure, we label the X axis as a log scale over time. This is because
analysis P took over two minutes to complete, in contrast the longest-running
refinement method, which took less than 6 seconds. The relationship between the
refinement analyses is similar to the previous configuration. The key observation
here is that, again, all three refinement analyses achieve within ~3-e~5 of P,
but this time in 4% of the time (as opposed to i in the previous configuration).

Figure 6(d) makes more explicit the relationship between refinements (CE,
S, CE+S) and P. We fix n = 50,000 (the maximum) here, and p = 64 (the
maximum). We can see that as query complexity goes up, P gets exponentially
slower, while CE, S, and CE+S slow at a much lower rate, while retaining (per
the previous graphs) similar precision.

8.3 Evacuation Problem

We conclude this section by briefly discussing an analysis of an execution of the
resource allocation algorithm of Figure 2. In our experiment, we set the number
of ships to be three, where two were in range d = 300 of the evacuation site, and
their sum-total berths (500) were sufficient to satisfy demand at the site (also
500). For our analysis refinements we set n = 1000. Running the algorithm, a
total of seven pairs of Nearby and Capacity queries were issued. In the end, the
algorithm selects two ships to handle the evacuation.

Table 1 shows the time to execute the algorithm using the different analysis
methods, along with the computed vulnerability—this latter number represents
the coordinator’s view of the most likely nine-tuple of the private data of the
three ships involved (x coordinate, y coordinate, and capacity for each). We can
see that, as expected, our refinement analyses are far more efficient than baseline
P, and far more precise than baseline I. The CE methods are precise but slower



than S. This is because of the need to count the number of points in the DNF of
the concolic path conditions, which is expensive.

9 Related Work

Quantifying Information Flow. There is a rich research literature on techniques
that aim to quantify information that a program may release, or has released, and
then use that quantification as a basis for policy. One question is what measure
of information release should be used. Past work largely considers information
theoretic measures, including Bayes vulnerability [41] and Bayes risk [8], Shannon
entropy [40], and guessing entropy [26]. The g-vulnerability framework [1] was
recently introduced to express measures having richer operational interpretations,
and subsumes other measures.

Our work focuses on Bayes Vulnerability, which is related to min entropy.
Vulnerability is appealing operationally: As Smith [41] explains, it estimates
the risk of the secret being guessed in one try. While challenging to compute,
this approach provides meaningful results for non-uniform priors. Work that has
focused on other, easier-to-compute metrics, such as Shannon entropy and channel
capacity, require deterministic programs and priors that conform to uniform
distributions [2,22,23,27,32]. The work of Klebanov [20] supports computation
of both Shannon and Min entropy over deterministic programs with non-uniform
priors. The work takes a symbolic execution and program specification approach
to QIF. Our use of concolic execution for counting polyhedral constraints is
similar to that of Klebanov. However, our language supports probabilistic choice
and in addition to concolic execution we also provide a sampling technique and
a sound composition. Like Mardziel et al. [25], we are able to compute the
worst-case vulnerability, i.e., due to a particular output, rather than a static
estimate, i.e., as an expectation over all possible outputs. Kopf and Basin [21]
originally proposed this idea, and Mardziel et al. were the first to implement it,
followed by several others [6,19,24].

Kopf and Rybalchenko [22] (KR) also use sampling and concolic execution
to statically quantify information leakage. But their approach is quite different
from ours. KR uses sampling of a query’s inputs in lieu of considering (as
we do) all possible outputs, and uses concolic execution with each sample to
ultimately compute Shannon entropy, by underapproximation, within a confidence
interval. This approach benefits from not having to enumerate outputs, but also
requires expensive model counting for each sample. By contrast, we use sampling
and concolic execution from the posterior computed by abstract interpretation,
using the results to boost the lower bound on the size/probability mass of the
abstraction. Our use of sampling is especially efficient, and the use of concolic
execution is completely sound (i.e., it retains 100% confidence in the result). As
with the above work, KR requires deterministic programs and uniform priors.

Probabilistic Programming Langauges. A probabilistic program is essentially a
lifting of a normal program operating on single values to a program operating on
distributions of values. As a result, the program represents a joint distribution over



its variables [18]. As discussed in this paper, quantifying the information released
by a query can be done by writing the query in a probabilistic programming
language (PPL) and representing the uncertain secret inputs as distributions.
Quantifying release generally corresponds to either the maximum likelihood
estimation (MLE) problem or the maximum a-posteriori probability (MAP)
problem. Not all PPLs support computation of MLE and MAP, but several do.

PPLs based on partial sampling [17, 34] or full enumeration [37] of the
state space are unsuitable in our setting: they are either too inefficient or too
imprecise. PPLs based on algebraic decision diagrams [9], graphical models [28],
and factor graphs [7, 30, 36] translate programs into convenient structures and
take advantage of efficient algorithms for their manipulation or inference, in
some cases supporting MAP or MLE queries (e.g. [33,35]). PSI [16] supports
exact inference via computation of precise symbolic representations of posterior
distributions, and has been used for dynamic policy enforcement [24]. Guarnieri
et al. [19] use probabilistic logic programming as the basis for inference; it scales
well but only for a class of queries with certain structural limits, and which do
not involve numeric relationships.

Our implementation for probabilistic computation and inference differs from
the above work in two main ways. Firstly, we are capable of sound approximation
and hence can trade off precision for performance, while maintaining soundness
in terms of a strong security policy. Even when using sampling, we are able to
provide precise confidence measures. The second difference is our compositional
representation of probability distributions, which is based on numerical abstrac-
tions: intervals [11], octagons [29], and polyhedra [13]. The posterior can be easily
used as the prior for the next query, whereas prior work would have to repeatedly
analyze the composition of past queries.

A few other works have also focused on abstract interpretation, or related
techniques, for reasoning about probabilistic programs. Monniaux [31] defines
an abstract domain for distributions. Smith [42] describes probabilistic abstract
interpretation for verification of quantitative program properties. Cousot [14]
unifies these and other probabilistic program analysis tools. However, these
do not deal with sound distribution conditioning, which is crucial for belief-
based information flow analysis. Work by Sankaranarayanan et al [38] uses a
combination of techniques from program analysis to reason about distributions
(including abstract interpretation), but the representation does not support
efficient retrieval of the maximal probability, needed to compute vulnerability.

10 Conclusions

Quantitative information flow is concerned with measuring the knowledge about
secret data that is gained by observing the answer to a query. This paper has
presented a combination of static analysis using probabilistic abstract interpre-
tation, sampling, and underapproximation via concolic execution to compute
high-confidence upper bounds on information flow. Preliminary experimental
results are promising and suggest that this approach can operate more precisely



and efficiently than abstract interpretation alone. As next steps, we plan to eval-
uate the technique more rigorously — including on programs with probabilistic
choice. We also plan to integrate static analysis and sampling more closely so as
to avoid precision loss at decision points in programs. We also look to extend
programs to be able to store random choices in variables, to thereby implement
more advanced probabilistic structures.
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Query code

The following is the query code of the example developed in Section 2.2. Here,
s_x and s_y represent a ship’s secret location. The variables 11_x, 11_y, 12_x, 12_y,
and d are inputs to the query. The first pair represents position L, the second
pair represents the position Ly, and the last is the distance threshold, set to 4.
We assume for the example that L; and Lo have the same y coordinate, and
their x coordinates differ by 6 units.

We express the query in the language of Figure 4 basically as follows:

d_11:=|s_x-11_x| + |s_y-11_yl;
d_12 = |s_x-12_x| + |s_y - 12_yl;
if (d_11<=d || d_12 <= d) then

out := true // assume this result

else

out := false

The variable out is the result of the query. We simplify the code by assuming
the absolute value function is built-in; we can implement this with a simple
conditional. We run this query probabilistically under the assumption that s_x
and s_y are uniformly distributed within the range given in Figure 1. We then
condition the output on the assumption that out = true. When using intervals
as the baseline of probabilistic polyhedra, this produces the result given in the
upper right of Figure 3(b); when using convex polyhedra, the result is shown
in the lower right of the figure. The use of sampling and concolic execution to
augment the former is shown via arrows between the two.


https://arxiv.org/abs/1802.08234

B Formal semantics

Here we defined the probabilistic semantics for the programming language given
in Figure 4. The semantics of statement S, written [S], is a function of the form
Dist — Dist, i.e., it is a function from distributions of states to distributions of
states. We write [S]d = ¢’ to say that the semantics of S maps input distribution
0 to output distribution ¢’.

Figure 7 gives this denotational semantics along with definitions of relevant
auxiliary operations. We write [E]o to denote the (integer) result of evaluating
expression E in o, and [B]o to denote the truth or falsehood of B in o. The
variables of a state o, written domain(o), is defined by domain(o); sometimes we
will refer to this set as just the domain of o. We will also use the this notation
for distributions; domain(3) = domain(domain(5)). We write 1fp as the least
fixed-point operator. The notation ) . » P can be read p is the sum over all x
such that formula ¢ is satisfied (where x is bound in p and ¢).

This semantics is standard. See Clarkson et al. [10] or Mardziel et al [25] for
detailed explanations.

[skip]é =
[x := EJ6 =46 [x—>E]
[if B then S; else S2]6 = [S1](6 A B) + [S2](6 A —B)
[pif ¢ then Sy else S2]6 = [S1](q - d) + [S=]((1 — q) - 9)
[S1; S2]6 = [S2]([S1]9)
[while B do S] = lfp [)\f Dist — Dist. A\d.

f(ISIG A B)) + (6 A-B)]
where

o [:E - E] ::f Ao Z’r : Tlz—[E]T]=0 6(7_)
01 + 92 d—/\U 01(0) + d2(0)
A B = MAo. if [B]o then §(c) else 0

def

p-0 o Ao.p- 5( )

ol =Y, s

normal(d) = ﬁ )

0|B < normal(5 A B)

51 ><52 jéi A(U1,0’2).51(0'1)-52(0'2)

o = MAog. if 0 = 0p then 1 else 0
oV :fi)\xEVarv o(z)

A% ;f Aoy € Statey . ZT R 5(7)
£2(9) 5 | (domain(d) — {x})

support(8) = {o : §(c) > 0}

Fig. 7. Distribution semantics



